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Abstract

Parameters of time-varying dynamic systems may sometimes be mod-
elled as deterministic functions of time. This is shown to be feasible, and to
improve the estimation accuracy, in the estimation of fading digital mobile
radio channels. Such systems may be described as finite impulse responses,
with coefficients varying, on a short time-scale, as sinusoids. We propose
to estimate the phase, amplitude and frequency of these sinusoids, in each
data burst in a TDMA system.

A prediction error identification algorithm has been developed, assuming
each data burst to begin with a known training sequence. The parameter
estimation is separated from the equalizer design and the equalization phase.
The parameter estimation was tested on simulated data, generated by a two
ray channel model, with 10 dB SNR. The proposed algorithm provided
very accurate channel models, also in time intervals with severe fading. In
contrast, the alternative approach of using recursive identification with a
sliding data window was found not to behave well.



1 INTRODUCTION

Parameter estimation of time—invariant dynamic systems from noisy data is a rel-
atively mature research area. Widely used algorithms, based on well-developed
theoretical foundations, exist. See, for example, [8] or [13]. However, for systems
having time-varying parameters, estimation algorithms are less satisfactory and
their properties are far from completely understood. The conventional approach
is to track time—variations of the system, using recursive identification with a re-
ceding data window [9].

Shortening of the data window improves the tracking capability but results in in-
creasingly noisy parameter estimates. A tradeoff has to be made between the bias
and the variance of the estimate. When the required tracking accuracy is high,
and the measurements are noisy, there may exist no satisfactory compromise.

One way of avoiding this dilemma is to consider the physical cause of the parameter
variations, and the typical way in which the parameters change, if such information
is available. In particular, if the parameter vector #(t), for a given data batch, can
be described by a deterministic function of time, 0(t) = h(fy,t), off-line identifi-
cation of the parameter vector of this function, #;, may be considered. Compared
to the tracking of 6(t) itself, by recursive estimation, this promises to improve the
estimation accuracy, if the data batch is longer than the sliding window used by
a tracking algorithm. Furthermore, the mean trajectories of estimates obtained
with a sliding window follow the system parameter variations with a time lag. The
proposed approach eliminates this bias.

While the ideas described above have general application, they have resulted from
our work on digital mobile radio channels. This report describes some preliminary
results of the work, and illustrates the parameter estimation approach.

When digital data are sent over a 900 MHz mobile radio channel, the signal trav-
els along the line of sight between transmitter and receiver. Due to reflections
from buildings and other obstacles, many other signal paths also contribute to the
received signal. This multipath propagation has the advantage of making signal
reception possible when the line of sight path is obscured. Time delays between
different paths do, however, create problems; they may correspond to one or sev-
eral symbol lengths, depending on the transmission rate.

This problem, known as intersymbol interference, causes decoding problems at the
receiver. The most straightforward way to avoid it would be to decrease the sym-
bol rate, so that path delay differences become small, relative to the duration of
one digital symbol. For obvious reasons, this is unattractive from an economical
point of view. A superior alternative is the use of equalizers at the receivers. An
equalizer estimates the channel input, i.e. the transmitted digital data sequence,
from the noisy received signal. See Figure 1.

In some situations, linear equalizers [3], [6] are appropriate. Significantly lower er-
ror rates can, however, often be achieved by the use of nonlinear algorithms, such as



decision feedback equalizers (DFE’s), see [2], [10] and [14]. Viterbi equalizers [4] are
another alternative. The optimization of an equalizer requires reasonably accurate
models of the transmission channel and the noise properties. Since channels are
often time—varying, equalizers are frequently implemented as adaptive filters. See,
for example, [5]. A good survey was given by Qureshi [12]. The channel modelling
is quite often implicit, i.e. the parameters of the equalizer are estimated directly.
It should be emphasized that the channel estimation problem is far from trivial.
The input is unknown most of the time, yet the amplitude and phase properties
of the channel must be estimated from noisy output measurements only.

