COMPENDIUM

SIMULATION 745, 264-274

©2000, Simulation Councils Inc.

ISSN 0037-5497/00

Printed in the United States of America

Poisson Simulation—A Method for

Generating Stochastic Variations in

Continuous System Simulation

Leif Gustafsson
Department of Agricultural Engineering
Swedish University of Agricultural Sciences
Box 7033, 5-750 07 Uppsala, Sweden
e-mail: leif. gustafsson@lt.slu.se

In continuous systems simulation a model is built as
a system of differential equations. An implicit assump-
tion is that the number of items is so large that the
changes can then be regarded as continuous. How-
ever, many systems can be modeled by differential
equations when the numbers involved are moderately
large. Such systems show stochastic variations that
can be described in terms of events per time unit. If
the events happen one at a time, and if the number of
events during the interval is independent of both the
number of past events and the times these events oc-
curred, we have a Poisson process. The system’s
variations can be imodeled by replacing the flow to or
from a state during the integration step with a Pois-
son probability. This not only adds variations to the
model, but can also reveal system properties not cov-
ered by continuous systein simulatiorn. Furthermore,
the “intensity parameter” controlling the flow may
vary over time without further problems.

Keywords: CSS, differential equations, Pois-
son distribution, Poisson process, random, sto-
chastic process

1. Introduction

Most kinds of computer simulation can be classified
in static/dynamic and deterministic/stochastic terms
(see Figure 1).

In dynamic simulation, Continuous System Simula-
tion (CSS) usually represents a macro view where the
number of entities involved is so large that you may
think in terms of amounts and continuous flows. There-
fore, you may represent your model with a system of
differential equations, and statistical variations are
usually not important because of big numbers. The re-
sults emerge as curves of the states, flows or auxiliary
quantities as functions of time.

Discrete Event Simulation (DES), on the other hand,
represents a micro view where each individual entity
(actor) is modeled in terms of its actions and interac-
tions at certain events of time. The modeling focuses on
actors with properties and behavior and on resources
of different kinds. The micro perspective also implies
that the results emerge as statistics of events, waiting
times, utilization of resources, etc.

However, a model of differential equations often
gives good representation of the dynamics of the sys-
tem, when the number of entities is not so large, but
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Figure 1. Classification of models and simulation techniques in the terms static/dynamic and deterministic/stochastic.

then the stochastic variations usually can’t be ne-
glected. This may, for example, be the case when de-
scribing an ecological system of animals or plants, an
epidemiological system of prevalences and incidences,
effects of a medical screening program, the plants in
an agricultural system, or migration of people be-
tween areas. Often randomness is then handled by
adding noise of some distribution to input, state or
output variables, which is often not a proper way to
handle stochastic aspects.

In many stochastic processes in nature a random
number of events occurs during a time interval. If the
events happen one at a time, and if the number of
events during the interval is independent both of the
number of events in the past and of the times these
events occurred, then we have by definition a Poisson
process. Examples of such stochastic processes may be
the number of decays per second from a radioactive
source, the number of phone calls per hour to an of-
fice, the number of new cases of cancer per year in a
population, the number of customers per hour arriving
at a shop, the number of offspring per year in a popu-
lation, etc. The expected number of events per time
unit (intensity) may be constant or vary over time. If it
is constant, we have a stationary Poisson process; oth-
erwise it is nonstationary. In both cases, the number of
events during an interval, dt, is described by a Poisson
distribution, Po(dt*A), where the intensity A (events per
time unit) times the interval length dt is the expected
number of events during the interval. In modeling,
Poisson-distributed samples are easily obtained from
a random number generator.

When the stochastics in a system originate from a
Poisson process, it can easily be modeled by including
a call to a Poisson random number generator in a flow
rate equation. We call this technique Poisson simula-
tion.

The purpose of this compendium is to present a
method for handling stochastic variations occurring
from finite numbers in the frame of a system of differ-
ential equations. Hereby, we also offer a straightfor-
ward and simple alternative to use discrete event sim-
ulation in order to handle stochastic variations.

2. Method and Realization
2.1 Outline: Modification of a Simple CSS Model

A C55 model is represented by a system of ordinary
differential equations. Each equation can be written as:
dx/dt = f(x,t), together with an initial value x(0) = xo.
In CSS languages this dynamic equation is sometimes
written as: x = INTEG(f, x0), or in the Euler approxi-
mation: x(t + At) = x(t) + At*f(t), where f is the net flow
rate to/from the state x. :

For computational purposes, the dynamic model
may be separated into dynamic state equations, and
flow rate equations (and possibly also auxiliary equa-
tions), the last two types being purely algebraic. The
order of computation is state equations, then auxiliary
equations and, finally, the flow rate equations.

