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AN INPUT ESTIMATION APPROACH TO DIFFERENTIATION OF NOISY DATA

ANDERS AHLEN

Automatic Control and Systems Analysis Group,
Department of Technology, Uppsala University,
P.0. Box 534, S-751 21 UPPSALA, Sweden.

ABSTRACT

An approach for estimating the derivative of é noisy signal is
proposed and analysed. The idea of the method is to fo;mulate the
problem as estimation of the input to an n:th order integrator. Hence
we have an input estimation problem. First the parameters of a
suitable input model to the system are estimated using a prediction
error method. Then the system is set up into state space form where
the input is chosen fo be one of the state variables, Standard fix
point smoothing is applied to get an optimal estimate of the input.
The method is applied to simulated data as well as real measurement

data for illustration.
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1. INTRODUCTION

The problem of estimating the derivative of a noise corrupted signal
has attracted a lot of attention in various fields. In biomechanics
for instance, it is of great interest to compute different forces
and torques from measurements of positions. We are then dealing with
the difficult problem of estimating accelerations from noisy

measurements of positions.

To overcome the difficulties in differentiating noilsy measurements,
a number of more or less sophisticated methods have been proposed.
See for instance Rabiner and Steiglitz (1970), Anderssen and
Bloomfield (1974), Wahba (1975), Gustafsson and Lanshammar (1977},
Hatze (1981), Séderstrom (1980, 1982), and Usui and Amidror (1982).

In this report we will approach the differentiating problem by
regarding it as a special case of the more general "input estimation
problem”. To estimate the derivative of a noise corrupted signal is
then the same problem as to estimate the input of an integrator from
noisy outpup measurements. In presence of noisy measurements, this
problem is known to be ill-posed. Problems of this kind have been

treated e.g. by Jakeman and Young (1978, 1981), Sandell et al (1981)
and Candy and Zicker (1982).

We will investigate three different approaches of modelling the
system and the input. In the first approach the input and the system
are described by continuous-time models. The two other approaches
are dealing with discrete-time models where the system is obtained

either by constant or linear sampling.

First the barameters of an appropriate input model to the system are
estimated using a prediction error method. Then the system is set up
in a state space form where the input is chosen as one of the
states. Optimal time invariant fix-point smoothing is then applied
to estimate the input. The idea is not new. Similar ideas have been
used .e.g. by Young and Jakeman (198t), Candy and Zicker (1982}.
However, they use a fix input model determined with some rules of
thumb. In this paper we determine the most suitable model wusing
identification techniques. The most suitable model is assumed to be
the one which minimizes the prediction errors of the output. Such an
approach has also been used by Tugnait (1983) in connection with

spectral estimation.




2. ODIFFERENTIATION AS AN INPUT ESTIMATION PROBLEM

2.1 A CONTINUOUS-TIME APPROACH

(n)(t). of a signal s{t) is

Assume that the n:th order derivative s
to be determined. Call this derivative ult). We shall in the
following refer to ult) as the derivative or the input. The signal
s{t) can then be regarded as the output of an n:th order integrator,

driven by ul(t), see figure 2.1,

ult) s s(t)
M G(s) p——tit>
Figure 2.1 Gis) = 1/s"

The problem of finding the derivative u(t) has now been formulated
as the problem of determining the input to a given system from
measurements of the output. Assume for a while that G(s) 1is more

general than an n:th order integrator i.e. given by

Gis) = Bls)
Als)
where
- p
B(s) = bm-ps +, +bm (2.1)
Als) = s™a. s 1e.. 42
i m

We shall assume that the signal s{t) can be described as a
continuous-time stationary stochastic process, generated by a
continuous-time white noise e{t) through a filter H(s). The poles of
H(s) are assumed to be inside the left half plane and the zeros in
the left half plane or on the imaginary axis, cf Astrém 1970. Then

we can write

His) = Cis)
B(s)
where
C(s) = Croq® *rttCp (2.2)
Bls) = sTed 6" 1o, .. +d




The input uit) can then be described by

Cls)
1ig) = - @ 2.3
ult) Do) elt) { a)

oy

where C{(s} and Dls) must contain Als) and B{(s) respectively as

factors i.e.

Cls) = €(siAls)
Dis) = B(s)Bls) (2.3b)
Cis) = ¢ P LU

Fep-g=m y+p

pis) = ¥ Peg TP 1L i
i rep

I+ the input ult) should be stationary we then have to reguire that
Bls) has all zeros inside the left half plane and Als) all =zeros

inside the left half plane or on the imaginary axis,.

The above relations are depicted in figure 2.2.

INPUT MODEL SYSTEM
e(t) Cls)Als) | utt) | B(s) s(t) ..
D(s)B(s) Als]

“igure 2.2 The input ult) is described by & continuocus-time
stochastic process generated by a white noise through a

filter that is stable and minimum phase. -

To ensure the stationary properties of ul(t) and then also on s(t) we
have to reqguire that the degree of C(s) will be at least one unit

lower than the degree of D(s), i.e.
0 € g & rep-m . {2.4)

This o@ive us a condition on how the signal has to be described if

it should be possible to determine the input u(t).