Figure 1. Simplified description of the signals in the baseband of a digital com-
munication system. The transmitted data u(t) propagate through a dispersive
channel, which is linear, but often time-varying. The received signal y(t) is cor-
rupted by noise v(t). An equalizer reconstructs the data sequence.

With a mobile transmitter or receiver, the signal power through different propaga-
tion paths changes continuously. These variations have a strong sinusoid compo-
nent, with frequency close to the Doppler frequency for the moving vehicle. See, for
example, Figure 1-17 in [7]. The existence of such a regular, quasi-deterministic
variation forms the basis of our channel parameter estimation approach.

2 MODELLING ASSUMPTIONS

With the modulation schemes used in digital mobile radio communication, signals
and channel parameters in the baseband are represented as complex numbers. See
e.g. [11]. In this report, the discussion of the method will be based on real-valued
signals. Generalization to the complex case is rather straightforward.

In discrete time and in the baseband, the channel is described by a finite impulse
response filter, with time-varying coefficients. These time-variations are well de-
scribed by the Rayleigh fading model. For details of this model, see e.g. [7].

Let v be the velocity of the vehicle, ¢ the speed of light and f, the carrier frequency.
The Doppler frequency for motion parallel to the signal path is
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In a Rayleigh fading environment, many different secondary signal paths contribute
to each of the channel impulse response coefficients. The time variation of these
coefficients may then be described as stochastic processes with significant energy
around the frequency f;, but insignificant energy above f;. On short time—scales,
it is thus reasonable to model them as sinusoids. Our basic modelling assumption
is as follows:

In time intervals up to half a Doppler period, or T < 1/2f,, the time
variation of each channel impulse response coefficient is assumed to be
well described by a sinusoid, with frequency < f,.

The received signal is corrupted by noise. The noise is coloured, in general mainly
because of the effect of the receiver filter. Since this filter is known, its discrete
time inverse may be applied to the sampled data. We assume that y(t¢) has been
prefiltered in this way. The noise v(t) can then be assumed to be white, and the
effect of the receiver filter on the channel impulse response is eliminated. *

Thus, let the channel, with a discrete time dispersion of m symbols, be modelled
as

y(t) = bo(t)u(t) +bi(t)u(t —1) + ...+ by (t)u(t — m) +v(?) (2.2)

where the noise v(¢) is zero mean and white, with p 2 Ev(t)2/Eu(t)?, and the
time-varying parameter vector

0(t) = (bo(t) - - - b (t))" (2.3)

bo(t) = K,sin(wet + o) + €,(t)
: (2.4)
bn(t) = Ky sin(wpt + o) + en(t)

where |e;(t)| are assumed small, compared to |K;|. The model is thus specified by
the time-invariant parameter vector 2

0= (Ky...Kpy Wo..o Wi Qo Pm) (2.5)

'Incidently, it is optimal to include such noise-whitening prefiltering in Viterbi equalizers and
also, as has been shown by Sternad and Ahlén [14], in realizable decision feedback equalizers.

2We have allowed the approximating frequencies {w;} in (2.4) to differ. Since all these fre-
quencies are expected to be close to 27 fy, and thus close to each other, a model with only one
common frequency might be adequate. The number of parameters is then reduced from 3(m + 1)
to2(m+1) +1.



With an estimate of 8,4, (2.4) provides an estimate of §(¢), for any t.

The signal {y(t)} is assumed to be received in blocks of N data, corresponding to a
time interval 7 = N/ f;, where f; is the symbol rate. The input {u(t)} is assumed
known for the first L < N samples of each data block (the training sequence), and
unknown thereafter. We make the following assumptions.

Assumption 1. The burst length NV corresponds to at most half a period of the
maximal Doppler frequency (2.1). Then, sinus modelling of (2.3) is reasonable,
according to our basic assumption. This implies
N c

<

fs - 2fcvmax

(2.6)

where f, is the symbol rate, f. is the carrier frequency and v, is the maximal
vehicle velocity.

