Poisson Simulation as an Extension
of Continuous System Simulation for
the Modeling of Queuing Systems

Leif Gustafsson

Swedish University of Agricultural Sciences
P.O. Box 7032

SE-750 07, Uppsala, Sweden

leif. gustafsson @lt.slu.se

Poisson simulation is an extension of continuous system simulation whereby randomness is modeled .
as opposed to just adding noise. This article treats how Poisson simulation can be used for modeling
queuing systems. The focus is on the implementation of queues in Poisson simulation and the con-
nections to queuing theory. This approach also has theoretical and practical implications. Dynamic
and stochastic systems, especially when queues are involved, are often treated by discrete event
simulation using a microscopic view in which individual entities are modeled. Poisson simulation
makes it possible to handle many such systems on a macroscopic level using aggregated states. It is
therefore interesting to compare these approaches. Parallel approaches can then be sketched with
discrete event simulation in one branch and Poisson simulation in the other. A fundamental difference
between the approaches is whether one prefers to base a model on individual, distinguishable entities
or on lumped entities. 4
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1. Introduction

The main objective of this study is to demonstrate how
queuing systems can be modeled and simulated within the
framework of continuous system simulation (CSS). There
are two prerequisites for this, First, CSS is extended with
a general approach to include randomness. This extended
form is called Poisson simulation (PoS) [1]. Second, queu-
ing theory provides a unified way to model waiting line
processes as well as ordinary dynamic processes. The rea-
son for this is that when the number of servers in a queu-
ing system goes to infinity (or becomes large enough), the
wait for service is eliminated, and only the service process
remains,

This article starts with a short example demonstrating
how randomness can be modeled within the framework of
CSS, thereby producing a PoS model. Then the implemen-
tation of fundamental queuing types in Poisson simulation
is given. One strength of CSS, and thus also of PoS, is that
the stochastic process is expressed in terms of differential
equations within a well-defined mathematical framework.

Likewise, queuing theory forms the basis for understanding |

quening systems. Fundamental results of queuing theory,
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such as Erlang’s loss formula [2] and Burke’s theorem [3],
are presented because they constitute a basis for undes-
standing and have powerful implications.

Finally, similarities and differences in using PoS or
discrete event simulation (DES) to model stochastic and
dynamic systems are discussed. It turns out that many dif-
fetences between PoS and DES often become of less im-
portance, while the fundamental difference in aggregation
of the entities remains.

2. Poisson Simulation

PoS is an extension of CSS to handle models when the enti-
ties are still aggregated and when itis crucial to model both
dynamics and stochastics in a realistic way. In its simplest
form, events happen randomly and independently, imply-
ing that the number of events during a time interval, At,
becomes Poisson distributed. The method is presented in
detail in Gustafsson [1] and thus is only demonstrated here
by a simple example. A number of examples of different
applications are given in Gustafsson [4].

2.1 Example: A Model of Radioactive Decay in CSS
and PoS

A CSS modelis represented by a system of 6rdinary differ-
ential (and algebraic) equations. Each differential equation
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can be written as dx/dt = f1(x, t) — f2(x, t), where f1
is the sum of inflows and f2 is the sum of outflows to the
state variable x during the time interval d¢. This dynamic
equation, together with an initial value equation, x(0) =
xo, completely decides the behavior of x{¢) over time. In
a CSS language, this dynamic equation can be written as
a difference equation using Euler’s approximation: x (¢ +
Ay = x() + At - [f1x, 1) — f2(x, D)].

For the sake of simplicity, this is demonstrated with a
first-order system. This system has one state variable, x,
representing the number of radioactive atoms, and one out-
flow rate, f, describing the number of radioactive decays
per time unit. Therefore, f is proportional to the state value
x with a proportionality constant, p, that describes the pro-
portion of x that is expected to decay during a time unit. A
deterministic computer program model can then be written
as follows: :

[Initialization)

X = x0
- Goto *
AGAIN:
x=x4+ At -(—f)
¥ f=p-x

time = time + At .
if time < Tend then Goto AGAIN

This model gives a negative exponential solution over
time. It is an excellent description of a real system when
the number of atoms is very large. However, when physical
experiments are performed on a small or moderate number
of radioactive atoms, stochastic variations, not described
by the deterministic model above, are observed.

To model the stochastics in a realistic way (as opposed
to just adding noise), we reason thus: the average outflow is
still f = p-x pertimeunitor At- f = At- p-x during the
time interval At. Since the properties of randomness, single
events, and independence are valid, the number of events
during the time interval, A¢, should be Poisson distributed
with the intensity A = f = p.x. Thus, the outflow during
At has a Poisson-distributed variation denoted: Po(Af-\).
The flow rate then becomes Po(At - W)/At. Therefore, the
model is reformulated as

X =Xx0
Goto *
AGAIN:
x=x+Ar - (—f) ,
* f =Po[At . p.x]/At [The decay is now stochastic.]
time = time + At
_if time < Tend then Goto AGAIN

This model now correctly reveals the stochastic proper-
ties with regard to the number of atoms in state variable x
(see Fig. 1). [Note: If xo is an integer, then x (t) will remain
an integer because of the Poisson mechanism.] g

PoS is a general method for modeling randomness
within the CSS concept. The name Poisson simulation is,

however, somewhat narrow. State variables in a PoS model
are updated by inflows and outflows. Some flows may be
deterministic and some Poisson distributed, and for other
flows, random distributions of any kind may be used.

Assume, for example, that the physical experiment in
the example above is repeated N times. However, supply-
ing a substrate with exactly 50 radioactive atoms is not a
trivial task. Say that a substrate of exactly 2000 atoms, in
which 2.5% are expected to be radioactive, is used. A bi-
nomial distribution (Bi(n, p) = Bi(2000, 0.025) can then
be used. This can be included by stating x(0) = Bi(2000,
0.025) as an initial value,

In another experiment, taking 200 balls (of which ex-
actly 25% are special) from an urn with 500 balls has to
be described by a hypergeometric distribution because of
no replacement. In still another example, experience may
provide an empirical distribution to use.