We can represent (2.1) and (2.3) in state gpace ¥form. Formally we

can write, cf Astrom (1970),

9% . oaxtt) + g4e (2.5)

dv de

gt} = Cxl(g}




where de/dt = e(t) and e(t) is a Wiener process with unit variance

parameter. Thus we have for (2.1) using observable form

i 1 - 1-
-a i 1]
A o
d- L] . - 0
at - . . %(t) + bm_p ult) (2.6a)
1] oA
-2 0 b
. m J . m

s{t) = (10....0)%x(¢t)

and for (2.3)

-d i 0
1
. 0 :
dz _ ) ' z(t) + co elt) {2.6b)
dt ) ) r+p-q-m )
0 .
. 1
-d
| TP 0_ _crfp

ult) = (10....0)z(t)

Combining (2.6a) and (2.6b) into one system on the form (2.5) with

the augmented state vector x(t) = (S'((t)T z(t)T)T we obtain
[ 1 1 B 1
-a 1 1]
f
R j ot 0
;0 0
. b
1: :m-p
]
-a 0'b
%% R L X(t) + f--mmmmmommn elt)
:-d1 i 0
) 0 : } A-1
[ 0
0 | c
! 0 r+p-q-m
| .
; 1
~-d
| b rep 0 J | rep J

(2.7)

s{t) = (10..010....0)x(t)




ult) = (0...0010...0) x(t)
A = deg(D) - deg(C)

We will assume that the measurements are given in discrete points.
The sampled representation of (2.7) will then be, cf Astrom (1970},

x(t+T) = Fult) + vit)

ylt) = Cx(t) + wit) (2.8)
ult) = Hx(t)

where

F = eAT + T = sampling interval {(2.9)

C and H are defined in (2.7)

and {v(t)} is an n-dimensional uncorrelated sequence with =zero-mean

and covariance matrix

.
Ry A [ e*Tea’e"T ar (2.10)

Oy -y

We have in (2.8) assumed the disturbance effects on (2.7) to be
white and additive to the output measurements. They are described by

w(t) which also is assumed to be uncorrelated with v(t),

It is now straight-forward to estimate the input u(t) as

Glt) = Hx(t) TR
This problem will be further discussed in section 2.5.

If we return to the more specialized differentiation problem, G{(s)

in {2.1) will be chosen as

L]
-

B(s)

Als) = s (2.12)

and

0 g < r+p-m = r-n

With q = r-n-1 {2.7) will be




[ ) 7 3 T
0 i : 0
. t
. . : D 0
» ]
1
1.
0 0 ' 1
L P R jmmm - x{t) + |---=--—-~ e(t)
dt (g 1
i 1 Chet
: . K (2.13)
1] . c
: : o*
) . ] :
, -d 0 0
5 : r J | J

s(t) = (10..010....0)x{t)
ult) = {(0...0,10...0)x(t)

If we in (2.13) use controllable form instead, the input, or in this

case the n:th derivative will be

(n)

s (t) (0...0]c

n+1...crO...O)x(t) =

(cn+1...cr0...0)z(t)

This is exactly the same expression for the n: th derivative as
derived in Soderstrdém (1980, 1982). From (2.12), {2.13) we then
conclude that the signal s{t) is generated by continuous-time white

noise through the filter

- - -n-1 -
Cis) c TN ec
— = ] -~ d (2.14)
D(s) sr+&1sr +...+8r

To get a practical algorithm we must solve the following two

problems.

1) Determine an appropriate input-model, i.e. C(s), D{s) and the
variance of the continuous-time white noise Az . If the variance
of the measurement noise is unknown it is necegsary to determine

that too.




2) Estimate the input ul(t) based on the model derived in 1) and the

v

measurements y(t), in some optimal sense.

These problems will be discussed in sections 2.¢ and 2.5

respectively.

Since the measurements of the output will be available in discrete
time, it could be more convenient to have a discrete-time model
relating u(t) and s{t). Such a model requires some assumptions of
the properties of u(t) between the sampling points. One form of
approximation is to derive the discrete-time model by constant
sampling i.e. to assume u(t) to be constant between the sampling

points,

If Gls) is 1/s" we then recieve the discrete-time system, see Astrom

et al (1984),

nB (qg ')

Hig 1) . IT n
-1.N
{1-g ')
where
B (q_1) = bnq—1 ¢ bnq"“#...fbnq—n (2.15a)
1 2 n

and

s1...n ; T = the sampling interval

For k = 1, 2 this will be

{2.15b)
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The estimate of the derivative u(t) should then be thought of as a
piece-wise constant signal. It can be argued that the input ul(t) or
specially the derivative, will in reality not be a plece-wise
constant signal. However, there will not be any algorithmic problem
letting wu(t) be a piece-wise linear function nor to wuse other
discrete approximations, e.g. Euler approximations, as well. We will
return to this aspect in section 2.3. Due to its simplicity the

approximation (2.15) will be discussed and used.

The discrete-time approximation described above for an n:th order
integrator has worked well in practice, cf section 4, especlally 1if

the sampling interval is not chosen too large.

Assume now further that the input u(t) can be described by an m:th

order ARMA-process according to figure 2.3

INPUT MODEL SYSTEHM
elt) cig™h) ult) Blg ')
Dig ') ata "

Figure 2.3 The input is described by an m:th order ARMA process.

The measurement nolse wi{t) is assumed to be uncorrelated

with the driving noise e(t]).

Then the noisy signal y{(t) can be described by

-1 -1
y(e) « SAIBA] ore) 4 wie) (2.16a)
0(q ")Alq ')

where A, B, C, and D are polynomials in the backward shift operator

q l.e
A(q"1) C I B4 a‘q—1 + + anq-n
8(q'1) z b1q_1 to.Lt bnq_n
(2.16b)
cta”ly =1 ciq-1 s + cmq_m
D(q-1) = 1 ¢ d1tf1 Pk qu-m

The noise sequences {elt)} and {wl(t)} are assumed to be

uncorrelated, with zero mean, and variances
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2 2
€e(t)© = Ae
(2.16¢)
2 _ .2
Ew(t)® = Aw

In {2.16a) we have used & more general notation for the system. If
the system is described by (2.15) then u{t) will be an approximation

of the derivative of s(t).

Since our aim is to estimate the input u(t) in some way it is
natural to formulate (2.16a) in the same way as in (2.7), i.e. in

state space form choosing u(t) as one of the state variables,

Using observer form as in (2.6) s{t) can be described by

r " F ]
Al 0 b,
X(t+1) = | . . X(t) + . u(t) (2.17)
0 1
_—a" OJ i b".

s{t) = (10.....0)x(t)

and the input u(t) by

[ p ] )
¢ V0 !
) i
z{t+1) = . . z{t) « . e(t+t) (2.18)

. 1] 1 .