Assumption 2. The length of the training sequence, L, is not smaller than the
number of parameters in 6;. Thus,

L>3(m+1) (2.7)

After a complete data block has been received, the proposed algorithm runs
through three phases.

e In Section 3.1, an algorithm used on the training sequence is presented. It
is denoted Phase I, and has the purpose to provide reasonable initial values
for the second phase. Assumption 2 prevents the optimization problem from
being under—determined.

e In Phase II, described in Section 3.2, the estimate of 6, is improved using the
rest of the data block, where u(¢) is unknown. Instead of the true u(t), an
estimate, obtained from a simple linear equalizer, is utilized in the algorithm.
Although the estimation of 6 is an off-line problem, the estimators in Phases
I and II have been implemented as recursive algorithms, which traverse the
data one or several times.

e In Phase III, which is not discussed in this report, a final pass through the
data block is made by an equalizer, to estimate u(t). The equalizer is a
time—varying filter, which is optimized based on estimates of p and of (2.2),
(2.4). The equalization could be performed by a DFE, a Viterbi algorithm,
or any other kind of equalizer. (The effect of the receiver filter must be taken
into account in this phase.)

The performance of the algorithms for Phases I and II is illustrated by a simulated
example in Section 4.



3 THE ALGORITHM

3.1 Phase I: utilizing the training sequence

It is relatively straightforward to develop a recursive prediction error method for
the model structure (2.2)-(2.5), with known input u(¢), and assuming e;(t) = 0.
Since the noise v(t) is assumed to be white, the output predictor is

U(t) = Kysin(wol + wo)u(t) + - .. + Ky sin(wpt + @) u(t — m) (3.1)

The prediction error is denoted

e(t) =y(t) — 9(t) (3-2)

Assume that the parameter vector 6, is held fixed. The negative gradient of (¢, 6),
with respect to 6,4, is then

o [(9e(t)  Be(t) Be(t)  Be(t) de(t)  Be(t)\T
QI(t)_—(aKo KL B B Bpr 8%) (3.3)

where

Oe(t _

- Blgk) = sin(wpt + pr)u(t — k) , k=0,...,m

oY) = Kitcos(wpt + @pu(t—k) , k=0,....m
8wk

%) = Kjycos(wkt+@p)u(t—k) , k=0,...,m
Pk

Based on these relations, a recursive prediction error method for minimizing the
criterion J = Fe(t)? can be obtained immediately, as explained, for example, in
[9]. We have implemented the algorithm as a repeated recursive identification al-
gorithm, because this improves the accuracy, in particular for short data series.
(For a discussion of the repeated use of recursive identification algorithms to solve
off-line problems, see [15].) The algorithm is listed on the next page.



Algorithm for Phase I

Below, t is the time index, pointing on the data, while 7 is a running index.

Start with t = m + 1, 4 =1, with 64(1), P(1) and A(1) given
1. Read u(t) and y(t).
2.

Sk = sin(cb,(ffl)t + g?),(:*l))u(t — k) , k=0,...,m
(3.4)
k= f{,ﬁz‘” cos(c?),(;_l)t + ([Jg_l))u(t —-k), k=0,....,m
3. .
e(i) = y(t) = 3 Ky Vst (3.5)
k=0
4. V(i) = (So---8m Cot---Cmt Co--.Cm)
5. Update the forgetting factor A(7). (See (3.8) below.)
. 1 P(i — 1)U U6 P — 1
Pl = — (p(i— 1y - PUZDIOV(E) Pli—1) (3.6)
(%) M)+ ()P —1)¥(q)
7.
fa()) & (KO .. KD o® o0 o0 g0
= By(i — 1) + P(i)T(i)e(d) (3.7)
8. .
Ift<L, thent=t+1,i=1%+1, go to step 1.
Ift=1L, either repeat: set t =m+ 1,7 =1+ 1, and then go to step 1,
or stop, if number of repeats or the accuracy is adequate.
Remarks.