When modeling process times other than exponential
ones, the multinomial distribution plays the central role
which will be demonstrated later on.

3. Implementation of Queulng Systems in
Poisson Simulation

3.1 Queuing Notation

In this article, Kendall’s [6] “A/B/C notation” is used. Here,
the letter A indicates the interarrival time distribution and
B the service pattern, as described by the probability dis-
tribution for service time. (In first and second position,
M stands for Markovian, D for deterministic, and G for
general.) C is the number of servers (i.e., number of par-
allel service channels). When C is infinite, any number of
entities can be held without generating a queue. Finally,
queue discipline and priority may be an issue in DES. but
not in PoS 'since all entities in a state variable are identical
and indistinguishable. (In PoS, priority can be modeled by
separate state variables in parallel.)

In the following, the main focus will be on the M/M/n
queuning system. This system has random exponential in-
terarrival times, random exponential service times, and n
servers in the system. Special cases are when n = 1 and
whenn = oo. Justsetn to 1 to get one server orletn — 0o
to get the “self-service” case whereby no waiting before
service occurs. '

3.2 Implementation

Implementation of queuing systems in PoS is straightfor-
ward. This is demonstrated here for the M/M/1, M/M/n,
and M/M/ oo cases. The input (arrivals) is then a Poisson
(%) process, so In = Po[Af - X]/At. :
Let g denote the actual total number of queuing and
served entities in the state variable Q. The output (depar-
ture after a mean service time of 1/u) then has the fol-
lowing kernel: Out = Po[At - W]/ Ar in the M/M/I case,
Out = Po[At - w - ¢]/At for the M/M/co case, and Out
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Figure 1. The deterministic continuous system simulation (CSS) model (left) and the stochastic Poisson simulation (PoS) model
(right). Both are Powersim [5] diagrams of the codes above. The die in the outflow denotes that a random sample from some
specified distribution is taken at each time step. Center: The results show how x(t) changes in one deterministic (bold line) and in
three stochastic (thin lines) SImuIatxons of the models above. The state variable x is initialized to 50 radioactive atoms. p = 0.1 and

At=0.1.

= Po[At - - MIN(n, q)]/ At for the M/M/n case (where
MIN(n, q) means that at most » entities can be served si-
multaneously, and if ¢ < n, only ¢ entities are served).

However, there is a complication. The number of enti-
ties, g, in the state variable may not become negative. Since
a state variable in a differential equation can take any value,
CSS/PoS has no automatic mechanism protecting from
negative numbers. Such a guarding mechanism, therefore,
can be included, preventing the output from draining the
state variable of more than its actual content. This can be
accomphshed by including another MIN function compar-
ing the kernel (above) with the actual content. Thus, Out
= MINTfkernel, q/At].

The complete algorithm of a queumg system is then as
follows:

q(t + At) = q(t) + At - (In - Out)
In = Po[Ar-N\]/At

Out = MIN{Po[At - u], g}/ At
[M/M/] case]

©or :
] Out = MIN{Po[A! - 11 - MIN(n, ¢)], g}/ At
[M/M/n case]
or
Out = MIN{Po[Af - - q],q}/At
[M/M/oo case]

These formulas work nicely for small Ar. (The step size
has to be adjusted to the dynamics of the queuing system.)
In other words, all stochastic distributions approach their
theoretical values when At approaches zero.

3.2.1 Remarks

* Inthe M/M/ oo case, the MIN guard éan usually be dropped
for reasonably small Ar—just like in the example of ra-
dioactive decay in section 2.
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+ It is often practical to increase step size, At, to reduce
'simulation time as long as dynamics are handled properly.
Then several arrivals or departures may occur within a At,
causing a problem connected to the nonnegative guarding
mechanism. Assume, for example, that O is empty (g =
0) and that one arrival and one departure occur during
At. If the arrival comes first, it will increase ¢ to 1, and
the subsequent departure will reduce g to 0. But if the
departure comes first, there is nothing to take, so g remains
zero and the subsequent arrival will take it to 1. Both these
cases have the same probability. ‘

However, the code given above will always add one arrival
entity from the In statement, but the guard will prevent the .
departure (since ¢ = 0 at the beginning of the time step),
resulting in ¢ = 1 as in the latter example. The zero state
(g = 0) will then occur too infrequently. Alternatively, we
could write the following: Out = MIN{Po[At- - X],q +
In -At}/At (where X is adjusted for the M/M/1, M/M/n,
or M/M/co cases), resulting in ¢ = 0, as in the former
example. The zero state will then occur too frequently. A
mechanism to handle both one arrival and one departure
within At could therefore be accomplished by including
In - At with 50% probability.

A more general mechanism, better for handling multiple
arrivals and departures, could be achieved by the follow-
ing: Out = MIN{Po[At - | - X], g + f(In At} At,
where f() is some integer-type probability function. This
remains to be further investigated.

+ The construction above assumes a single waiting hne for
all servers. If n servers are to have separate, waiting lines,
n parallel M/M/I queues are used.

+ Note that if g is initialized to an integer number, it will
always remain an integer if only discrete distributions
with integer outcomes, such as the Poisson distribution,
are used.

