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Abstract- We present a design method for adapta-
tion laws that extend LMS by including general time-
invariant filters. These adaptation algorithms are de-
signed for tracking time-varying parameters of linear
regression models, in situations where the regressors
are stationary or have slowly time-varying proper-
ties. The structure and gain of the adaptation law
are optimized for time-variations modeled as corre-
lated ARIMA processes. The aim is to systemati-
cally use any available prior information to provide
filtering, prediction or fixed lag smoothing estimates
for arbitrary lags. We derive the optimal track-
ing algorithm with time-invariant adaptation gain.
Compared to Kalman estimators, the tracking per-
formance is nearly the same, while the complexity is
much lower.

The design method is based on a novel transfor-
mation of the adaptation problem into a Wiener fil-
ter design problem. The filter works in open loop
for slow parameter variations while a time-varying
closed loop is important for fast variations, where
the filter design is performed iteratively. The most
general form of the solution at each iteration is ob-
tained by a bilateral Diophantine polynomial matrix
equation and a spectral factorization. For white gra-
dient noise, the Diophantine equation has a closed
form solution.

Keywords: Tracking, adaptive estimation, adaptive filter-
ing, channel modeling, Least mean squares.
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I. Introduction

When tracking time-varying parameters of linear regres-
sion models, LMS is one of the simplest adaptation laws,
while Kalman algorithms are the most powerful linear es-
timators. A third, intermediate, alternative is proposed
here: The integration of the instantaneous gradient vec-
tor used in LMS is substituted by more general linear
time-invariant filtering. Well-tuned filters then provide
estimates with an appropriate amount of coupling and
inertia, resulting in high performance at low computa-
tional complexity.
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We will here present a novel approach to the design
of such adaptation laws that is based on Wiener filter-
ing techniques. In Part IT [28] we present results for
the analysis of stability, performance and convergence
in MSE of such algorithms.

The difficult problem of accurately tracking time-
varying radio channels in D-AMPS cellular systems was
an original motivating application for this work. For
such systems, LMS and windowed RLS adaptation pro-
vide inadequate performance while the use of Kalman
algorithms has so far been precluded, due to their com-
putational complexity. An early attempt to accurately
track D-AMPS channels was reported in [26]. Subse-
quently, the algorithm proposed in [26] has been used
in [17, 32] on D-AMPS 1900 channels. A thorough case
study on this application was presented in [30].

A sequence of measurement vectors {y;} of dimension
ny|l is assumed available at the discrete time instants
t=0,1,2,.... It is generated by a linear regression

Yr =@ihy + v, (1)

where all terms may be complex-valued. The known
regression matrix sequence {y;j }, of dimension ny|ny, is
stationary with zero mean and covariance matrix

R £ E o] , 2)

which is assumed to be nonsingular. In practice, R can
be allowed to be slowly time-varying. The noise v; is
assumed to be a stationary stochastic process with zero
mean and covariance matrix R,,.

Our aim is to estimate the time-varying parameter
vector hy = [hot---hn,—1,]7 in an environment with
stationary (or slowly time-varying) statistics of the re-
gressors and the noise. We here exclude AR- and ARX
models, where the use of old measurements as regressors
could make ¢} highly nonstationary when h; is rapidly
time-varying.

Without further assumptions, we cannot for n, < ny
determine the sequence of parameters uniquely from
a sequence of measurements y1 = @ihi + vi, y2 =
wiha+wvy , ...evenin the noise-free case. We would have
unknowns hq, ho ... with more elements than the avail-
able measurements y;,y2.... To avoid this dilemma,
models that represent assumptions on the relationship
between h; and h, for 7 # t must be introduced.



Dynamic models of the time-varying parameters,
sometimes denoted hypermodels [4, 5], may be determin-
istic [6, 7, 11, 25, 33] or stochastic [10, 20]. A large va-
riety of parameter dynamics can be described by linear
time-invariant stochastic hypermodels

he =H(g Ver 3)

where e; is white noise with covariance matrix R,
H (g ') is a matrix of stable or marginally stable transfer
operators of dimension ny|ny, and ¢~' is the backward
shift operator (¢~'z; = x;_1). Such models are used
here and represent either prior information or design as-
sumptions.