Since the training sequence is assumed to be short, a couple

of passes through

the data are necessary to eliminate the effect of the initial value P(1), so that the
same accuracy as with an off-line algorithm is obtained. Only a few passes are
necessary, in general. The variance of (i), measured in the last pass, can serve as

an estimate of the noise variance, to be utilized in Phase II.

Note that the model structure is nonlinear in the parameters. The elements of 6

enter nonlinearly in ¥(¢) and (¢).

The time-varying forgetting factor is initialized at 0.95 and approaches a final

value Ao, < 1 exponentially.
A(7) = 0.95A( — 1) + 0.05) ; A(1) =0.95

7

(3.8)



This forgetting factor is not used because we wish to track time-variations. It is
just a well-known trick to speed up convergence. (See, for example, [9], chapter 5.)

We suggest @, and K to be initialized as the values obtained from the previous
data bursts, since it is reasonable to assume the Doppler frequencies and the am-
plitudes not to change much between two consecutive bursts. The phases ¢, must,
however, be considered to be completely unknown. 3

The P-matrix, of dimension dim 6| dim 6, is initialized as a diagonal matrix. The
diagonal elements are chosen proportional to rough guesses of the squared expected
error of the initial estimate 64(1). This has worked well in the simulation experi-
ments. * In an implementation in a signal processor, the P-matrix update (3.6)
should be performed in factorized form, to obtain good numerical conditioning.

Note, that magnitude, frequency and phase decribing each b; are coupled to each
other, but orthogonal to the parameters describing other b—coefficients, if u(t) is
white. This should be of value in the design of fast algorithms, such as ladder or
lattice algorithms.

After a few passes through the training sequence, the algorithm will provide a pa-
rameter vector 6y, which approximates {bx(t)} reasonably well, for ¢ € [1, L]. The
parameter estimates 6, will, however, in general be far from the true values, when
(2.4) holds exactly. The model approximates the true sinus curves progressively
worse for higher ¢. This is the case in particular in experiments with a high noise
level. This is not surprising. The parameters cannot be accurately estimated from
noisy measurements of a short data sequence, which constitutes only a very small
fraction of one sinusoid period.

However, the main purpose of Phase I is merely to provide a good initial value for
Phase II. The model of {b;(¢)} should be reasonably accurate in the time interval
t € [L,2L], immediately after the training sequence. If this is not the case, the
estimates of u(t), utilized instead of the true w(¢) in Phase II, will frequently be
erroneous in the beginning, with the possible risk that this algorithm diverges.

3During ”start up”, i.e. the first burst, it may be advantageous to use a somewhat longer
training sequence. As a general recommendation, increase of the training sequence lenght is
beneficial from an accuracy point of view.

“The initial diagonal values of the P-matrix can be seen as step length parameters; they
determine the length of the steps taken in different directions in the parameter space, during the
first few updates.



3.2 Phase II: estimation with an unknown input

The algorithm in Phase II uses the remaining N — L data, which constitute the
major part of the data block. It is identical to the scheme described in Section
3.1, except for the following modifications.

1. Instead of the unknown transmitted data sequence {u(t)}, estimates {(t)},
obtained from a linear recursive equalizer, are used. The linear equalizer
is a smoother, followed by a nonlinear memoryless decision module. It is
re—calculated, based on the latest estimate of #(¢), as ¢ increases. ° For an
example, see Section 4.

2. As initialization, t = L + 1 and i = 1, while P(1) and 6,4(1) receive the
values obtained at the end of Phase I. In general, it is sufficient with one
pass through the N — L data in Phase II. The forgetting factor A(7) should
be close to unity. We aim at maximal accuracy during this phase, so no
information should be discarded.

3. To decrease the effect of occasional single incorrect estimates {u(t)}, the
parameter updating law (3.7) should be robustified. We suggest the use of

where
+a if (i) > «
g(i) =4 €(i) if —a<e(i)<a (3.9)
—a if £(t) < —a

The parameter o may be set in the range 0.30, —0.70,, where o, is the stan-
dard deviation of () in the data batch. The length of updating steps caused
by large (possibly erroneous) prediction errors is thus limited. (This corre-
sponds to the use of a criterion J(¢(¢)) which depends linearly, as opposed
to quadratic, on £(t), above |e(t)| > a. See e.g. [9], chapter 5.)