In Figure 2, an M/M/n queuing system and some sta-
tistical devices are shown as a Powersim diagram. Be-
low the queuing model in Figare 2, devices for statistics
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Figure 2. An M/M/n queuing system as a Powersim [5] diagram. Q is a state variable holding the total number of queuing and
currently served entities. The arrival rate is ) (lambda), and the service rate (per server) is W (mu). Of course, X\, W, and also
the number of servers, n, can be varied during the simulation. Underneath, devices for counting total numbers of arrivals and
| departures and for calculating total and average queus time, quetle length, and server utilization during the simulation are shown,
(A die in a symbol means that a random number from some specified distribution is drawn foi each time step. A clock in a symbol

means that time is involved.)

within the simulation are shown. The flows of arrivals and
departures are accumulated over time in In_Counter and
Out_Counter, respectively. The quening customers are also
integrated over time to CumQTime. By dividing CumQ-
Time by In_Counter, the average time in queue, AvQTime,
is obtained. By dividing CumQTime by time, the average
queue length, AvQLength, is obtained. (Here, QO denotes
both queuing and currently served entities. Alternatively,
only the waiting entities [i.e., all but those currently served

in Q] can be used in the calculations.) Server utilization is

also calculated from the fraction of time the # servers are
busy. In addition to these end results, all variables can, of

ulation run, and statistical estimates can be obtained from
the results of a number of PoS runs.

Varying intensities such as \ = \(¢) cause no problems
in PoS as opposed to DES. In DES, the model execution
jumps to the next event of interest, which is usually sched-
uled in advance. Therefore, when the arrival intensity, \ (1),
varies over time, we get a problem. Say that the arrival in-
tensity to a lunch bar is very low at 10 a.m., and thus the
next arrival is scheduled to happen 3 hours later. But al-
ready at 11 o’clock, the intensity rises dramatically. Then
the mechanism whereby each customer at arrival schedules
his or her successor will not work. Thinning or some other

%’; course; be tabulated or displayed in a time diagram. mechanism then has to be used.
- To estimate various statistical quantities such as mean, So far, the focus has been on Markov-type systems
S

standard deviation, confidence intervals, or percentiles be-
tween simulations, the model has to be run many times. For
example, to find the 5th and 95th percentiles of the average
queuve length at the end of a day, the model is run, say, 1000
times. Removing the simulations with the 50 smallest and
the 50 largest end values gives the percentiles requested.

3.3 Conclusions

. First, PoS can efficiently incorporate queuing systems.

Second, all kinds of results can be collected during a sim-

where the process time (as well as the arrival time) is ex-
ponential. In section 6, it will be shown that process times
of any distribution can be approximated. ‘
_Although PoS was not invented for queuing studies, it

is easy to include queues in $uch a model. This also means

- that PoS can handle some problems of combined simula-
tion. Of course, it only uses lumped quantities, as opposed
to the individual ones in DES. But it is straightforward to

- mix queue and nonqueue (self-service) processes in a PoS
model.
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4. Queuing Theory, Markov Models, and Poisson
Simulation Models

Queting theory is the theoretical basis for understanding
the dynarmcs of entities waiting to be served. As mentioned
above, queuing theory also applies to the self- service case.
When a queuing model becomes too complex for an ana-
lytical approach, simulation has to be used.

4.1 Three Simple Types ef Queues

The M/M/n queue system (including the M/M/I and
M/M/ oo cases) is crucial for understanding queue.dynam-
ics as well as stochastic equilibrium in steady state. It is,
therefore, treated in some detail as a Markov model and as
a PoS model for the cases with finite and infinite numbers
of servers.

Start with a case in which entities arrive randomly, in-
dependently, and one at a time (a Poisson process). The
mean arrival rate is h entities per time unit. The interar-
rival times are then exponentially distributed with a mean
time between arrivals of 1/\. In queuing theory terms, the
arrival process is then of Markov type.

The mean service rate per server is denoted by 1. The
service time interval at the state variable is also stochastic
and exponentially distributed with the mean time 1/\.. The
service time is thus also Markovian. This means that the
probability of one server completing service of an entity
during the very short time interval At is | - At. When the
state variable holds i entities, the probability of a departure
during At, therefore, is i - . - At up to the limit where |
exceeds the number of servers.

In Figure 3, the queuing system is presented (a) in PoS
terms and (b) as a Markov model. ‘

In Figure 3b, the same process as in 3a is modeled

as a continuous-time Markov model. Here, each state -

Ey, Ey, Ey, ... is described graphically, denoting 0, 1, 2,

. entities. The Markov process will go from E; to E;,
at the next arrival or from E; to E;_, at the next departure.
During a short enough time interval At, only the probabil-
ities of no arrival or departure, only one arrival, and only
one departure have to be considered. Note that a “state vari-
able” (often loosely called state in CSS and PoS) can hold
any number of entities, whereas the concept state in queu-
ing theory terms represents a specific number of entities.
A finite or infinite number of states is therefore needed in a
Markov model to represent one state variable in a Poisson
model. ‘

When dealing with M/M/1, M/M/n, and M/M/ oo queu— :

ing systems, the analysis of a Markov process can be treated
by using the theory of a birth-and-death process (see a fun-
damental book on statistics or queuing theory [7, 87). We
then regard the three cases of one arrival, one departure,
and no arrival or departure during a short time interval.
Thus, we have the following.

The probability of another arrival (“birth”) during a
short enough time interval (¢,  + At) is X\ - At + 0(AD),
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and every transition due to an arrival has the same proba-
bility, »

If the system is in state E;, the probability of a departure
(“death”) during the short enough time interval (¢, t + At)
is ;- At +o(Atr). (But'w, is different in the M/M/1, M/M/n,
and M/M/ oo cases.)

The probability of no arrival and no departure during
the interval therefore is 1 — (A - At 4 0(At)) — (p,, At +
o(At)) =1 — (M4 w;)Ar + o(At).

Thus, the probability of ending up in the state E; at the
end of the interval (¢, + At) is the sum of these three
possibilities. In probability terms, where P; represents the
probability of being in state E; at the end of the time inter-
val, we can write the following:

Pt + A8 = PO — (M + ) Ad]

+ R—l(t))\ - At + PH_](t)}LH.] <At + O(Af).