-d
Om. 0 (o

1 - | m ]

ult) = (10.....0)z(t)

Combining (2.17) and (2.18) into one state space model using the

augmented vector x(t) = (i(t)Tz(t)T)T {2.16a) can be reformulated as

in (2.13) i.e.
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s 1 ' b . [ T
1 ]
. .o!.! 0
. : 0
. 0 1:.
-a 0' b
x(tet) = |==Decmmanan Pl x(t) ¢ elt)
0 :
o .. 0 . h
' 1
| -d 0
0. o | o™ . .0 c
L § L m
(2.19)
yit) = (10..010...0)x(t) + w(t)
ult) = (0...0:10..0)x(t)

Standard optimal state estimation methods can now be applied to

estimate the input ul{t). This will be discussed in section 2.5.

In (2.19) we have assumed the measurement noise to be white. There

will however not be any algorithmic problem to assume it coloured.

We then simply have to add some extra states in {2.19) corresponding
to the dynamics in the measurement noise. If no restrictions on the
polynomials in (2.16b) are made this will probably lead to

uniqueness problems and we will not discuss it further in this

report.

Note that in (2.19) we have substituted e(t+1) by e(t) since the
time index will not affect the properties of the input model nor the
variance Ag 2 A: since {el(t)} is assumed to be a stationary process.
To get a practical algorithm we must solve the two following

problems.

1) Determine a pertinent model of the input i.e. the polynomials

cta™h), ota™h
measurement noise is unknown it is necessary to determine that

and the variance A:. If the variance of the

too.

2) Estimate the input ult), based on the model derived in 1),

and the measurements y(t), in some optimal sense.

We will discuss these two problems in sections 2.4 and 2.5.
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2.3 A DISCRETE-TIME APPROACH OBTAINED BY LINEAR SAMPLING

In section 2.2 we used constant sampling to obtain an approximation
of the system G{s). We shall in this section use linear sampling
instead. It means that we assume the input u(t) to vary linearly

between the sampling points i.e.

ultet) = ult) + ;[(u(t+T) - ult)l 5 0gT<T (2.20)

It is impossible to realize (2.20) in real time if ul(t) should be
used for control applications since u(t+T) is not known when t = 7.
Some approximations are then in order. However, when we do not need
to control, {2.20) 1is realizable, especially for off-line
applications. When linear saﬁpling is used, the discrete-time
system obtained with (2.20) is described by the following lemma.

Lemma 2.1

Let the continuous-time system be described by

% = Ax{t) + Bult) (2.21a)

Assume that (2.21a) is sampled by letting the input u(t) be a linear

function between the sampling points i.e

ult+t) = ult) + %[u(t+1) -ult)l ; 0<T LT (2.21b)

Then the discrete-time system is given by

®{teT) = Fx(t) « G1u(t) + qu(t+T) (2.22a)
s{t) = Cx(t)
where
F e AT

T
6 I eA(T—T)B(i- Dt

1 T
o
(2.22b)

MT-Tlg 1

(2]
i

Q = —
)

-]
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In the special case when A is nonsingular we obtain

G, = % A" 2ter M aT-1) 4108
(2.22¢)
1 ,=2, AT
02 = 5 & “[(e -AT-1)18B

Proof: See Appendix 1.

Equation (2.22c) is also given by Strmcnik and Bremsak (1979) In
eguation (2.22a) we need both u(t) and u(t+T) to compute x{t+T) i.e.

we will have a direct term from the input to the output.

If especially the continuous-time system is given by G(s) = 1/sk we

can describe the discrete-time system as follows:

Theoxem 2.1
Let the linear sampled system be described by Lemma 2.1 and assume
 that G(s) = Ilsk. Then the discrete-time system is given by
Tk K k+1 K-

Hk(q) 2 [ B ( ) {(q-1) J(q+k+1-j) k21 (2.23)

(ket)tg-1% 321 3 N4y

j=1  ,j-1 — ’
9.:25( )(q-n:"" i
L p=1 p-1
(2.2¢%)

= 9

1
where T is the sampling interval and q is the forward shift operator

i.e. gqylt) = y(t+T). 8

Proof: See Appendix 1.

For k=1,2 the discrete-time system will be, wusing the backward

shiftoperator q“’1

T/2!(1+q_1

(1-q” ")

-1, )
Hi(q ) =

(2.25)

-1 T2/3! (1+4q_'+q-2)
Hz(q ) = )
(1-q ')
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If we compare (2.25) with (2.15b) we can expect (2.25) to be a
better approximation of G(s) than (2.15b) since (2.25) contains a

direct term.

For a k: th order integrator let the discrete-time system be

described by

Hta™'y s 2t — 0 (2.26)
1+a'q +...+amq

This can easily be incorporated into (2.19) by changing the C-matrix

and the b-parameters in the A-matrix according to (2.27) i.e.

yit) = (10....0! 500...0))((1:) + wit)

{2.27)

b, = b.-b a. 2

The discrete approximation described above for a k: th order
integrator has worked well in practice. In section 4 we will compare
the continuous-time representation with this approximation as well

as the approximation derived in section 2.2.

The discussion in the previous section will apply even for this
section with the modification (2.27). It should also be noted that

in this case the derivative u(t) should be viewed as a piece-wise

linear signal.

2.4 IDENTIFICATION OF THE INPUT MODEL

In this section we will discuss how to determine the input 'model
parameters described by (2.3) and (2.16). We shall start with the
discrete-time models and then do some modifications to suit the

continuous-time model.

For the discrete-time models described by {(2.19) let the parameters

to be determined be denoted by the vector

2 2,7
6 = ces ces .
[C1 cm d1 dm Ae Aw] {2.28)

One possibility is to use a priori knowledge for at least a crude
determination of the parameter vector 8. Another approach, to be
described in this subsection, is to estimate the parameter vector 6

from measurements of the noisy output v(t). This idea has also been




-16-

used by Tugnait (1983) for estimation of the power spectral density

of a signal described by an ARMA-process.