For the sake of simplicity, we demonstrate this with
a first-order system in the Euler form. This system has
one state x and one outflow rate f which is propor-
tional to the state value. A computer program then
gets a model structure such as:

Initialization
AGAIN:
x:=X + dt*(—f)
f=p*
time:=time + dt :
if time < Tend then Goto AGAIN

For each time step, dt, a certain fraction of the state
value, p*x, leaves the state as an outflow. When the
state represents, e.g., the amount of water or gas, the
number of molecules is so large that we have virtually
no stochastic variations. But when the state variable
represents rabbits, prevalence of sick persons, emigrants,
etc., the number, x, may be large—but not so large
that we can neglect the stochastic variations. The aver-
age outflow is still f = p*x per time unit or dt*f = dt*p*x
during the time interval dt. If the properties of single
events and independency, discussed above, are ful-
filled, the number of events during dt should be Pois- .
son-distributed with the intensity A = f = p*x. Thus,
the outflow during the time interval, dt, has a Poisson
distributed variation denoted Po(dt*A). The flow rate
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then becomes Po(dt*A)/dt. We therefore reformulate
the model as:

Initialization
AGAIN:
x: =X+ dt*(~f)
f:=Po(dt*p*x)/dt
time: = time + dt
if time < Tend then Goto AGAIN

This model correctly reveals the stochastic properties
with regard to the number of items in state x.

In general, the states in a CSS model are updated
by inflows and outflows. Some flows may be deter-
ministic and some Poisson-distributed, and for other
flows, other distributions may be used.

2.2 Some Properties of the Poisson Distribution

A stochastic process of events is said to be a Poisson
process if:

1. Events happens one at a time (not in batches).

2. The number of events in the interval (t, t+dt] is in-
dependent of the number of events in the past and
independent of the times these events occurred.

If the expected number of events per time unit
(intensity = A) does not depend on time, we have a
stationary Poisson process, while if the intensity varies
with time (A = A(t)) we have a nonstationary Poisson
process.

Note that the flow rate in a Poisson simulation is an
approximation of a Poisson process, since events are
not defined as events in time in DES meaning, but as a
number of events during a small time interval, dt.

For each time interval, dt, of the Poisson process, the
number of events is a Poisson-distributed stochastic
variable with the expected value 8 = dt*A, denoted as
Po(dt*A).

The Poisson distribution, Po(0), is a discrete distribu-
tion that describes independent events in time (or
space). The density function is: p(k) = e 8k/k! where
k=0,1,2,...

To understand the Poisson distribution and its use
in this paper, a list of fundamental properties of this
distribution is listed below. For a more detailed de-
scription of the Poisson distribution and Poisson pro-
cesses, see a textbook on elementary statistics or simu-
lation [1, 2].

o [f the stochastic variable X € Po(8), then E(X) = 9,
and Var (X) = 0.

* The Poisson distribution has an important property
of addition: if X € Po(8,) and Y € Po(8,), where X
and Y are independent, then X + Y € Po(8; + 6,).

» Forlarge 68, X e N(6, Vo) isa good approximation.
(6 should be larger than, say, 15.) Note that the
Normal distribution is not a discrete distribution,
and thus some form of roundoff must be made in
order to keep the integer property, if required.
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2.3 The Automatic Control Approach

Stochastic difference or differential equation models
are studied in the field of automatic control [3], but in
a different form. In the linear theory, a given model
with a given step size At is represented by:

X(t + At) = Fx(t) + Gu(t) + e, (1)
y(t) = Hx(t) + ey (t)

where x is a state vector, u is an input vector, y is an
output vector and I, G and H are matrices. The stochas-
tic term ey (t) is the state noise and e, (t) is the output
noise. The discrete time noise is sampled from some
distribution {e.g., Normal) and with some variances.

For example, the first-order model presented above
can (if 0 = dt*p*x is large) be modeled with an additive,
state-dependent, time varying noise as: x(t + At) = x(t)
— At *p*x(t) — At*e(t), where e(t) is a Gaussian noise
with the (variable) variance equal to p*x(t).

2.4 Example 1: The Lotka-Volterra Equations

The Lotka-Volterra equations describe a prey-predator
system. by differential equations [4, 5].