Fori = 0, the second term on the right-hand side disap-
pears. Rearranging the probabilities in terms of derivatives
then gives the following set of differential equations:

dPy(t)/dt =
dP(t)/dt =

—NP() + 1 P (2)
=+ ) (@) + NP (1)
it P (1) (i>0)

To solve this system of equatlons analytwally is prob-
lematic, but often the interest is focused on what happens
when time approaches infinity. It can be shown that if the
birth intensity is less than the death intensity, then P, ()
converges to a given value. (In the M/M/ oo case, this is
granted because the death intensity, i, increases with i,
and the birth intensity, A, remains constant for all states.)

For a stable system, therefore,

lim P)=m, ((=0,12,..),
where T, is 1ndependent of the initial state of the process
att = 0.

The next step is to calculate the equilibrium distribu-

tion 1t = (7o, 7y, .. .) of the equilibrium probabilities ;.

- Using the equilibrium condition d P, (¢)/dt — O gives

0= k1o + pym,

0=+ pdm+ Ny + i Ty (@ > 0).

Solving this system of equations recursively, starting
from the first equation, gives

= (A1) - m

o= [0 A /(g m)] T (1)

i=12..)
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Ax = At(fin - fou)

fm = Po(At-A)/At

fou = Po(At-p)/At (M/M/1y
or = Po[At-p-MIN(n,D)J/At  (M/M/n)
or = Po[At-{L-1)/At . (M/M/>)

] A A A A
‘” SR -
; 1 Ha Ha . i +1

Figure 3. (a) The kernel of a queuing system as a Poisson simulation model with one state variable. For the M/M/1, M/M/n, and
M/Mico cases, fo differs somewhat; see also section 3.2 for guarding against outflow making the state variable negative. (b) The
queuing system as a Markov model where transitions only exist between adjacent states. The service rates differ for different types
of queuing systems. For an M/M/1 queue, ;= |1; for an M/M/oo queue, ;=i -W; and for an M/M/n queue, ;= i -W for / < nand

pj=n-Wwfori=n

It remains to calculate w, from the requirement that the
sum of the probabilities equals 1.

The M/M/1, M/M/ oo, and M/M/n cases are treated sep-
arately in the following.

4.1.1 The M/M/1 Case

Inthis case, we ha\{e p; = p forall values of i. A stochastic
equilibrium occurs for A < w. Then, (1) gives

=0/ m=pm (1=0,1,2,...).

Since all equilibrium probabilities have to sum up to1l,
wegetl = mto+po+p .. A p o+ .. = 1o/ (1—p),
implying 7, = 1 — p. Thus,

m=(0—-p)p (=012..).

The equilibrium distribution is thus a geometric distribu-
tion for the M/M/I case. : : '

4.1.2 The M/M/co Case

In this case, w; = i - | because service is simultaneously
given to all the / entities. The equation system (1) can then
be written as follows:

Tt = (M) - w0

=L N2 )] T
' (=12..).

Substituting p = A/ gives
o= [p'/il] my (i=1,2,..).

- Now, regard a system with a finite number of states
Eo, E\, .. .Eg, thatis, where X\, and W; are zero fori > K.

(This is the M/M/n case with so-called balking for i >
n = K, which means that when all servers are occupied,
additional entities will not enter. This complexity will not
be treated here. The finite case is just treated for technical
reasons, before letting X approach infinity.) The result is
the following:

i/ .
T = P/l (=12...K).
1+ p+ 0221 +...p5/K!

This is Erlang’s [2] loss formula for X servers in the
case when only K entities are allowed to enter the queuing
system. (This formula was originally used in the theory of
telephone traffic for the case when there are K lines and

* further customers find the lines occupied and have to hang

up.) ‘
Multiplying numerator and denominator by e~P gives

p'/il e P
T, =
LoePgp-eP4p2/2l e P, 4 pkK/Kl. 0P

_ P ()
P(0) +p.(1) + ... + p(K)’

(i=1,2..,K)

where the stochastic variable Z € Po(p) distribution (be-
cause the Poisson distribution has the mass function f (i) =
p'/it e P i =0,1,2,...). Since the denominator, rep-
resenting the sum of all probabilities, is equal to 1, this
formula gives the outcomes of a truncated Poisson dis-
tribution. Letting K — oo, the equilibrium probabilities
; = p,(i) become Poisson distributed. Thus, the number
of entities in the state variable in stochastic equilibrium is
Poisson distributed.

In fact, Erlang’s loss formula is also valid for M/G/n.
Thus, the number of entities in a state variable in steady
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state also has a Poisson distribution for the M/G/ oo cases
(i.e., it is Poisson distributed independently of the service
time distribution).

This formula is of great importance for stochastic equi-
librium, and-it also has practical implications (e.g., for
how to randomize initial values in a steady-state situation,
which will be shown in section 5).

4.1.3 The M/M/n Case

A stochastic equilibrium occurs for X < n - .. In this case,
M; =i -Wfori <n,and w; = n- W fori > n. This is
substituted into (1), which then can be solved recursively.

After some calculations, the following formula is obtained:

NG D) g (1<i<n),
R IR e BT B )

and

i=0

n—1 -1
no—[Zwo' B+ /Ol (L= N/ (n u)))]

In Figure 4, the stationary distributions for the three
queue types are shown.

4.2 Networks and Burke's Theorem

A simulation model usually contains more than one block.

The blocks are then linked in series and/or parallel. The
fundamental case to be treated here is the serial one. In the
parallel case, each serial path can be treated separately. In
the case of several inflows to or outflows from a block, they
can be added to a net inflow or outflow. This is also true
for PoS, where Po(Inl) + Po(In2) can be written Po(Inl +
In2). Po(In1) here means that we draw arandom value from
a Poisson distribution with the parameter value Inl. The
discussion below is, however, valid only for feed-forward
networks (i.e., networks of blocks for which entities are
not allowed to revisit previously visited blocks).