We will describe how this can be done using a prediction error
method, for details see Ljung (1976). For this purpose (2.19) is

rowritten as

wit+1,8) = A(B)x(t,0) + v(t,8)

(2.29)

t

yit,0) cle)xit,e) + wit)

"

ult,8) H(B)x(t,0)
where vi(t,0) = B(6le(t)

and ® is defined by (2.28).

The idea is to minimize the prediction errors of the output with

respect to the parameter vector 0, i.e. to minimize

Hlyit) - yitlt-1;0)])3 (2.30)
1

LI o B4

1
N

Vo) =
N t

In order to find the optimal predictor vy(t|t-1;8) consider the
stationary Kalman filter of (2.29)

{1 €;8) = A(B)x(t]t-1;0) + K{B){yl(t) - ClOIx(t]t-1;0))
yit|t-1;0) = clO)x(t|t-1;0) (2.31a)

where the gain vector K(0) is determined by the Riccati equation

P = APAT & R, - apcTicec” + r ) TcpaT

? CPA

-1 (2.31b)

=
0

= APCT(cpcT + Ry)

and Q‘, R, are given by




-17-

- } 9
M 0.._.
\ ; ) T €yt
R, = Evit,0)v(t,8) = AgBleIB(6) " = Ag <
0.
. .
! - {2.31c)
) 2 _,2

R, = Ew(t)" = A

Note that the matrices A, C, P, K, R1 and R2 in (2.31b), (2.31c)
depend on the parameter vector 6. The optimal prediction is then

given by (2.31a}.

The vector é that minimizes the criterion (2.30) will give an
estimate of the "filter® that is believed to generate the input
ult). It is desirable that 6 is such that z"Cl{z™') and 2™ (z')
have all their =zeros inside the unit circle. To fulfill these

constraints we incorporate a penalty function in (2.30).

Thus, introduce the penalty function

100 100
1z,0)1'%% + 1,101 1"

1

( (2.32)

i

Q(e) =

il
u M3

where J > 0, typically 10‘. z, and p; are the zeros of sz(z-1) and

2"z,
Instead of minimizing (2.30), minimize the following function

vie)

n

Vyle) + a(e) ' (2.33)

Let eN be the minimizing parameter vector of this criterion. Note

that the penalty function (2.32) accept unstable models if needed
c.f. section 4, figure 4.6. Remark: 0(8) can be defined in many

ways and (2.32) is just one way of defining it.

Consider the continuous-time model described in section 2.1. Let

(2.8) be rewritten as in (2.29) with the following modifications
Ale) = F(Bc)
vit,e) = v(t,ec) (2.34)

Evit,0)vit.0)' = R.(0 )
d ¢

ny
[p]

8 = [c ceraC d,...d A
c r+p-q-m rep 1 r+p ec w
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where Oc is the continuous-time parameter vector

The notation A2 stands for the variance parameter of the continuous
time white noife and Ai is the variance of the discrete-time white
noise. The idea is then the same as for the discrete-time approach
and equations (2.29) - (2.30) will apply even for the continuous-

time model with the modifications (2.34).

Regarding the penalty function defined in (2.32) we have to do some
modifications. In the continuous-time case we want to ensure the
poles and zeros of the input model to lie in the left half plane. A

suggestion for the continuous-time case is then

Q{8 ) = ulL (|Re z.| + Re z.)"1 + (|Re p.| + Re p.)"'] (2.35)
c p i i i i
zt
l -
where p > 0, typically 10‘, z; and pi {(depending on Gc) are the
zeros of C(s) and D(s) defined in (2.3),

We can finally summarize the continuous-time approach to follow the
same pattern as the discrete-time counterpart provided that the

modifications (2.34) and (2.35) are taken into account.

It shall be emphasized that the continuous-time approach will render

a lot more computations since for every evaluation of V(ec) in

(2.33} we have to compute (2.8) and (2.10).

2.5 OPTIMAL FILTERING

When we have found the minimizing parameter vector GN to the
criterion (2.33), we can put this in to equation (2.31) to obtain an
estimate of the input u(t). However, since we are dealing with an
off-line algorithm the estimate of ul(t) can be improved by using all
the data, not only data up to time t-1. The best choice is then to
apply optimal fix point smoothing. A time-invariant fix point

smoother is given by the following equations, see Anderson and Moore

(1979).
Xite1]t) = Ai(tlt—t) + KY(t) (2.36a)
VIt) = ylt) - Cxit[t-1) (2.36b)

X(t]ten) = xlt]ten-1) + Kna Viten) (2.36¢)
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n

K® = PlA - kc1' cTrepet » RZJ" (2.36d)
P = APAT + R, - apclicecT « RZ)'1CPAT (2.36e)
K = APCT(cpcT Rz)" (2.36F)

Note that equations (2.36a) - (2.36f) depend on the estimated
parameter vector 9N and that R,, R, are the same as in (2.31). The
stability properties of (A-KC) for the predictor defined through

(2.31) are discussed in Appendix 2.

The time invariant fix point smoother defined by {(2.36) does not
take the transient effects into account. Hence it 4is not truly
optimal. IFf we are not interested in estimating the transient
behavior of the input ult), the time invariant smoother (2.36) will
save a lot in algorithm simplicity as well as computation time.
Further, if {e(t)} and {w(t)} in (2.16) are normal distributed then

the estimate (2.36c) will have optimal variance properties.

Let the expected accuracy of the obtained estimate of u (t) be
defined by

EG(t]tek)? = E[ult) - ult]|tek)1 (2.37)
where

- _ An) e

wltltek) = s ™ (e) = Hx(t]tek) (2.38)

and H is defined by (2.8), (2.13) and (2.29).