Assume that you have two species, X (rabbits) and
Y (foxes), in a restricted area. The rabbits breed at a
rate proportional to their number X. They die because
of encounters with the foxes, which is proportional to
X*Y, Also, there is competition among the rabbits,
where each rabbit competes with all the others. Com-
petition, therefore, is proportional to X*X. The encoun-
ters with rabbits give the foxes energy to breed, so they
increase in proportion to X*Y. Finally, the fox death
rate is proportional to the number of foxes, Y. The
Lotka-Volterra model therefore has the form:

dX/dt =aX -bXY - kX2
dY/dt =cXY -dY

where a, b, ¢, d and k are proportionality constants for
fertility, mortality and competition.

By setting the derivatives dX/dt and dY/dt to zero
and solving for X and Y, we obtain three possible sta-
tionary solutions:

1. X=0andY=0
2. X=a/kand¥Y=0
3. X=d/candY=(a-kd/c)/b

Settinga = 0.2,b = 0.005, ¢ = 0.005, d = 0.3, and k = 0.001
gives in the second case (foxes become extinct) X = 200
and Y = 0, and in the third case (both species survive)
X=60and Y =28. :

Some CSS languages, such as Powersim [6], have a
built-in Poisson random number generator. If not, it
can usually be built and included as a macro or exter- -
nal function. (See Appendix A.)

A Powersim model of the Lotka-Volterra system is
shown in Figure 2. (A free demo version of Powersim
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Figure 2. The Lotka-Volterra model in Powersim. The
flow rates are implemented as: POISSON(TIMESTEP*q*Z)/
TIMESTEP, where q*Z is a*X for rabbit births, b*X*Y for
rabbit deaths, k*X*X for rabbit competition, c*X*Y for fox
births and d*Y for rabbit deaths.
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with which you can build this model is available from
the Internet at www.powersim.com [6].) The model is
also given in Pascal in Appendix B.

Initializing this simulation in steady state with X(0)
=60 and Y(0) = 28 may give the results shown in the
top portion of Figure 3 (one experiment).

In Poisson simulation the inherent dynamic of the
system is excited by the stochastic fluctuations. We also
see that this dynamic not only causes the numbers of
rabbits and foxes to vary, but it also displays the peri-
odical pattern and its typical period length. Also note
that in some simulations all foxes will starve to death,
making the system vary around the second stationary
solution. In the simulation shown in Figure 3, this
happens at about time 750, making the rabbits increase
and fluctuate around the steady state X = a/k = 200.

Note that a deterministic simulation would here
only give two horizontal lines for X and Y. Even if we
have disturbed the system to generate variations, these
would die out as shown at the bottom of Figure 3.

If we also had added output noise to the determin-
istic model, it would only have given a superimposed
noise without exciting the dynamics. Adding state
noise of some distribution (say Normal (0,0;)) to each
of the five flows would cause several problems. First,
it would give five constants o; to estimate; second, we -
have to normalize the variation for changing dt (oth-
erwise the noise influence would decrease with de-
creased step size). Solving these problems gives a
model that excites the dynamic so that it oscillates
with the periodicity given by the dynamic. But the
foxes may recover from zero or even negative values.
There is also a substantial risk that a negative state
value makes the model unstable and causes numerical
overflow. But the results would, for example, never
have revealed a switch to the mode X =a/kand Y =0,
which inevitably happens sooner or later in the real
system. This is because the variance should vary in
accordance with the state values and because we have
no integer mechanism. ‘

2.5 Example 2: Estimation of Screening Effects

In medicine and epidemiology a common design is to
study the effects of an exposure (from, e.g., drug, vac-
cination, radiation, stress or screening) by comparing
the outcomes (e.g., morbidity or mortality) of an ex-
posed study group and an unexposed control group. A
main problem is that the results have to be interpreted
in statistical terms because of finite numbers of par-
ticipants in the groups. In many cases, it is necessary
also to regard the dynamics of the system.

One application is medical screening with a subse-
quent treatment of findings (a negative or protective
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Figure 3. One simulation of the Lotka-Volterra system shown in Figure 2. At the top, the results for a
Poisson simulation. Eliminating the Poisson mechanisms gives two horizontal lines. A corresponding
deterministic simulation is given below, where X(0) has been set at 120 to disturb the system.
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exposure) of a population to reduce future morbidity
or mortality. When testing the effects of medical
screening on a population, one is interested in the sen-
sitivity of the test (which is the proportion of sick
people who are correctly classified as sick by the test).