In Figure 5, a PoS model with a series of state variables
is shown. The arrivals are a Poisson process with the mean
arrival rate \ to the first state variable, and the mean service
rates per server are Ly, [Lq, ... , M. These service rates
may be the same or different. v

In the previous section, we treated stable M/M/n queu-
ing systems (including M/M/1 and M/M/oco cases). But
what happens when several such systems are connected in
series?

Intuitively, the structure around state variable x, is
equivalent to that of x;. However, the inflow (Fp) to x,
is a Poisson process with the mean arrival rate \, while
the inflow F, to x, is the outflow from x,. Although the
steady-state flow through all the state variables has the av-
erage rate \, the state variable x, is now varying stochas-
tically, and the distribution of x, in stochastic equilibrium
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is different for the M/M/1, M/M/n, and M/M/ co cases (see
Fig. 4). Therefore, one might expect different variations in
F, thanin F,. Itis thus necessary to find the output distribu-
tion (time between successive departures) from x,, which
is the input distribution (time between successive arrivals),
to x,. In addition, the question of dependency between the .
state variables has to be treated. However, paradoxically,
the theory of series (or tandem) queues [3, 7, 8] has a simple
and powerful answer.

Remarkably, it turns out that for a stable M/M/n quene
(including M/M/1 and M/M/ oo cases), the steady-state out-
put distribution is identical to the input one, that is, a Pois-
son process with the same departure rate (\) as the arrival
rate. It can also be shown that the output process is inde-
pendent of the other processes in the system. Therefore, all
state variables in a serial queuing system are independent
M/M/1, M/M/n, or M/M/ oo queunes. This was first proven
by Paul J. Burke [3] and is sometimes called Burke’s the-
orem. A similar proof is given in Gross and Harris [8]; see
also Kleinrock [7]. The proof of this theorem is somewhat
complicated but very fundamental. In general, it opens for
Jackson networks [7-9]. In our case, it extends the ana-
lytical understanding for PoS (and for DES) models of
feed-forward type in stochastic equilibrium.

Another important result is that the joint probability that
there are n1 entities at state variable 1, n2 at state variable
2, ... , and nj at state variable j is simply the product
Dn1 * Pr2* ... Dy because of independence between the
state variables.

Note, however, that M/M/1, M/M/n, and M/M/ oo queu-
ing systems are the only ones that have the properties de-
scribed above. This has to be kept in mind because not all
PoS and DES models are of this type In Kleinrock [7], the
following is stated:

In fact Burke’s theorem tells that many
multiple-server nodes may be connected ...
together in a feed forward network fashion
and still preserve the node-by-node decom-
position. (Specifically, feedback paths are not
permitted since this may destroy the Pois-
son nature of the feedback departure stream.)
(p. 149)

In section 4.1, the stochastic equilibrium distributions
for the number of entities in the state variables of M/M/1,
M/M/m, and M/M/ oo queuing systems were derived. These
results can now be generalized to a series of queuing sys-
tems. )

In the M/M/ oo case, we know from above that x; has a
stochastic equilibrium distribution described by the Pois-
son distribution with the parameter equal to M,. Since
Burke’s theorem says that a model such as the one in
Figure 5 can be treated as m independent queues, it means

for the M/M/ oo case that the equilibrium distribution of

the state variable x; is Po(\/{L;). This will be applied in an
example in section 5.
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Figure 4. Example of stationary distributions of the state variable for the M/M/1 case (geometric with . = 6,
case (something in between, with A = 6, |1 = 2, and n = 5), and for the M/M/co case (Poisson with X =6,
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Figure 5. An mth-order system with the mean rates \ and Bty B2, .o Wy (Note that X and g to W, here denote parameters in a
Poisson simulation model and not transition probabilities between states, as they did in Figure 3b, and the subsequent deductions

in Markov terms in section 4.1.)

If Figure S, instead, represents M/M/1 blocks, the num-
ber of entities in the state variables x;, x,, ... , x,, would
all have geometric distributions in steady state.

Since the subsystems are independent and the flows are
Poisson processes, one can even mix blocks of M/M/I,
M/M/n, and M/M/ oo types and still calculate the steady-
state distributions for each state variable separately.

5. An Important Implication
5.1 Initial Value Problem

Choosing realistic initial values for state variables for a
deterministic simulation mode] may seem trivial, but it of-
ten has a significant impact on the results. This problem
becomes more complicated and important when the sim-
ulation model is stochastic. Using the theory developed in
sections 4.1 and 4.2, this could be handled, for example,
for PoS in common and fundamenta) cases.

5.2 Examplé: Modeling a Cohort Study

A common problem in medicine, epidemiology, biology,
ecology, agriculture, and many other sciences is to under-
stand and estimate the effects of some action called expo-
sure that, via a dynamic process, causes some effects on
outcome. '

A dynamic model is then needed to understand and an-
alyze the process, as well as calculate the damage or ben-
efit from the exposure over time; a statistical treatment
is also needed to estimate the variations and uncertain-.
ties. The problem with dynamic and stochastic systems is
that stochastics excite the dynamics and dynamics change
the statistical conditions. Therefore, the dynamics and the
stochastics have to interact in one and the same model.

A standard approach is to compare an exposed study co-
hort with an unexposed or less exposed reference cohort.
The results have to be intérpreted in statistical terms be-
cause of finite numbers of participants in the two cohorts.
To make it concrete, assume that the purpose is to study
the effects of some exposure on a noncontagious disease
such as cancer. Therefore, follow a study and a reference
cohort randomized from the same population and where
everything but the exposure is assumed to be the same.
The cancer cases detected after a dynamic progress are
then accumulated over a certain follow-up period.