If the number of lags is taken to k, then (2.37) becomes

editeek)? = HLp - POkPT]HT (2.39)
where
K § .
0 = I (a-kc) cTicpet + R, Yera-ke)3d (2.40)
3%0

When k tends to infinity (2.37) becomes
EGit]e)? = Efule) - ult]w)1? = nep - pa_pTIHT (2.41)

and 0“ can be computed by solving a Lyapunov equation associated
with (2.40). Equation (2.41) gives the accuracy of the optimal time

invariant fix point smoother (2.36) for k = e,
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In practice, the gain in smoothing will be achieved in two or three
dominant time constants of the Kalman filter (2.31). The number of
data available, N, will also be finite. Therefore it is reasonable
to stop the estimation procedure when the accuracy (2.39) differ
somewhat from the optimal one (2.41). An attempt to achieve this is

to use the stop criterion

Cult]tek)-ult]trk-112

1

n M~z

< € (2.42)

[U(t|t+k—1]2
i

u ™Mz

t

where € can be chosen as e.g. 10". The expected accuracy of the

estimate u(t{t+k) will then be that of (2.39).

3 PRACTICAL ASPECTS

In Section 2 we wused a state space formulation for the
identification of the input model. In the discrete-time case it will
be computationally faster to solve the spectral factorization
problem using a polynomial formalism, cf Kucera (1978), instead of

solving the Riccati equation (2.31b). See Appendix 3 for details.

The parameter vectors © and Bc of (2.28), (2.34) can be reduced to
2

2 .
o and Aw i.e.
[+

contain ci, di and the ratio of the variances Az. A

2

T
w] {3.1)

= 2
e = [c1...cm di"'dm Ae/A

o, = [cr+p-q—m""cr+p d,...d A

In the following when we talk about the discrete-time ratio AZ/AS

the same discussion can be applied for the continuous-time case with

It is only the ratio Azlhi that affects the solution of the Riccati
equation {2.31b), not the absolute values of Az and A:. Hence the
loss function V(8) defined by (2.33) will only depend on Az/xi,
Even the filter properties will depend on Azlxs and it is therefore

important to find a correct noise ratio Ai/As.
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Roughly speaking we can say that, with {2.31) and (2.36) in mind, if
AzlA: is taken too large we believe our measurements to be almost
“noise free". That means, there will be a large feedback gain K from
the output and if we then have some unexpected noise .in the
measurements, the estimate of u{t) can become quite inaccurate. On
the other hand if A:/A: is taken too small i.e. we believe that
there is a lot of noise on the measurements, the gain K of the
output will become small. If we then have high frequencies in the
signal they will be filtered out and the estimated ul{t) may be too
smooth. In practice it is often better to have a smoother estimate.
So maybe if desired, one can incorporate a penalty term accounting

for large noise ratios in (2.33).

The discussion above indicates that if the the minimization problem
of (2.33) is illconditioned in the direction of Az/)\i the estimated
ul{t) can be bad.

Since we have to use a numerical optimization algorithm in order to
find the minimum of (2.33) things can go wrong in the computations.
These problems are connected with optimization theory for which a
good reference is Gill et al (1981}, To avoid troubles, the
following rules of thumb for the minimization and model wvalidation

can be used. (Newton optimization methods are assumed).

For the minimization:

1. Determine appropriate initial values. Take for instance 00 =

(6....0 r ) where r_ = Az /A2
(] [¢] e w

be used to give a crude apBrox?mation of ro, in the continuous-

. Any apriori knowledge of Ai can

time case it would be more appropriate to start in a way so that

the poles and zeros are situated in the left half plane, for

instance in s = -1,

2. The problem can be illconditioned. Investigate the eigenvalues
and eigenvectors of the Hessian. If needed, scale the problem or
restart with a modified Hessian. Problems of this kind are

treated thoroughly in Gill et al (1981).
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For the model validation:

In

When finding the minimum of (2.33) have a look att the pole-zero
locations. Poles and zeros near each other indicate that the
model order is probably chosen too high. If the noise ratio
AzlAi is too extreme verify it by restarting the minimization

with other initial values.

Use standard techniques to determine if the result can be

improved by increasing the order of the input model.

the next section it is shown by numerical examples that

identification of the input model will give good results.
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&, NUMERICAL ILLUSTRATIONS

The aim of this section is to illustrate numerically the proposed
methods for estimating the derivative of a noise corrupted signal.
it would of course be possible to suggest many different types of

signals as test examples, The following ones have been selected.

i, 2 Continuous-time stationary stochastic processes
3 A sinusoid

4 A polynomial in t

5 Reference data given by Pezzack et al (1977)

First and second order derivatives will be estimated using the three

approaches described in section 2.1-2.3. They are

e Continuous time model {CH)
e Discrete time model, constant sampling {DMC)
e Discrete time model, linear sampling (DML)

The signals 1 and 2 are assumed to be described as k times
differentiable Gauss-Markov processes with rational spectral

densities

Bl{iw) B(-iw)
¢s(w) = (4.1)
Aliw) A(-iw)

where
_ .n n-1
Als) s # as to..t oA
(4,2)
h k-1
B = b n
B(s) K+ 1 s PO bn

are defined through the spectral factorization theorem, cf Bstrom

(1870} and section 2.1.

For signals 1 and 2 CHM will certainly be a perfect description, but
even DMC and DML will have an accurate structure since we have

chosen to describe the input ul{t) as an ARMA-process. This can be
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seen by sampling the continuous-time process. Then we will get a
discrete- time filter that coincides with the assumed ARMA input

model. This means that it is possible to compute the theoretical

values of the discrete-time parameter vector (3.1}.

Regarding signals 3 and 4 we can Just obtain approximate

descriptions of the input model, no matter which one we choose.