In practice, you usually have to compare the effects
of screening by monitoring the number of clinical cases
surfacing during a follow-up period after screening of
the study group and comparing that number with the
number of surfacing cases in an unscreened control
group during the same time period (see Figure 4). (Ad-
justments then have to be made because all pre-clini-
cal cases will not surface during a limited follow-up
period, and some rapid cases, not in the pre-clinical
stage at screening time, will surface during follow-up
[7]. Here we omit these complications.)

Since the numbers of surfacing cases in the study
group and in the control group during follow-up are
stochastic variables, it is important to regard both dy-
namics and stochastic properties. This is the case when,
e.g., optimizing the length of a follow-up time after
screening (a short follow-up time gives few cases and
a long one gives inclusion of fast cases not in pre-clinical
stage at screening time), or when estimating the sensi-
tivity of the screening test.

In this example, the purpose is to study the stochas-
tic fluctuations in the accumulation of surfacing clini-
cal cases under the following conditions:

A study group and a control group, each of 10,000
persons, are randomized from a population. The inci-
dence rate of new pre-clinical cases is 150 cases per year
and 105 persons (0.0015), yielding an expected annual
number of 15 persons from each group to become pre-
clinically sick (Poisson-distributed). The disease has a

Control group:
Surfacing
Pre cases
HEALTHY -
clinical ;
Study group:
Surfacing
Pre cases
HEALTHY >
clinical ﬁ

Screening i

Figure 4. A screened study population and an
unscreened control population. Screening affects
people in both healthy and pre-clinical stage but here
we are only interested in the latter because positive
findings among these cases are removed by treatment.

pre-clinical stage with an average duration, D, of 12
years. Therefore, we expect about 15*12 = 180 persons
to be in the pre-clinical stage in each group when the
study begins. This number should be random and dif-
ferent for the two groups (an easy way to do that is to
start simulating the model a number of years before
screening). But for the sake of simplicity we use the
expected value as initial values in the model.

When the study starts, screening with a test sensi-
tivity of S = 0.75 takes place, momentarily reducing
the prevalence in the study group by 75 percent.

If we want to model the case that the test, applied
to each of the n persons in the pre-clinical stage, has
a binary outcome of positive (p =S = 0.75) or negative
(1 - p), then the number of positive tests will be
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Figure 5. A Poisson model of the number of surfacing cases after screening of the Study Group (suffixed “_SG”) and for the
unscreened Control Group (suffixed “_CG”). In this figure screening is deterministic, but it may be modeled on a binomial
distribution, To the right, the cumulated numbers of surfacing cases are shown during a follow-up time of five years.
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binomially distributed as Bi(n, p). For large numbers
(say n > 10), this can be approximated by the Normal
distribution N(np, Sqrt(np(1 - p))). A Normal distri-
bution is implemented, which is even simpler than
what has been shown for a Poisson distribution:

PreClinicalStage: x: =X+ dt*(-f) (just the
screening reduction outflow is shown)

ScreeningReduction: f: = N(np, Sqrt (np(1-
p)))*Pulse(1, ScrTime, 9999)

The Pulse function opens the outflow (with size = 1)
only once at time = ScrTime when a random sample is
taken from the Normal distribution. (The last param-
eter in the Pulse function is the interval between
pulses, which is just given a large value). As opposed
to the Poisson case, no time step, dt, is involved in the
Normal distribution formula.

We build a Poisson simulation model in Powersim
corresponding to that in Figure 4. For the sake of sim-
plicity we use a first-order delay representing the pre-
clinical stage. See Figure 5.

Repeated simulations give the variances or confi-
dence intervals for the outcomes of this study. The re-
sults can also be used to obtain an optimal follow-up
period. (A short period gives large stochastic varia-
tions and a long follow-up period harms the results
by including many cases not in the pre-clinical stage
at screening time.)

2.6 Example 3: Genetic Modeling

One field for Poisson simulation is when genetic effects
are studied in a dynamic context. It may, for example,
be necessary to model males and females separately.
Such a model can be designed in different ways. Let
us start from a simple dynamic model like that in Fig-
ure 6. The annual number of male and female offspring
is here assumed to be proportional to the number of
females in reproductive ages and to the expected pro-
portions of births among the sexes. In this example,
inflows of female births (Bx) and male births (By) be-
come stochastic by using the Poisson mechanism:

Bx = Po(dt*kx*X)/dt and By = Po(dt*ky*X)/dt, where
Xis the number of reproductive females and kx and
ky are proportionality constants for the fertility in
terms of female and male offspring. (If expected num-
bers of females and males are the same, only one con-
stant, k, is needed).