Assume that the disease process can be described with
a third-order model, as shown in Figure 6, and that the
system is in a steady state when the experiment starts.

Here the hazard rate, FOO, is caused by background ex-
posure of the reference cohort. The study cohort also ex-
periences the background exposure, but at a certain time
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Figure 6. A model of the study and reference cohorts presented in Powersim [5]. (The time constants are included in the flow rates
but are not shown to make the model more lucid.) Background and additional expostire are the driving forces, while the outcomes
are the cumutative numbers of cancer cases from the reference cohort (CUMO) and from the study cohort (CUM1). Important
measures of the study are the difference (DIF = CUM1 — CUMO) and the relative ratio (RR = CUM1/CUMO).

ty, an additional exposure (of pulse, step, or other type) is
added, causing the hazard rate FOI.

The results of the study after a certain follow-up period
are the cumulative numbers of cases from the reference and
study cohorts. The difference (DIF) or the relative ratio
(RR) are then estimates of the effects of the additional
exposure. '

Now to the problem. When the study starts at time t,, the
background exposure has long since caused disease. There-
fore, the “pipeline” of state variables X 10, X20, X30 and
X11, X21, X31 is not empty at t,. Furthermore, the ran-
domization to study and reference cohorts implies that the
numbers of cases in these state variables become stochas-
tic variables. (Often the disease is not detectable until it
surfaces [at F30 or F31], which is why it is not possible
to get the initial values from experimental data, However,
evenifitis, we often have only one experiment and need to
repeat the simulation a number of times with initial values
drawn from proper statlsncal distributions to get correct
estimates.)

Since the model will be used to interpret the experimen-
tal results, it is important that it is realistic. Setting the ini-
tial values of the state variables to zero would give a bias
of the estimates. Setting them to (deterministic) steady-
state values would eliminate this bias of the estimates but
would give a too small variance between repeated simula-
tions and thus too narrow confidence intervals. It is there-
fore important to randomize the initial values of the state
variables from proper statistical distributions for each sim-
ulation run.

And now to the solution. Assuming a steady-state pro-
cess up to time f, and that the cancers occur randomly and
independently of each other (Poisson input), the results of
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section 4.1 say that X10 and X 11 should be initialized by
Po(steady-state value). This follows from ergodicity saying
that time average (used in the deductions) equals ensem-
ble average (of anumber of simulations at fy). Furthermore,
Burke’s theorem says that X20, X30and X21, X31 should
also be initialized in the same way. Thus, if the steady-state
flow through the system is X and the time constant for the
outflow of the i/th state variable is @; (see Figs. 5 and 6),
then Xi should be initiatized, drawing a sample from a
Po(3\/u;) distribution.

Thus, it is often crucial to.use realistic initial values in
a model to get good estimates, and the theory presented
above is of central importance in such cases. [

6. Modeling Process Times Other Than
Exponential

So far, the focus has been on Markov-type systems in which
the process (service) time (as well as the arrival time) is
exponential. This is a field of central importance where
also large theoretical support from queuing theory exists.

In the more general case, a process time may have any
distribution such as uniform, triangular, normal, two peaks,
or empirical. In such cases, there is no simple mechanism
such as the Poisson mechanism for the exponential case.
In principle, however, it is possible also to approximate the
general case within the frame of CSS/PoS.

If possible, it is an advantage if a sufficiently good ap-
proximation of the process time can be obtained by the
Poisson elements, described above, in series and/or paral-
lel. But a more general approximation to produce a specific
process-time distribution can be constructed in different
ways. Such a structure must contain a series of states to be
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Figure 7. A structure in which the process time from any specified distribution can be, approximated. The specified probability
density function (pdf) of the process time (here triangular) is divided into N successive time segments with the areas p;... py. A

multinomial random sample will then redistribute the incoming entities into the states LN ... L7, which performs the specified delay.

able to separate the processed entities that arrived at dif-
ferent points in time and still allow for different lengths of
the process time drawn from a given distribution.”

In Figure 7, one possible implementation of how a spec-
ified distribution can be approximately realized is shown.
The probability density function (pdf) of the specified
process-time distribution is subdivided into N intervals,
each of the length INTERYV. The areas P1, P2y ..., py ofthe
pdf are estimated (where Tp; = 1). An arriving entity then
has the probability p, to get a process time of i - INTERV. If
M entities arrive during an integration time step, they will
be redistributed into the serial states L1,L2,...,LN ac-
cording to N random numbers drawn from a multinomial
distribution, MULT(p,, ps, . . . , Pw, M). For each interval,
INTERY (which is a multiple of the integration time step),
the contents of the states LN LN —1,..., L1 are shifted
forwards, releasing the arrival entities randomized to Li
after { intervals.

+ 7 The multinomial distribution, which delivers an n-tuple
Gy, Gy, ... , ay (Where Sg; = M) as an outcome, can be
implemented as a macro or external function.

.-By increasing the number of states, N, the interval, IN-
TERY, becomes shorter, and the accuracy of the process-
time distribution will be more accurate.
ir: The structure of Figure 7 can also be complemented
with deterministic or random flows or mechanisms for cus-
tomer behavior such as defection from the queue, jockeying
among queues, or balking before entering a queue.

7. Differences and Similarities in CSS/PoS
versus DES

7.1 Continuous System Simulation versus Discrete
Event Simulation

Two classical ways of modeling and simulating dynamic
systems are CSS and DES. These are usually regarded as
essentially different in almost all aspects.

For example, the worldview of CSS is a macroscopic
one based on homogeneous flows of indistinguishable en-
tities between state variables, whereas DES is based on a
microscopic view where the single entities are unique.

In €SS, the continuous time of the system is modeled
by very small time steps, At, while in DES, it is modeled
by discrete events where attributes and conditions for one
or several entities are affected.