4. The adaptation may be discontinued during flat fading, i.e. when all |by(¢)|
are small, relative to the estimated standard deviation of the noise. Under
such periods, there is maximal risk of frequent erroneous estimates {a()}.
Note that this does not imply that the resulting model (2.4) will be inaccurate
during flat fading phases. On the contrary, with our method, it is possible
to optimize the estimate 6, only during the periods of the data burst when
the local signal to noise ratio is high. The resulting sinusoid models will,
however, be valid over the whole burst of length N. This is why the strategy
can provide channel estimates which are highly accurate during phases of
flat fading.

5The computations involved in optimizing linear recursive equalizers have been discussed by
Fitch and Kurz [3] and by Ahlén and Sternad [1].

9



4 A TWO RAY MODELLED TRANSMISSION
CHANNEL

Consider the general channel description adopted in Section 2. In this section, the
channel will be characterized by the following properties. The carrier frequency is
900 MHz. The symbol time and the time dispersion is 40 us. Thus, the discrete
time channel has two coefficients. A time division multiple access (TDMA) system
is used for scheduling of different messages. A message is received in bursts con-
taining 170 data. The training sequence comprises the first 20 data of each burst.
The signal to noise ratio varies from 10 dB to 20 dB. The transmitted sequence
is binary and antipodal. Thus, u(t) € [—1, 1], with zero mean and unit variance.
The measurement noise v(t) is assumed white, zero mean and with variance p. As
a nominal (highest) Doppler frequency for the main ray, f; = 83 Hz is assumed,
corresponding to a vehicle driving at 100 km/h.

We thus have the following specifications: m = 1, N = 170, L = 20, f, = 25
kHz, Ev(t)? = p and Fu(t)? = 1. The condition (2.7) is satisfied. Although the
condition (2.6) is almost, but not quite, satisfied, we will assume the data to be
generated by a system in which the sinusoid description (2.4) holds ezactly.

Thus, the measured data are assumed to be generated by

y(t) = bo(t)u(t) + br(t)u(t — 1) + v(?) (4.1)

where the coefficient variations are described exactly by

bo(t) = K,sin(w,t+ ¢,)

bi(t) = Kisin(wit+ @) (4.2)

Thus,

(9,1 = (KOaKlawl)awlagDO’ SOI) (43)

The SNR is E(bZ + b2)/p. Straightforward use of the algorithm in Section 3 gives

e(t) = y(t) — K,sin(@ot + $o)u(t) — Ky sin(dnt + ¢1)u(t — 1) (4.4)

in Phase I, while in Phase 11

a(t) £ sign(a(t)) (4.5)
is substituted for wu(t).
The estimate 4(t), utilized in Phase II, is obtained from a linear smoother. This
smoother can be optimized by solving a spectral factorization and a linear poly-

nomial equation. See [1] or [14]. In this particular case, a one step smoothing
estimate 4(t|t + 1) turns out to be sufficiently accurate. For this simple channel

10



model, we can express its coefficients as explicit functions of b,, b; and p.

The smoothing input estimator so obtained is given by

~

X bobi . by b2 bo
w(tlt+1)=—at—-1t) +— |1 -2 ) yt+1)+ =y(t) (4.6)
T r r T
where
2 A A ~ ~
Tég—i-\/gz—bobl gébg—i—bf%—ﬁ

Instead of a linear equalizer, the Viterbi algorithm could just as well have been
used. However, it is not advisable to use a decision feedback equalizer in Phase II.
Its tendency to generate occasional long bursts of errors may throw the adaptation
completely off course. (This suspicion has been verified in simulated examples.)
The ability to avoid adaptation on DFE-decisioned data is a main advantage of
the approach.

The Phase II-algorithm is described schematically in Figure 2. The following ex-
ample illustrates the properties of the algorithm.