Define the tracking error vector

~ A A
hivkle = Pork — Pogrpe (4)

where ﬁt+k|t is an estimate of hyy; obtained at time
t by filtering (k = 0), prediction (k > 0) or fixed lag
smoothing (k < 0). We measure tracking performance
by the steady state covariance matrix

A s 3,
Py = Jim Eheypjsheiee (5)

where the expectation is taken with respect to e; in (3)
and v in (1) when ¢t — oo (after the initial transients).

Among all adaptation laws which perform linear op-
erations on y;, the Kalman filter will minimize (5) if
of,Ry,H(g™") and R, in (1),(3) are known [3, 18].
Kalman-based adaptive filters discussed in the literature
are mostly based on first order models [12, 15, 37]

1

7,11 €t (6)

hy =ahi_1+e & hy =
1—agq

where a is a scalar, but Kalman estimators can of course
be designed for more complicated linear models’.

The computational complexity of Kalman estimators
may not seldomly preclude their use, particularly in dig-
ital communications. A commonly used alternative of
much lower complexity is the LMS law

& = Yt — @Iiltu—l (7)
hivie = hgjp—1 + ppre (8)
or equivalently
7 K
h = I pie 9
t+1[t 1—q! Pt 9)

where p is the scalar gain and ¢, is the prediction error.

Our aim will be to propose design rules for a class of
algorithms that require much lower computational com-
plexity as compared to Kalman tracking, while attaining
close to the same performance. They utilize stochas-
tic hypermodels (3), and deliver filtering, prediction and
smoothing estimates for arbitrary lags k.

1See e.g. [13, 12] for a discussion of Kalman estimators based
on models hy = Ftht_1 + e; with a time-varying transition matrix
F of dimension ny,.

The class of estimators generalize LMS by substituting
a time-invariant matrix of linear transfer operators for
the LMS operator u/(1 — g~ ")I in (9).

Based on (1),(3), the filter M(¢™") in

Yt — ‘P:ﬂt\tfl (10)
M (g7 et (11)

€t
ht+k|t =

is to be designed so that (5) is minimized, under various
structural constraints and assumptions. If in particular
M (¢7") is constrained to be diagonal, then the com-
plexity of the algorithm grows linearly with ny.

A related research program has been followed by Ben-
veniste and co-workers [4, 5] who used state-space mod-
els and methods to perform an interesting analysis of
multi-step adaptation laws with constant gains. How-
ever, this work, as well as practically all other analysis of
LMS, RLS and Kalman-based tracking, has been focused
exclusively on cases with slowly time-varying dynamics,
since only then can tools of weak convergence theory and
various methods of averaging [22, 31] be used.

By (1), (10) and (11), the tracking problem for k = 1
corresponds to the design of a time-invariant feedback
controller M (qg™") for a time-varying system @}, as
illustrated by Figure 1.2 Formulated in this way, the
problem becomes tractable, and can be solved by an
infinite horizon LQG or H, feedback design, if ¢} is
approximated by its time-invariant average R. However,
such an approximation is valid only in the case of slow
parameter variations, see Part II [28].
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Figure 1: The one-step predictor (k =1 in (10),(11)) could
be seen as a linear time-invariant feedback regulator for a
time-varying system containing a one-step delay ¢~'I and a
time-varying block ;.

A design methodology that can handle also practically
important classes of problems with fast parameter vari-
ations is derived here, by formulating the tracking prob-
lem in a novel way. In Section II, the adaptation law is
expressed as a stable Wiener filter which is applied on
a fictitious measurement signal that can be constructed
from g;. In Section III, this filter is optimized using a
polynomial approach [1, 2]. Section IV specializes to
simplified solutions and Section V summarizes the pro-
posed iterative design process and illustrates it with a
design example.

Remarks on the notation. For polynomial matrices
P(¢') and rational matrices R(q!), conjugate matri-
ces P.(q) or R.«(q) are obtained by conjugating coef-
ficients, transposing and substituting the forward shift

2See [23, 24] for an LMS analysis using this feedback structure.



operator ¢ for ¢~*. To simplify notation, the arguments
q or ¢! are often omitted. Scalar polynomials P(qg™!)
are denoted by non-boldface capitals.