In addition to sex, we may include genes (alleles) of
types “a” and “A” with some genetically important
property for survival or reproduction. The females
then have the combinations Xaa, XaA (including XAa)
and XAA, and the males Yaa, YaA and YAA. All com-
binations of random or nonrandom mating are pos-
sible. Figure 7 shows part of a dynamic and genetic
model where only the reproduction from mating be-
tween XaA and YaA is included.
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Figure 6. Female and male offspring in a dynamic context:
Young_x and Young_y represent young females and males,
and X and Y represent females and males in reproductive
ages.
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Genetic models like these can be used to study the
development of a population in a dynamic context
where sex or genes have to be considered. For example,
sex and genetic factors may be included to study the
risk of extinction of the population or the risk of deple-
tion of an important gene.

2.7 Techwnicalities
(1) Poisson Distribution or Not?

When modeling a certain stochastic process, the
question, if it is a Poisson process, is important. This
requires that the events happen one at a time and in-
dependently. In the best situation, we know this from
our knowledge of the process (e.g., radioactive decay),
or we may know the system from statistical data. In
this second case, we may have records of individual
events or we only know the cumulated number of
events during a time period (e.g., annual incidence or
mortality rate for a disease).

A first view can be obtained from the figures pre-
sented in a histogram and compared with a Poisson
distribution. But a more powerful method is to use
statistical tests. There are a number of tests, e.g., the
Chi-square test and the Kolmogorov-Smirnov test,
that can be used to compare statistical data with a cer-
tain distribution. When applying this to the Poisson
distribution, you usually use the fact that “the events
should be randomly spaced” and compare it with a
uniform U(0,T) test where T is the entire period stud-
ied, or you sort the inter-event times and compare
them with a negative exponential distribution. See
also [1, 2, 8]. Note, however, that theoretically it is not
enough to test if the inter-event times are exponentially
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Figure 7. Part of a genetic model in a dynamic context. Females are denoted by
x and males by y. The genes aa, aA and AA may be randomized in proportions 1:2:1.

distributed. You also have to check whether the events
are independent. In the case of an infectious disease,
for example, dependency is probably stronger than
for a non-infectious one like cancer.

You should also remember that the more data you
have, the more likely it is that your test is able to reject
your hypothesis that the studied distribution is of a
certain kind—and that is not exactly what we want.

An open but important question is the degree of
strictness to apply when judging if data are likely to
come from a certain distribution. In modeling, a “true”
model cannot be built, but the aim is to construct a
model that, for a given purpose, behaves as closely as
possible to the real system. The question is then wheth-
er you do better with a deterministic flow or a flow
generated from a Poisson or from any other statistical
distribution.

(2) Interpretation of Flow Rates

In Poisson simulation, you can study the stochastic
variations of the states. The flow rate (Po(dt*A)/dt) has
a correct and well-defined average equal to A, but the
events happen momentarily. Therefore, when plotting
a flow rate (for every dt), the smaller the time step, the
larger the variations around the average. Using a very
small time step, say dt = 0.001, means that the probabil-
ity of an event during dt becomes very small. But when
it occurs (one event during a dt), it gives a flow rate of
1/dt = 1000. This is correct because the state will be up-
dated by dt*1000 = 1 for that dt. (Mathematically, the
flow rate is infinite when an event happens, and oth-
erwise zero.) Thus, one should be careful when inter-
preting flow rates.
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(3) Random Number Algorithis for Poisson Distribution

Poisson distributed random numbers can be gener-
ated from uniformly distributed numbers by using
the inverse transform method [8] or the rejection
method [1, 9]. (A random number generator for uni-
formly distributed numbers is a part of every pro-
gramming or simulation language.) Code for a Pois-
son generator using the inversion method is given in
Appendix A.

Both the inverse transform as well as the rejection
algorithms for Poisson-distributed random numbers
become slower as the Poisson parameter (here 6 = dt*A)
increases. For large numbers (say larger than 15), the
Poisson distribution approximates the Normal distri-
bution that can be generated by the inversion method.
Roundoff could then be used so that the numbers con-
tinue to be integers. A compound rejection algorithm
that uses the Gamma distribution for large parameter
values is given in [9].