Figure 2. A schematic view of the steps involved in Phase II, where 6, is updated
recursively by means of a nonlinear prediction error algorithm. An LFE estimate
4 provides inputs to the predictor. A new prediction error is found, and the algo-
rithm takes a new step towards the minimum of the criterion. The forward and
backward shift operators are denoted ¢ and ¢!, respectively.

11



Example 1. Let the true parameter vector in (4.3) be
6; = (1.00 0.50 0.0176 0.0176 1.00 2.00 )T

which corresponds to a Doppler frequency of 70 Hz and a second ray damped 6
dB. We simulate (4.1) with a signal to noise ratio of 10 dB. In Figures 3a and 3b,
we see the received signal y(t) and the transmitted data sequence u(t), during one
burst.

Figure 3a. The received signal.

Figure 3b. The transmitted data.

In Phase I, five iterations are used. (Thus, the time index ¢ goes from 2 to 20,
while the running index i goes from 1 to 95.) We choose the forgetting factor \(¢)
as in (3.8), with A, = 0.98. Initial values of 6; and P are set to

0,(1) = (0.5 0.2 0.01 0.01 0,0)
P(1) = diag(10 10 0.1 0.1 100 100)

Use of the Phase I provides the following estimate

04 = (0.93 0.72 0.0058 —0.0018 0.99 2.30 )"

12



In Figures 4a and 4b, we see how the channel coefficients in (4.2) are approxi-
mated during the first 40 data. Note that the approximation is reasonable, not
only during the training sequence, but also during the next 20 data points.

Figure 4a The Phase I-estimate Figure 4b The Phase I-estimate
of b,(t) (dotted), and the true value of by () (dotted), and the true value
(solid). Training sequence ¢ € [1,20]. (solid).

In Phase II, we apply the modified Phase I algorithm, described in Section 3.2.
The robustifying parameter is a = 0.3. After the 150 data run, an improved
f4—vector

04; = (0.95 0.53 0.0181 0.0206 0.87 1.80 )"

is obtained. Figure 5 shows the channel coefficients and their approximation after
Phase I and Phase II. The incorrect decisions generated by the LFE are shown in
Figure 6. Only a few errors were obtained, and they did not affect the adaptation
significantly. The risk of error increases during fading of the main ray b,. This is
evident in this example, where b,(t) is small around ¢ = 120.

13



Figure 5. The true impulse response coefficients as functions of time (solid lines),
their approximation after Phase I (dotted line) and the final approximation after
Phase II (dashed line).

Figure 6. The input estimation errors u(t) — @(t) in Phase II, caused by incorrect
decisions by the linear equalizer (4.5), (4.6).
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Example 2. Using the same received and transmitted data as in Example 1, we
apply the recursive least—squares (RLS) algorithm. It tracks changes of the impulse
response coefficients using a forgetting factor. This corresponds to the use of an
exponentially weigthed sliding window. The parameter vector to be estimated will
then be

Orrs = (b by )"

In this special case, we choose the forgetting factor A = 0.90, which seems to be
the least unsatisfactory compromise between fast tracking and noise sensitivity.
Initial values of the frrs—vector and P—matrix are chosen as

Orrs(1) = (0 0)7

P(1) = diag( 100 100)

In the first simulation, we use all the 170 transmitted data, as if they were known,
to see how well changes of the coefficients could be tracked, in an ideal case. Fig-
ure 7 shows the result.

Figure 7. True parameters (solid lines) and the RLS tracking estimates (dotted),
with A = 0.90. The input {u(t)} is assumed known for the whole data sequence.
Compare the estimates from our algorithm in Example 1 (dashed lines).

Next, a more realistic case, where only the first 20 transmitted data are known,
is investigated. In the remaining data series, the LFE (4.5), (4.6), updated in
each sample based on the estimated channel parameters, provides data estimates.
Figure 8 shows the true parameters and their estimates. The incorrect decisions
generated by the LFE are shown in Figure 9. Because of the bad quality of the
channel estimate in the fading phase around ¢t = 120, the equalizer is incorrectly
tuned and generates frequent errors. These destroy the parameter tracking, which
causes still more errors, until the end of the data batch.