The degree of a polynomial matrix is the highest de-
gree of any polynomial element.

Square polynomial matrices P(¢ ') will be called sta-
ble if all zeros of det P(z') are located in |z| < 1 and
marginally stable if these zeros are located in |z| <1 O

II. The Transformed Problem

A. The Fictitious Measurements

Consider the signal prediction error (10) and insert (1)
describing y;, to obtain

oz (ht — ilt\t—l) + vt
iy hyjg—1 + Qg (12)

gy =
PtEr =

By adding and subtracting Rﬁ”t,l and defining

n = Zihyi1 + oo (14)
fi = Rhy+m (15)

the vector ¢ue; in (12) is now reformulated as

prer = R’~1t|t—1 + Ztilt|t—1 + Pivg
= fi— R}Alt|t—1 . (16)

The feedback loop of Figure 1 has now been transformed
into a time-invariant feedback Rhy;_; plus a perturba-
tion loop represented by Ztﬁt|t,1. The signal f; defined
in (15) can be regarded as a fictitious measurement, with
Rh; and n; being the signal and the noise, respectively.
It can be constructed from known signals as depicted
in the lower diagram of Figure 2. In the sequel, the
noise terms 7; and Z;hy;_; will be referred to as the
gradient noise and the feedback noise, respectively. The
matrix Zy, of dimension ny|ny, has zero mean by defi-
nition. This matrix was introduced by Gardner [9] and
was referred to as the autocorrelation matriz noise.

B. Tracking Regarded as Time-invariant
Filtering

Based on the relations (13)-(16), we may design a time-
invariant stable rational matrix L£;(¢~') that operates
on f; and provides an estimate of hyip

fe =

ht+k\t =

R}Altltfl +pier = Rhy+1m  (17)
L hHfe - (18)

This filter £1(¢™") will be referred to as the learning
filter. It will be shown that the design of a learning filter
is equivalent to the design of My(¢™") in (10)-(11).

As seen in the upper part of Figure 2, three terms in-
fluence the tracking performance via f;: The scaled and

hije—1

Figure 2: Two equivalent representations of the fictitious
measurement f;. The lower diagram constructs f; via (16)
from available signals when R = E[p:¢}] is known.

rotated parameters Rh;, representing the useful signal;
the noise p;vy; and old tracking errors via the feedback
noise Zthtlt—l'

The estimation error follows from (15) and (18) as
hopre = (@1 = Le(@HR)hy — Lr(aPme ,  (19)

where ¢*h; = hyir. The first right-hand term is for
k = 0 usually called the lag error.

_If the innovations of 7 are uncorrelated with
hi_ij¢—i—1,% > 0, then an open-loop Wiener design of
L, can be performed. Possible higher-order statistical
dependencies do not affect an MSE-optimal linear de-
sign. If the innovations of n; are furthermore uncorre-
lated with the signal h;_;, such an open-loop design is
simplified. These conditions will not always be fulfilled
but they hold approximately in many practically impor-
tant circumstances, since the multiplication by Z; in (14)
acts as a scrambler.

Uncorrelatedness of the innovations of 7 with hy_;
and h;_;;—;—; will in Section IIT below be stated as an
assumption, under which L (¢~') will be optimized by
just treating 7; in (19) as an additive noise, with known
properties.

Figure 3: The filter design problem. The vector h;y is to be
estimated from measurements f;, such that the steady state
tracking error covariance matrix is minimized.



C. Properties of the Gradient Noise

The feedback noise Ztilt\t—l will not be independent of
ﬁt,ﬂt,i,l, due to the feedback loop in Figure 4 and the
loop could become unstable. As discussed in Part II [28],
the gain of £1(¢”") cannot be allowed to be too large.
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Figure 4: The feedback loop via the feedback noise Ztﬁ”t_l
may significantly affect the variance of the fictitious measure-
ment f;, and causes dependence with hy;_;.