Signal 5 contains reference film data given by Pezzack et al (1977}
with added white noise as suggested by Lanshammar (1982). The
estimated derivative will in this case be compared to reference
accelerometer data. The signal to noise ratio for the various

signals 1-4 is defined by

T
R ! J s(t)? dt
o
SIN = —— = — (4.3)
A A
w W

where the mean values have been chosen to zero. For signals 1-2 the

numerator in (4.3) is replaced by Es(t)z,

The signals to be differentiated, as well as assumptions for the

identification are further specified in table 4.1.
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Signal k T As Aw N o Figure
1. Stoch. process 1 0.2 1 0.01 500 GM(2,1) &1
A(s)=52»0.2s‘1 ARMA(2,2) -
B(s)=0.,6325
2. Stoch. process
Als)=s +2s%42s¢1 1,2 0.2 1 0.01 500 GM(3,2)  4.2.4.3
8(s)=/3 ARMA(2,2)
3. Sinusoid
s{t)= 1,2 0.2 i 0.0t 500 GM(2,1) £.6,4.5
=f2 sin t G6M(3,2)
ARMA(2,2)
4. Polynomial
s(t)=/3¢t- 1,2 0.2 1.003 10 500 GM(2,1) £.6,4.7
-0.26t2 GMI3,2)
’ ARMAL1,1)
5. Pezzack et al 2 0.0201 - 36.10—6 162 GM(3,2) 6.8
reference ARMA(2,2)

data

Jable 4.1 Signals to be differentiated

k = the order of derivative

T = sampling interval

Az = variance of the signal as defined by (4.3)
A: = variance of the measurement noise

N = number of data

M = assumed input model, where ARMA(X,y) is the input
model for DMC and DML. The input model for CM is
GM{x,y) which stands for Gauss-Markov, A-polynomial
order X, B polynomial order v.

Figure = figure(s) where the true and estimated

derivative are illustrated.
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To describe the derivatives u(t) for DMC and OML a second order ARMA
model was used in all cases except for signal 4 where a first order
model was assumed to be more accurate. For CM the order of the
Gauss-Markov model was chosen so that s(t) would be a stationary

process, cf section 2.1.

To evaluate the goodness of the estimated derivatives the following

criteria have been used.

N ) 2
Fi = = L (ult) - u(t)) (4.43a)
t=1
N .
[ (ult) - uien?
t=1
F9 = {4.4Db)
N
I ult)?
t=1

Simulation results for signal 1-4 are summarized in table 4.2 and

figures 4.1-4,7. For signal 5 see figure 4.8,

ke 1 k=2
Signal Input del _— _—
g P mo F? OFZ F2 0F2
DMC
' -2 -2

1 ARMA (2,2) 4.605 10 0.193 10 - -
2 - $.482 1072 0.469 1072 3.042.107' o0.078.10""
3 . 1.835 1072 0.237 10°% 1.878 10°% 0.195 10°2
‘ ARMA (1,1) 0.661 102 0.05¢4 10°2  1.338 0.246

Table 4.2 Arithmetic mean F2 and standard deviation o__ for first,

F2
k=1, and second, k=2, order derivative. Signal to noise

ratio = 100, Ten realizations. Constant sampling.




-27-

ket k=2
Signal Input model F2 on F2 oF2
DML
-2 -2
1 ARMA(2,2) 3,195 10 0.129 10 - -
2 . 2.622 1072 0.169 10°2  2.916 10" 0.051 107"
3 - 3,266 10°° 0,532 1073 1.879 1072 0.560 1072
4 ARMA(1,1) 0.728 1072 0.137 1072 0.848 0.384

Table 4.3 Arithmetic mean F2 and standard deviation O, for first,
k=1, and second, k=2 order derivative. Signal to noise

ratio = 1068, Ten realizations. Linear sampling.

Tables 4.2 and 4.3 show for DMC and DML the arithmetic means and
standard deviations of F2 for ten realizations of signal 1-4, 500
data points, first and second order derivative. A comparison of
table 4.2 and 4.3 tells us mainly that OML is somewhat better than
DMC. This was expected since the discrete-time system obtained with
DML is a better approximation of the continuous-time system than the
one obtained with DMC. Samples of table 4.2 and 4.3 will be shown in
figures 4.1-4.7. ‘

The following remarks should be noted for figures 4.1-4.8.

e In all the figures we show true and estimated derivatives. The
estimated derivative is obtained with the identified input model.
The figures are organized in the following order from the top:

DMC, DML, CM.

¢ Below the figures are also given F2, number of lags = L and the
identified noise ratio AE/A& for DMC, DML and CHM respectively.
The number of lags, L, is defined by (2.42)

¢ The estimated derivatives are based on 500 data points in figure

4,1-4.7 and 142 data points in figure 4.8.
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¢ The initiai values of the estimated derivatives are taken to

Zero.

¢ The number of displayed samples are 100 for figures 4.1-4.5, 500
for figures 4.6-4.7 and 142 for figures 4.8,

e The displaved samples show a significant part of the estimated

derivative.
e The x-axis displays the time.

For signals 1-2 it is possible to compute the expected optimal
accuracy according to (2.41). The accuracy obtained by use of the
estimated input model will be compared with the optimal accuracy.
Table 4.4 shows the differences when using the realizations depicted

in figures 4.1-4.3.

Estimated input model True input model
F1 F1 EF1
signal k DMC OML CH CM CH OPT,
1 1 5.248 1072 3.704 1072  3.721 1072  3.719 107% 3.906 1072
2 1 1.931 1072 1,169 1072 1.183 1072 4.044 1072 1.289 1072
2 2 3.346 107" 3,259 107" 3,175 107" 3,043 107! 3.013 107!

Table &.4. Accuracy with use of estimated input model and true input
model. CM OPT. stands for expected optimal accuracy
assuming the true continuous model and is computed

according to (2.41).

From table 4.4 we see that less good results were obtained for the
true input model parameters in two cases. This will probably depend
on the realization. We also see that the accuracy F1, obtained with
the identified input model parameters approached the expected
optimal accuracy very well for DML and CM and quite well for DOMC. We
can conclude that the identification routine tries to adjust the

input model parameters so that it suits the actual realization as

well as possible.
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Regarding figure 4.1 we see that the estimated derivative follow the
true derivative aquite well in all cases except for the highest
frequencies. DML and CM show however a better tracking then DMC.
This is also indicated by F2, see below the figure. Another thing
worth noting is the low number of lags, L=10. It says that the major

part of information from time t is achieved in 10 future samples.