The structure of CSS is that of a system of ordinary
differential equations (approximated by difference equa-
tions), and the dynamics occur from integration over time,
In DES, the basic structure is built-on entities (actors) that
compete for resources of various kinds over time. The DES
mechanism behind this is a discrete event handler keeping
track of the scheduled events to come. The logics are either
implemented within the entities (e.g., Simula/Simulation
{10}, Simula/Demos [11]) or as a track-bound system with
the resources as stations on which the entities travel (e.g.,
GPSS [12], SIMAN [13], Arena [14]). ‘
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The role of randomness also usually differs. In CSS, the
macro view of many entities often eliminates the need for
randomness. In DES, on the other hand, the micro view
of individual entities makes randomness crucial. There-
fore, the results also become of different types. In CSS,
the results are typically aggregated numbers varying over
a continuous time obtained from a single simulation. In
DES, the results consist of statistical estimates of numbers
of events, waiting times, queue lengths, utilization, and so
forth based on a large number of simulations of the same
model.

Due to the reasons mentioned, simulation languages for
CSS and DES are so different in structure, time handling,
mechanisms, result presentation, and other things that it is
hard to see that they have much in common. Thus, there
seems to be no obvious way to relate CSS and DES. On
the other hand, both CSS and DES are used to replicate the
dynamics of the same real world, although under somewhat
different purposes and “worldviews.”

Next, let us extend CSS to PoS and compare with DES
how central aspects are handled.

7.2 System Aspects Modeled in Different Ways.

“The characteristics of amodel are very much a result of how
the essence of the real system is preserved in the model,
The system as a piece of the universe has a number of
aspects such as time, space, entities, and their attributes.
It also follows a certain logic that operates on the entities
and their attributes in time and space. To describe and un-
derstand the system from a certain perspective, we have
to build theories/models. Such a theory or model may de-
scribe aspects of nature (e.g., the laws of physics). In more
aggregated terms, a physical theory lumps or aggregates
into chemistry—which lumps into microbiology and into

biology and ecology, and so forth—to capture something .

important of the system's nature. However, in physics,
there is already a choice of regarding, for example, a sys-
tem as a number of individual atoms or as atoms lumped
(aggregated) into a unit. In Table 1, aspects of a system and
of different model types are presented in these terms.

The choice of mapping the system into DES or CSS/PoS
concepts is an issue of a micro (individual entities) or a
macro (lumped entities) description.

The difference in time handling, using discrete events
or time steps of size At, is of a technical nature. An input
of random arrivals in DES can be generated by drawing
random numbers from an exponential distribution to ob-
tain interarrival times, whereas in PoS, the same is accom-
plished by drawing the random numbers from a Poisson
distribution to get the number of arrivals during each time
interval, At.

In DES, the structure of entities, attributes, and logics
is very much preserved (after using Occam’s razor to re-
move what is outside the scope). One effect of dealing with
individual entities is that the temporal description can be
sparse—only handling onset and end of activities in terms
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of events. The logics can be handled in different ways. Ei-
ther they are a part of the entity, or they are implemented
as anetwork of resources to be passed by the entities. (The
former approach is more general and powerful. More about
this is described in Kreutzer [15].) In both cases, the struc-
ture is a flowchart of stations to be passed by the individual
entities.

In CSS/PoS, entities of the same kind with equal or simi-
lar attribute values are lumped into the same state variable;
this variable only records their actual number. Thus, the
way to discriminate between entities or their attributes is to
place them in different state variables. The logics are that of
the structure of the model (in terms of a system of equations
or, equivalently, a structure of state variables and flows).
The dynamic develops as changes of the number of entities
in the state variables, in accordance with time integration
of the differential equations (or difference equations, to
be exact). Time is then handled in a quasi-continuous way.
‘When randomness plays a minor role (e.g., because of large
numbers), CSS can be used; otherwise, randomness can be
modeled using PoS. '

7.3 CSS/PoS and DES from a Queuing Theory
Perspective - ‘

In queuing theory, we can study both waiting line mod-

els where entities are served by one or several servers and

dynamic processes where external servers are not needed
(self-service). This latter case can be handled in queuning
theory by ascribing infinitely many servers [7, 8]. By ex-
tending CSS with the PoS ideas, it turns out that many
problems treated by DES also can be handled in PoS. Then,
in principle, a real system can be described by a dynamic
and stochastic model using DES or PoS. DES models are

to be used when each entity is modeled separately, and

PoS is used when the entities are lumped within state vari-
ables. Dropping the randomness in PoS then gives CSS
(see Fig. 8).

7.4 Structural Similarities for DES, CSS, and PoS

DES, CSS, and PoS models all have a structure of blocks
that should be passed by entities in accordance-with some
logics.

In DES models, the fundamental block is the (server)
station handling the activity between related start and end
events (an advance block between seize and release in

- GPSS [12], some form of the operation block in SIMAN

[131, a process block in Arena [14], or an activity block
in a Simula/Demos activity diagram [11]). The inputs and
outputs are arrivals and departures of individual entities (or
batches of individual entities).