Since the properties of 7; depend on L;, a tracking
design will require a few iterations, as outlined in Sec-
tion V. After each iteration, we may have to estimate the
properties of 7, by simulation. However, in Part II [28],
three important scenarios are discussed in which an an-
alytical performance evaluation is possible by assuming
Vg, ¢ and e; to be mutually independent:

1. “Slowly” varying parameters (vanishing feedback
noise). We then have a true open-loop situation. When
the power of e; becomes small relative to the power of
4y, then the impact of the feedback noise Ztﬁt‘t,l on
our obtained tracking MSE vanishes. The feedback noise
is negligible either when the parameters h; vary slowly,
or when the noise level is high®. Then, n; ~ ¢;v;, and
1 will be white whenever vy or ¢ is a white sequence.

2. Independent consecutive regression matrices. If ¢}
and j are independent for ¢ # s, then the feedback noise
Zihy ;1 will be white with zero mean and its covariance
can be derived exactly.

3. FIR models with white zero mean regressors. The
performance can then be predicted exactly for models
with two coefficients and with good accuracy for higher
order models, from theoretical expressions valid for ar-
bitrarily fast variations of h;.

II1I. The Wiener Solution

The transfer operator L£;(q~!) will now be adjusted to
minimize (5), when H(¢™") is known and the properties
of n; are assumed given. Minimization implies that any
alternative estimator provides a covariance matrix, say
Pj, for which P}y — P will be positive semidefinite. A
minimization of Py will also minimize its trace, the sum

3 Another case when Ztizm_l vanishes completely is when ¢}
is scalar with constant modulus. Then, Z; = 0. This is the case
e.g. when tracking flat fading channels in mobile radio systems
using PSK symbol alphabets.

of componentwise tracking MSEs

np—1
tr Py, = tlggloE Zo | Pk — hz’,t+k|t|2 . (20)
1=

A. Main Result

The learning filter L£;(q™") is designed under the con-
straints of stability and causality and under the following
assumptions:

Assumption A1. The sequence {¢; } is stationary and
known up to time ¢, with a known nonsingular autocor-
relation matrix R O

Assumption A2: The gradient noise 7, is stationary
with zero mean and has a known rational spectral den-
sity ¢n(e’) modeled by a vector ARMA process

1
N(g ")

N = Mg Yy , (21)

where M is an np|np polynomial matrix of degree n,,,
N is a stable polynomial of degree ny, while Evyf =1
O

Assumption A3: The innovation sequence vy of the
gradient noise is uncorrelated with h;; and with
hi—ij¢—i—1,0 >0 O

Assumption A4. The linear regression coefficients are
described by a stochastic process

hi=H(g e =D (") 'Cg e ,  (22)

where e; is white, stationary and zero mean with non-
singular covariance matrix R, and

D(¢g') = Du¢")Ds(g") (23)
= I+Di¢g'+...D,, ¢
C@™h I+Cigt+ ... Croq™"°

are time-invariant®. Above, C (¢~!) is assumed stable,
D,(q™") is a polynomial with zeros on the unit circle and
D ,(¢7") is a stable polynomial matrix m|

Assumption 4 implies that e.g. random walks, inte-
grated random walks and filtered random walk mod-
els can be considered, but that the unstable dynamics
D, (q™') must then affect all the elements of h;.

We are now ready to state the following main result.

Theorem 1: The optimal learning filter. Under As-
sumptions A1-A4, the stable and causal learning filter
in (18) minimizing (5) is given by

P = D;'QB'ND,R | (24)
where the polynomial matrix

Bla")=Bo+Ba ' + ... +ﬂnﬁifnﬁ

4While we assume ’H(q_l) to be time-invariant, it can in prac-
tice be allowed to be slowly time-varying, as long as the variations
are much slower than those of h;.




of dimension ny|np, and degree ng = max(n¢ +ny, np +
ny) is the stable spectral factor obtained from

BB.=CR,C,NN,+ DR 'MM,R'D, . (25)
The unique solution to the bilateral Diophantine equa-
tion

"CR.C .N, = Q;B, +qD Ly, , (26)

provides polynomial matrices

>

Qrlg )
L. (q)

Q+Qig " + ... +Ql g™

A
2 L +L¥g+ ... + L g

of dimension np|np, with generic degrees

ng = max(ne—k,n,—1) , n, = max(ne+ny+k,ng)—1

(27)
respectively. The estimation error h; ), will be station-
ary, with finite covariance matrix and zero mean O

Proof: See Appendix A.