(4) Integration Step Size

What happens when the step size is changed, for
example, from dt to DT = k*dt? Then the flow during
DT becomes Po(DT*L) = Po(k*dt*A). If the flow rate is
rather constant over DT, we see that the expected num-
ber is increased by a factor k because the interval is k
times as long. But the flow rate becomes Po(DT*A)/DT
= Po(k*dt*A)/ (k*dt). The expected flow rate therefore
becomes the same. Also the variance is properly taken -
care of by the Poisson distribution. We are thus free to
change the step size to what is reasonable from the
dynamic point of view.




In Example 1 (Section 2.4), 50 simulations with the
step size dt =1, 0.1 and 0.01, respectively, were tested.
For dt =1, the dynamic was too coarse, making the
extinction of foxes (and even rabbits) occur too soon.
(For dt = 0.1 and 0.01, no particular difference was
seen. A step size, dt = 0.1, gives a 6 in the order dt*a*X
= 0.1%0.2*60 = 1.2 for the largest flow of rabbits, and
dt*d*28 = 0.1*0.3*28 = 0.8 for the largest flow of foxes.)
But note that the requirement of a small step size comes
from the integration of the dynamics and not from the
stochastics. (However, see also under Item 8, below,
that a smaller step size can handle a specific stochastic
problem.)

(6) Integration Method

When stochastic variations are included, the gain of
using more sophisticated integration algorithms is
more limited because there is no well defined exact
solution for the next time step.

A multi-step or a Runge-Kutta integration algorithm
evaluates the derivatives (flow rates) at a number of
points of time for each time step to decide the next val-
ue of the state. If used for a Poisson simulation model,
each evaluation of a flow rate will be stochastic. Prob-
ably the integration should instead perform determin-
istically to estimate the expected value of the derivative
and thereafter use the Poisson generator once. This is
theoretically more sound and also speeds up the pro-
cess since unnecessary calls to the Poisson generator
are eliminated.

Testing the behavior of different unmodified Runge-
Kutta algorithms in Example 1, above, in Powersim
did not reveal clear advantages or disadvantages com-
pared with using Euler’s method regarding accuracy
of estimates, stability (when k = 0) or variance. But
this subject has to be further investigated.

(6) Several Outflows

We have confirmed above that: if X € Po(0;) and
Y € Po(8,), where X and Y are independent, then X + Y
€ Po(0; + 6,). This means that a number of Poisson
distributed outflows with expected values 0,,0, 6,
may be represented by one total flow described by
Po(6; + B, + ... + 8, )—just as in the deterministic case.

Technically, any statistical distribution can be used
to control the flow rates. For example, if a compound
outflow rate f = Po(dt*k*X)/dt is to be divided into
three separate outflow rates, fa, fb and fc in, say, pro-
portions 1:2:3, then there is a multinomial distribution
of the Poisson-distributed compound outflow. But it
is easier to let fa = Po(dt*k/6*X)/d¢t, fb = Po(dt*2k/
6*X)/dt and fc = Po(dt*3k/6¥X)/dLt.

Warning: Never replace an in-and an outflow to a
state with a net flow when using the Poisson mecha-
nism. Even when Po(6,) represents an inflow and
Po(8,) an outflow, you may not use Po(6,-6,) to repre-
sent a net flow. First, the variance would be too small
because both the in-and the outflow add to the variance.

Second, if 6; becomes less than 6,, indicating a re-
versed net flow direction, Po(8,-6,) will be zero since
a probability is always non-negative.

(7) External Inflows

Each internal flow is generated as the output of a
state. But there may also be external inflows to a model.
In Example 2, the flows of new pre-clinical cases are
generated from the study and control groups. But we
could instead have taken them from real statistics (if
observable), or we could have used the average inci-
dence. Then there is no need to model the healthy
states giving new pre-clinical cases as outflows. An
external inflow is then controlled by statistical data
and can be realized by an ordinary table look-up func-
tion. If we use the average incidence, the inflow is ac-
quired by taking Poisson samples of the given average.

The genetic model in Example 3 shows a case where
Poisson distributed external inflows are controlled
from within the model.

(8) Negative State Values

In deterministic CSS, the state variables are defined
on the whole real axis. However, often a state repre-
sents a non-negative quantity, such as the number of
animals or the amount of water. In most cases, the
structure of the problem guarantees that these states
will remain non-negative without any precautions.
But there are certainly exceptions to this. For example,
if there is a - hole in the bottom of a bucket of water,
there will be an outflow that is proportional to the
square root of the height of water in the bucket (dx/
dt = —k*Vx). This means that, independently of the
step size and of k, one will come to a point (small val-
ue) where the outflow during the next time step (k\/ X)
is larger than the remaining amount of water (x). This
makes the content, X, negative (and in the next time
step the program will halt because it takes the square
root of a negative number). In such situations, one has
to take some precaution, using, e.g., “if” or “max”
statements.