Figure 4.2 shows the same pattern as figure 4.1 i.e. good tracking
for the low frequencies and best behavior for DML and CM. In this

case the differences between the estimates are smaller.

It is clear that the difficulties increase when higher order
derivatives have to be estimated. Since higher frequencies then
occur, it will be more difficult to separate the signal from the
noise. This is illustrated in figure 4.3. We see that the <true
second derivative jumps very much and the estimated derivatives try
to follow as good as possible. Further there are not any large
difference between the three estimates in this case as indicated by

Fa2.

Regarding figures 4.4 and 4.5 we see that CHM give the best tracking
in both cases. Both first and second order derivatives are estimated
accurately. Note that it seems to be easier to find the frequency
than the amplitude. Here it will be in order to make a remark. If we
specially choose the system G(s) = 1, then this approach can be used

to find sinusoids from noisy measurements.

Signal 4 was chosen as a second order polynomial which means that
the first order derivative will be a lipear function in t. Hence a

first order input model was assumed.

As mentioned before the penalty function (2.32), (2.35) accepts
unstable models if needed. Signal 4 will be such a case., It seems
reasonable to assume that the first order derivative of signal & has
been generated by an unstable filter, see figure 4.6. We see that

OMC and DML follow to the true derivative better than CHM.

For the second order derivative displayed in figure 4.7 we obtain
better results with CH than OML and DMC. Here we would 1like a
smoother estimate. One way to guarantee that, is to account for

large noise ratios in the loss function (2.33) as described in
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section 3. As we can see below figure 4.7 the noise ratios are

already small but perhaps not small enough.

It seems from figure 4.6-4.7 that the initial values 90 will play a
crucial role for the behavior of the estimated derivative, cf
discussion in section 3. This means that it sometimes can be
fruitful to restart the optimization with other initial values 90,
One could expect CM to give a better result in figure 4.6 since it

gives the best result in figure 4.7.

Finally regarding figure 4.8 the signal is reference angular data
with added white noise, having standard deviation ow = 0.006 rad, as
suggested by Lanshammar (1982). The true derivative 1is reference
accelerometer data. These data as well as the reference angular data
are given by Pezzack et al (1977). We see from figure 4.8 that OML
and CM give the best result. CM is perhaps better since it has a

smoother behavior in the first part of the derivative.
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Figure 4.1 Second order stochastic process (signal 1), first order
derivative, S/N = 100, input model order = ARMA(2,2),
GM(2,1). Solid line = true derivative, line with dots =
estimated derivative. F, = {4.392 1072, 3.100 10 2,
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Figure 4.2 Third order stochastic process (signal 2), first order

derivative, S/N = 100, input model = ARMA(2,2), GM(3,2).
Solid line = true derivative, line with dots = estimated
derivative. F2 = {3.830 1072, 2.320 102, 2.346 10”2},

ﬂxz/xi = {2.98, 1.16, 10.02}, L = {16, 10, 10}.
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5. SOME COMPARISONS

We have investigated three different ways to obtain good derivative
estimates. One 1is based on a continuous-time description of the
signal and the system CM and two are based on discrete-time
descriptions, DMC and OML. We have seen from section & that DML and
CM' give very good results. Also DMC will generally give good

results.

The difference between DMC and DML is that DML allows a direct term
and is obtained by linear sampling, cf sections 2.2, 2.3. The linear

sampling gives us a better approximation of the system than the

constant sampling.

The continuous-time description CM is of course more accurate than
DML but it needs to be sampled every time the optimization routine
requires a function value. CM is also tied to the Kalman filter to
get the innovation sequence. For DML the faster polynomial approach
is applicable, cf Appendix 3. When dealing with higher order
derivatives, say > 2, CM usually requires a higher order of the
input model than DML due to the fact that u(t) is assumed to be a
stationary process. Take as an example signal &, second order
derivative. Then the order of C(s) in (2.2) have to be chosen to 2
and consequently the order of D(s) to 3. The system order is 2 which
makes the total order of (2.7) equal to 5. Compare this to DMC and
DML for which a first order input model was sufficient. The total

order in this case becomes 4.

Another thing that should be noted is the choice of sampling
interval. If it is chosen too large aliasing effects will occur. On
the other hand, if it is chosen very small the number of data has to
be increased so that we cover the same observation time. The signal
to noise ratio in (4.3) will otherwise be increased. The best thing
is certainly to use a small sampling interval and a great number of
data. Then the signals will be approximated much better and the
estimate of the derivatives will be improved. Remark: From Astrém et
al (1984) we know that the zeros of the sampled system will be
unstable if the sampling interval becomes “too small". We then
suspect to get in trouble with the estimates of ul(t) since the input
model can become unstable, see (2.16a). However, the penalty
functions defined in {2.32) (2.35) will prevent this to happen. If¥

the input model anyhow becomes unstable this will not affect the
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behavior of the estimate u(t) if the system defined by (2.29) is
detectable and stabilizable, cf Appendix 2.

We finally conclude that provided the sampling interval is
appropriate the most attractive choice of the three approaches is

DHL .
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CONCLUSIONS

We have investigated the problem of estimating the derivative of a
noise corrupted signal. The derivative was assumed to be the input
of a known linear system i.e. an integrator. The input was modelled
as an ARMA or a Gauss-Markov process. In the first phase the
parameters of the input model were estimated using a prediction
error method. In the second phase, the system was set up into state
space form with the input chosen as one of the state variables. Then
a time invariant fix point smoother was applied. When formulating
the problem in such a way, optimal variance properties of the input
estimates are guaranteed, provided that the noise sequences is
normal distributed and that we have found an accurate model in phase

one.

Derivatives of five different test signals were estimated with three
different approaches OMC, DML and CM. The estimated derivatives were
compared with the true ones. The results show that the input
estimation technique, as formulated in this report, gives very good
results. It is also argued that DML is preferable. Due to the good
results obtained in section 4 and the simplicity in the choice of
user parameters, that is the order of the polynomials in the input
model, the proposed methods would be most attractive. In section &
we also saw that in the discrete-time case an ARMA{2,2) model will

often be sufficient.