In CSS/PoS models, the block is a state variable hold-
ing a number of identical entities. In PoS, the numbers of
entities are (usually) integers. In both CSS and PoS, each
block has input(s) that come from outside the scope of the
model or from other blocks and output(s) that lead to other
blocks or out of the model boundaries,




POISSON SIMULATION AS AN EXTENSION OF CSS

Table 1. System, DES, and CSS/PoS models presented in terms of time, space, entities, atiributes, and logics

System DES CSS/PoS
Time Continuous Discrete Quasi-continuous
Space Continuous Not modeled?® Not modeled®
Entities Discrete or lumped Discrete ' Lumped in state variables
Attributes Discrete or continuous Discrete or continuous Lumped in state variables
Logics “Laws of nature” Program logics ’ Structure of state variables and
: flows®

DES = discrete event simulation; CSS = continuous system simulation; PoS = Poisson simulation.
80r described in terms of entities or attributes .

b0r described in terms of number of entities in state variables

©Or, equivalently, a system of differential equations

The Real System

Individual entities
(Micro approach)

Lumped entities
(Macro approach)

Discrete Event Simulation Poisson Simulation
(Integer number of entities) (Integer number of entities*” )

lStochastic condition removed
a

Continuous System Simulation
(Real numbers)

Figure 8. The relationships between discrete event simulation, Poisson simulation, and continuous system simulation, as seen
from queuing theory.* Poisson simulation may also use continuous probability distributions, whereas the state variable contents no
longer have to be integers.

the serial blocks X2 and X3 in the other. Part of the out-
puts from X3 and X4 are summed up as inputs to XS5.
Another part of the output from X3 is fed back to X2. All
structures can be modeled using these concepts. The imple-
mentations in different types of simulation are, however,
somewhat different. In DES, a logical condition is used for
splitting, whereas in CSS/PoS, different fractions of the
state variable content may lead from one state to others.
Queuing theory can be used to describe a Markov-type
process when the block has a finite number of servers, so

Figure 9. An example of a structure of interrelated blocks.
There may be external inputs and outputs, and the blocks may

be interconnected serially or in parallel. This is accomplished the entities may have to wait for a service, or when it has an
by splitting the output from a block or by summing up inputs infinite number of servets. It has been demonstrated that a
from parallel blocks. queuing block with a limited or infinite number of servers

can easily be implemented in PoS, as shown in section 3.2.
Inversely, it is also possible to implement self-service in
DES by setting the number of servers to a large enough

number,
Such a structure of DES, CSS, or PoS models can be
described as a number of linked blocks such as those in 8. Discussion
Figure 9.
In Figure 9, there is an external input to block X1 and The introduction of PoS gives a way to extend CSS to the
external outputs from blocks X4 and X 5. The output from stochastic domain by providing a method tomodel random-’
X1 is-split into parallel sequences X4 in one branch and ness, as opposed to just adding input, state, or output noise.
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'The power of PoS in the field of dynamic and stochastic
modeling has been demonstrated [1, 4]. In this article, it is
shown how M/M/n queues can be implemented in a PoS
model, but other process-time distributions can also be han-
dled, as shown in section 6.

In this context, queuing theory is valuable as a mathe-
matical background for understanding fundamental queu-
ing systems. The perspective using queuing theory also has
practical implications for both the self-service and the lim-
ited resources cases. In simple cases, Erlang’s loss formula
[2], Burke’s theorem [3], and their applications in networks
have direct practical implications. In more complex cases,
queuing theory may still be the prerequisite for a deeper
understanding and interpretation of the results.

An example of how to randomize initial values for the
state variables was shown for a model in which a study
cohort and a reference cohort were differently exposed (see
section 5).

Another example of a practical implication may be
whether the assumption of Poisson-distributed arrivals is
consistent with what is known about departures, which can
be monitored a number of state variables downstream. If
the process between arrivals and departures fulfills the re-
quirements of Burke’s theorem in a steady-state case, itis a
necessary condition (that can be tested) that the departures
are also Poisson distributed.

Many natural processes such as aging, disease,
metabolism, and so forth are of the self-service type, while
other processes such as treatment, transports, and so forth
require external resources that, when lacking, cause queues
of waiting entities. The tradition of using CSS for the for-
mer and DES for the latter case is not compulsory. When
an individual description is not necessary, the lumped ap-
proach of PoS has a numiber of advantages.

PoS is based on differential equations that are mathe-
matically well understood. Furthermore, a lumped model
is usually much simpler to build and handle, and it usually
runs many times faster than a corresponding DES model. It
also requires far less data. Model fitting and optimization
can be done in a fraction of the time required for a corre-
sponding DES model, Validation is also much simplified.
Finally, handling time-varying intensities of arrivals and
departures in PoS is straightforward, but it requires special
attention in DES.

A practical problem is that CSS languages usually lack
powerful mechanisms for repeated simulation and statisti-
cal analysis. Statistical estimates require a number of runs
of the model with a subsequent analysis of mean, variance,
and other statistical measures of the results from these runs.
This problem is, however, easy to remove. In a project, sup-
ported by a grant from the Swedish Council for Planning
and Coordination of Research, a device for this has been
constructed {16]. ‘

From a queuing theory perspective, important parallels
between the DES and CSS/PoS worlds can be made vis-
ible. This opens up a choice of how to build a dynamic
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and stochastic model of a system from the purpose of the
study. Besides the technical differences, there remains a
fundamental difference between DES and PoS. In DES,
the entities are individuals, while in PoS, they are lumped
and not distinguishable within a state variable. The main fo-
cus, then, is on the merits of an individual contra a lumped
description of entities, When the objective is to focus on
individuals and their life stories, DES is a natural choice,
while great simplifications can be obtained if a lumped PoS
mode] is adequate.

The presented approach might open up the simultane-
ous use of ideas from both CSS and DES worlds within
one model. In the field of combined simulation, submod- -
els of both CSS and DES types are integrated into one
model. This requires a special simulation language (e.g.,
DYNAMO in Simula {17} or DISCO [18] or jDisco [19])
with accompanying complications such as two types of
time handling. Here PoS might be an option.

For example, in telecommunications, individual pack-
ages are sent over huge networks. Sometimes, individual
packages have to be followed, but the network has to be
described in lumped terms because of very large numbers.
Can this be treated in terms of interfacing an individual and
a lumped description? Or can it be handled by parallel de-
scriptions, where the lumped world of the net interacts with
the individual description of a limited number of packages?

The full theoretical and practical implications of the
ideas presented in this article are still to be investigated.
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