In Poisson simulation we have an additional prob-
lem. When an outflow f is a random and unlimited
quantity there is always a theoretical possibility that it
becomes larger than x, giving a negative state value.
Since the Poisson distribution function has a faculty
term in the denominator, this risk is often negligible
except for small values of x (compared with f). There-
fore, f may be restricted to less than or equal to x, just
as is sometimes necessary in ordinary CSS simulation.
(Such a device can also be built into the Poisson ran-
dom number generator, but it then has to consider all
outflows during the time step.)

Another way is to reduce the step size, which implies .
that virtually all Poisson calls will return zero or one
as outcomes. Since we work with integer units, this
will then end up at exactly zero—a phenomenon that
normally will not occur in CSS. This is not a problem,
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but an advantage. It means, e.g., that the model cor-
rectly describes the extinction of a species rather than
letting it recover from, say, 10-10 as in CSS.

(9) Modeling a Nonstationary Poisson Process

In DES, a Poisson process is modeled by using a
negative exponential distribution to control the time
between events. Although this is a mathematically
and statistically correct method, it causes problems
when the intensity, A, varies over time. Assume that
the intensity, 4, is very small, giving (randomly) a very
large time interval to the next event. But long before
that, the intensity might have become large. In DES,
special methods, e.g., thinning, have to be used [1, 2].

In Poisson simulation there is no problem related to
a variable intensity, A = A(t). In fact, A can have a new
value for every time step. For example, the fertility
rate constants, a and ¢ in Example 1, may vary with
the time of the year. This could be easily implemented
by, e.g., letting a and ¢ be table look-up functions. In
Example 2, the flow of new pre-clinical cases and the
average time in the pre-clinical stage are functions of
age (and therefore also time), which has to be taken
into account if the follow-up time is long.

(10) Correlated Variables

So far we have assumed that the flows have been
uncorrelated. In Example 1, however, there is a pos-
sible number of encounters between rabbits and foxes
(X*Y). Some of these are realized and result in the
death of rabbits and the breeding of foxes. For given
values of X, Y, b and ¢, it is reasonable to assume a
positive correlation between rabbit deaths and fox
births. Since both b and ¢ have the same value (0.005),
in this example we could use one common sample for
rabbit deaths and fox births (Po(dt*0.05*X*Y)/dt), im-
plying complete correlation (which is not probable).

Warning: Sampling Po(dt*X*Y)/dt and then multi-
plying by b or c gives correct average values but too
small variations, since b and ¢ are less than unity. In
this context it is important to realize that Po(6; + 0,) =
Po(8,) + Po(6,) if and only if X € Po(6,) and Y € Po(8,)
are independent. Remember that Var (X + Y) = Var (X) +
Var (Y) + 2Cov (X,Y), and it is independence that makes
the covariance disappear. But, e.g., Var (X + X) = Var (2X)
= 22Var (X) because X is fully correlated to itself.

Using the property of addition for Poisson-distrib-
uted stochastic variables (random numbers) described
in Section 2.2, we can write: X; = Y{+ Y, and X, =
Y, + Yy, where Y,, Y, and Yy, are mutually independent
Poisson random variables with averages 0,, 6, and
01,, respectively. Since Y, is common for X; and X,
and Y; and Y, are independent, one can control the
correlation between X; and X, by separating the Pois-
son parameters into a common (correlated) and an
independent (uncorrelated) part. Antithetic sampling
from the uniform distribution may be used to pro-
duce negatively correlated Poisson random numbers.
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Letting X; = Y; + Yy and X, = Y, + A(Yqy), where A(Y;,)
stands for an antithetic sample, gives a negative corre-
lation. A more detailed discussion of multivariate
Poisson distributions can be found in Chapter 37 of [10].

(11) Repeated Simulations to Estimate Statistical
Properties
Since randomness implies random output, several

simulations have to be performed to study the stochas-

tic variations—just as in DES or Monte Carlo simula-
tion. (Therefore, the model should be embedded in, or
repeatedly called from, a superior procedure which
includes statistical calculations and perhaps variance
reducing capabilities.)

3. Discussion

In this paper, we have used the term Poisson simula-
tion for the method presented to extend Continuous
System Simulation. The fact that the Poisson distribu-
tion is discrete should not be a contradiction because
“Continuous” in CSS stands for continuous time as
opposed to “Discrete Event” in DES.