In the discussed approaches we determined an input model that suited
the whole data set in a quadratic sense., We could modify the input
model to be time varying in the off-line case and adaptive if the
oh-line case is considered. Then the input model can be adjusted to
follow changes in the dynamics of the signal. How this can be done

lies outside the aim of this report and is a topic for current

research.
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APPENDIX 1

Proof of iLemma 2.1

The solution of (2.21a) can be described by

A AlT-T)

T T
x{t+T) = e 'xi(t) + [ e
(o]

Bult+t)dr (A 1.1)
Assume ul{t) to be a linear function between the sampling points i.e.
ultsT) = ult) + ;(u(t+T) - u(t)) (A 1.2)
and substitute (A 1.2) in to (A 1.1). Then we obtain

T

M7 a1 - Diar ute) + J M T-Tlg 1dr ultsT)
(o]

Xx{t+T) eATx(t) +

O &> —.

Fx{t) + Gtu(t) + qu(t+T) (A 1.3)

We have then to compute the following integrals It and [2. They are
if A is nonsingular

.
I, = | AT Ty - [-A—1eA(T_T)]I AP (A 1.4)
(o]
1 T oatr-n b AT T 1 -1 b AT-T)
I, ==-[e tdt = = [-A e 1. + - A [ oe dr (A 1.5)
2 5 7 T T
(o] [o]
. % "1 o L a2
Then we obtain
6 =11 -1.18=(a1eAToa s a7t ol A% (A 1.6)
1 1L 7
2 % A 2eriar-1) + 118
and
1 -2 AT
G = = - - -
, = 1,8 =1 A e AT - 118 (A 1.7)
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Proof of Theorem 2.1

tet the system be given by lemma 2.1 i.e. (2.22 a,b). The transfer

function from ult) to s(t) is then given by

Hig) = ClqI-F) g (A 1.8)
where

6 = qu + G1 (A 1.8)
Let the continuous-time system Gls) = 1/sk be represented in

observable form i.e.

(A 1.10)

Then F = e"' = [ A3 l— since A is nilpotent.

k 1

TR S P Y SE Ll T Y

- . . .

F = o ) (A 1.11)




With help of lemma 2.1 we have

T-T

T-T

which gives

Tk/(k+1)! {q+k)

T/21 (gq+1)

We now compute C(qI-F)-1.

Put
-1
C(gl-F) = [a,..

Then we have to solve

(a,....a, )

i :
(r-01% 1/ (k=101

i
(-0 %1 (k=111

drt

1
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:
T*K/ (ke 1)1

T/21

- -

T*/ (ks 1)

/21
L J
S LR VTPITY
T
q-1

W

(10....0)

(A 1.12)

(A 1.13)

(A 1.14)
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We express aj as

-1
a, = — 1 8 (A 1.15)

3 (4-1111q-n3 I

and Hig) will be

Hig} = [a1 .akJG =
k-1
k B,(ag-1) {q+k) B, (q+1)

. T (2 e T

(q-1K (k#1)! 0! (k-1)12!

;K kK ket e

. - X a.( )(q—1) J(qek+1-5) (A 1.16)

(ke 1)1 (q-1% §=1 I\4-4

We now have to determine Bj' iz=1,....k

The j:th equation of (A 1.14) is (for j>1)

aga-1 = a TG0 e ey T (A 1.17a)

1

We also have
31(q—1) = 1 {A 1.17b)

I¥ (A 1.15) is inserted into (A 1.17a) we have

B, ta-1177%  B,(q-1)37° B,
B, = (3-1)1 { + ot ——————} (A 1.18)
3 0! (3-1)! 11(j-2)! (§-21) 1!

which can be rewritten as

i1 3-1 .
B.s I B ( )(q—nJ - (A 1.19a)
Voest Ple-d

Similarly (A 1.15) and (A 1.17b) give
B, = 1 (A 1.19b)

This completes the proof. 8
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APPENDIX 2. STABILITY PROPERTIES OF (A-KC)

Consider the system

-1 -1
yit) « &9 __.0) Blg ) .., wit) (A 2.1)

o(q"',0) alq™")
or equivalently rewritten as in (2.29)

x(t+1,8) = A(O)x(t,0) + B(O)e(t)

yit)

Clo)x(t) + wit) (A 2.2)

ul(t) HiB)x(t)

A time invariant optimal predictor is given by

x(t+1]t:0e) AlB)x(t|t-1;0) + K(B)(y(t) - Clerxit]|t-1;0)

yltit-1;0) = Cl(8)x(t|t-1;0) (A 2.3)

Then if the system (A 2.2) is detectable and stabilizable there
exists a non-negative definite solution P to the stationary Riccati
equation (2.31b), (2,36e) so that [A(O) - K(8)C(8)] is asymptotically
stable,

Proof See Kwakernaak - Sivan (1972), pp 535,

If especially the numerator and the denominator in (A 2.1) are
coprime then the system (A 2.2) will be completely observable and

controllable. This implies that the above conditions are fulfilled.




~50-

APPENDIX 3. OBTAINING THE PREDICTION ERRORS BY SPECTRAL
FACTORIZATION

Consider the system given by (2.29). From (2.16a) we see that it can

be described by

Pla”!,0)
vit) = — el(t) + w(t) (A 3.1)
S{q ',0)
where e(t) and w(t) are defined by (2.16c). The system can also be
described by

1

Bla”',e0) _
ylt) = Vit (A 3.2)
Sla ",0)

where 8(0_1,9) is defined by the spectral factorization theorem as
the asymptotically stable solution of

Mpiel 01p(e™™ 0) + Aste, 0)s(e71Y 0) = Aéﬂ(eiw'e)ﬁ(e—iw‘e)

(A 3.3)
The prediction error required in (2.30) is then obtained by
. sta™!,0)
yit) = — yit) (A 3.4)
Bla ",0)

An algorithm that solves (A 3.3) can be found in Kucera (1979).