15



Figure 8. The true channel coefficients as functions of time (solid lines), and
the RLS-estimates (dotted). Dashed lines are the estimates obtained by our new
algorithm.

Figure 9. The input estimation errors u(t) — %(t), caused by incorrect decisions
by the linear equalizer (4.5), (4.6), when RLS—tracking is utilized.

16



5 CONCLUSIONS

We have considered the problem of estimating fading radio channels, with proper-

ties which are encountered in digital mobile radio communication in the 900 MHz
band.

This has turned out to be a rather demanding system identification problem. The
transmitted data sequence, i.e. the channel input, is known only for a small frac-
tion of each data block of a TDMA system. The channel impulse response is
time-varying. It has sometimes maximum phase and sometimes minimum phase.
Frequent intervals of fading can be expected. The received signal power is then
low, compared to the noise power. To reduce the error rate in equalizers, accurate
channel models are required in particular around fading intervals. Unfortunately,
the received signal contains little information about the channel properties in pre-
cisely these intervals.

We have succeeded in designing a channel estimation algorithm which promises to
overcome these difficulties. It is based on three design principles, listed below. For
systems with properties as those discussed in Section 4, we believe that it would
be very hard to construct an equalizer which works acceptably, without utilizing
at least the first and the third of these principles.

1. The channel estimation (Phase I and IT) is decoupled from the final equaliza-
tion (Phase III). We do not utilize decision—directed adaptation of equalizer
parameters. Instead, the channel estimate is optimized using the whole data
burst. A (preliminary) equalizer is used to estimate unknown transmitted
data. The adaptation is sensitive to long bursts of errors, but insensitive to
single errors. Thus, we utilize a linear equalizer, which has a higher error
rate than a DFE, but does not generate long error bursts. (In the final Phase
III, a DFE might be used.)

2. The effect of single decision errors (and of outliers due to noise) is reduced by
robustifying the criterion, yielding (3.9). The parameter « is used to tailor
the sensitivity.

3. Instead of tracking the channel parameters, their time variations are mod-
elled by deterministic functions. In a fading mobile radio enviroment, sinu-
soids are the obvious choice. Data from time intervals with acceptable local
signal to noise ratio are used to tune the sinusoid model parameters. The
optimized model will then also describe the channel properties in intervals
with low signal power.

The present report is an outline of the main ideas involved in our approach. Much
work remains to be done. In particular, the following questions need to be adressed.

e The error in the sinusoid modelling assumption (2.4) needs to be investigated,
for different fading enviroments and data burst lenghts N/ f;.

e The scheme needs to be generalized to, and tested for, the more realistic
complex channel case, obtained e.g. in differential QAM. This seems to be
straightforward.

17



e It should also be straightforward to include estimation of the properties of
coloured noise. The noise might be coloured for other reasons than known
effects of the receiver filter, for example co—channel interference. The model
(2.2) can be generalized to

M(q)
N(g™)

y(t) = B(g~)u(t) + v(?)

which includes a (low order) ARMA model of the noise, describing other
effects than the receiver filter.

e The worst possible situation confronting our algorithm (as well as any other
scheme) would be severe flat fading during the training sequence. With a
bad model at the beginning of Phase II, the algorithm may then diverge.
Methods for avoiding this need to be studied. An increase of the lenght of
the training sequence would reduce this problem significantly.

e A theoretical analysis of the algorithm might provide valuable design guid-
lines. A challenging complication is that the elements —0e(t)/0w; of ¥(t) in
(3.3) are asymptotically unbounded, when ¢ — oo. Thus, the very powerful
ODE method [9] cannot be applied directly.

e Different alternative equalizers need to be compared, to obtain the best de-
sign for Phase III.

Finally, we believe that the concept of modelling time—varying systems by estimat-
ing the parameters of deterministic functions, which describe the time-variations,
can be applied fruitfully on numerous problems.
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