In biology, medicine, epidemiology, ecology, genet-
ics, agricultural sciences, population dynamics, socio-
logical studies, etc., there are many models based on
the solid concepts of differential equations but where
stochastic variations, because of finite numbers, should
be modeled in a theoretically correct way rather than
added as noise of some distribution. This makes the
randomness interact with the dynamics in a correct
way. Poisson simulation may be a proper solution for
many such problems. The results can then easily be
compared with deterministic simulations in CSS. It
also has the advantage that hidden modes, like extinc-
tion of the foxes in Example 1, may be revealed.

Compared with the alternative of using DES, the ap-
proach presented is often simpler and computationally
more efficient. But especially, its foundations in differ-
ential equations make it closer to a theoretical analysis
and easier to comprehend. Yet another advantage, com-
pared with DES simulation, is that the intensity, A, may
vary in time without additional precautions.

Randomness is used when we lack exact informa-
tion. It may be of many kinds. It should also be stressed
that the Poisson mechanism should not be used for all
kinds of randomness—but only for variations because
of numbers. For example, a model of an agricultural
system might also be affected by the weather, which
can be described by statistical data or generated ac-
cording to some random distribution. The important
thing is that the randomness enters at the right place
in the model to excite the dynamic modes in a correct
way. (In some cases the stochastic variations may be
smoothed by the model structure and thus become of
less importance.)

It should also be noted that deterministic and stochas-
tic descriptions in the flow rate equations can be mixed
freely.




To use Poisson simulation efficiently, a special pack-
age should be developed, including a fast Poisson
generator, multiple run facility, a device for stochastic
estimates and confidence intervals from several runs,
and facilities for variance reduction with common ran-
dom numbers and antithetic sampling. To make vari-
ance reduction efficient there is also a need for several
separate generators (as in DES but in contrast to most
CSS languages).
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Appendix A. A Poisson Random Number Algorithm

An algorithm for Poisson-distributed random numbers
based on the inverse transform method [8] may, in
Pascal, look like the code below. (Use double precision.)

Function POISSON(theta: real): integer;
var X: integer;
A,B,U,W: real;

Label L;
begin
W:=Exp (-theta) ;
X:=0;
A =W;
B:=A;

U:=Random;
L: If U>A then

begin
X:=X+1;
B:=B*theta/X;
A:=A+B;
Goto L;

end;

Poisson:=X;
end; (* Poisson *)

Random is a call to the built-in uniform, U(0,1), gen-
erator in Pascal.
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Appendix B. A Lotka-Volterra Model for Poisson Simulation in Pascal

A simple Lotka-Volterra model with Euler’s integration and Poisson stochastics is given in Pascal code below. (Just
include the Poisson generator in Appendix A.)

Program Volterra_ Poisson;
type Real=double; (* Gives double precisgion. *)

var dt,time, Tstart,Tend: real;
RABBIT, FOX,Rbirth,Rdeath, Rcomp, Fbirth, Fdeath: real;
a,b,c,d,comp: real;

Function POISSON(theta: real): integer; (* As given in Appendix A above. *)

Procedure SIMULATE;

Label START, AGAIN;

begin
Randomize; (* Randomizes the seed so each simulation is a new experiment®*)
dt:=0.5; Time:=0; Tstart:=0; Tend:=1000;
a:=0.2; b:=0.005; ¢:=0.005; d:=0.3; comp:=0.001;

RABBIT:=d/c; (* Starting in dynamic equilibrium. *)
FOX:=(a-comp*d/c) /b; (*  —v- *)
Writeln; Writeln(® Time RABBIT FOX’);

Goto START;

AGATIN:
RABBIT :=RABBIT+dt* (Rbirth-Rdeath-Rcomp) ;
FOX :=FOX+dt* (Fbirth-Fdeath) ;

START:

Rbirth :=Poisson(dt*a*RABRIT) /dt;

Rdeath :=Poisson {dt*b*RABBIT*FOX) /dt;

Rcomp :=Poisson (dt*comp*RABBIT*RABBIT) /dt;
Fbirth :=Poisson(dt*c*RABBIT*FOX) /dt;
Fdeath :=Poisson (dt*d*FOX) /dt;

Writeln(time:7:2,RABBIT:8:2,F0X:8:2);
Time :=Time+dt;
1f Time <= Tend then Goto AGAIN;

end; (* SIMULATE *)

begin

SIMULATE; (* The main program *)
end.
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