B. Remarks and Generalizations

Solvability of the equations. For a discussion of multi-
variable Wiener filtering problems solved by Diophantine
equations and spectral factorizations, see [1, 2, 36, 39].
The Diophantine equation (26) is guaranteed to be solv-
able and corresponds to a linear system of equations,
with equal number of unknowns and equations.

Under Assumption A4, C is assumed stable and R,
has full rank, so C (z7")R.C (z) will have full rank on
|z2] = 1. Therefore, (25) guarantees a stable spectral
factor B with a leading matrix 8, of full rank. Thus,
B! is causal and stable.

Algorithms for solving polynomial matrix spectral fac-
torizations and bilateral Diophantine equations are pre-
sented in [14, 19] and in [21].

The learning filters have real-valued coefficients when
C,D,M,N and R have real-valued coefficients. Opti-
mal learning filters (24) for different lags k differ only in
Q,., since 3 is unaffected by k. For predictors, & > 0, the
complexity of the estimator (determined by the degree
of Q;,) is independent of the prediction horizon.

The inverse of the regressor covariance matrix will ap-
pear as a right factor in all learning filters (24). If R is
unknown, its inverse R™" can be estimated recursively
with well-known methods, at the price of increasing the
complexity to a level similar to that of RLS. It is impor-
tant to note that the time-scales used in the estimation
of h; and in the estimation of the regressor covariance
can and should be separated. Since R~ is assumed con-
stant or perhaps slowly time-varying, a long data win-
dow can be used for estimating it accurately even when
the variations of h; are fast.

The limiting cases of high and low gradient noise. If
the gradient noise has a spectral peak at w = w; de-
scribed by a zero of N close to the unit circle, then it is

evident from (24) that all elements of L£;” " will have a
notch at w; since N(e77%1) = 0, so
opt ~
Ek |w:w1 ~0 .
On the other hand, when the gradient noise is negligible,
M =0, and (25), (26) are then for k < 0 solved by
B~NCRL?

kaq’“CRé/2 , Lp=~0.

The lag error in (19) then vanishes since
szt ~ qu—l

and this estimator attains Py ~ 0 for £ < 0.

Weighted criteria and the excess MSE. In Appendix B,
a generalization of Theorem 1 to dynamically weighted
errors ~ A ~

kit = W@ Dk
is outlined. This result can be applied if we wish to mini-
mize the excess mean square output error E ||g4]|3—tr R,
when regressors and tracking errors are assumed inde-
pendent. Minimizing the excess MSE then corresponds
to minimizing the trace of the covariance matrix of
h;u+1|t = R1/2ht+1|t . (28)

Recursive computation of estimators for different
smoothing lags. The solution for k£ = 1 will always be
required, since h;;_; appears in (17). When several es-
timation horizons are of interest, we need to solve the
equations in Theorem 1 for one value of k only. It is
shown in Appendix C that the solutions for all k¥ can
then be computed recursively from one of the solutions.

Robust design. The hypermodel (22) is in practice
never exactly known, but it may be known to belong to a
set of possible models. A robust design which minimizes
the average of (5) can then be obtained by averaging the
hypermodels in the frequency domain and performing
the design for this averaged model. See [27] for details,
[46] for general methods and [30] for a specialization to
fading mobile radio channels parametrized by uncertain
Doppler frequencies.

C. Realizations and Interpretations

The estimator defined by (17) and (24) can be realized as
it stands. We can however give one of its internal signals
a special meaning. From (17) (21) and (22), the spectral
density of the fictitious signal f; is, under Assumptions
A2-A4, given by

MM,

— D—l . *D—l
¢7 =RD'CR.C.D 'R+ s

= RD 'N'g8,N,'D,'R (29)

where (25) was used in the last equality. The innovations
representation of f; is thus given by

fi=RD'N7'8¢, & ¢ =B 'NDR'f, (30)
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Figure 5: The optimized tracking algorithm with time-invariant gains.

where the innovation sequence €; is white, with zero
mean and unit covariance matrix. When D (¢~') has
zeros on the unit circle, (30) corresponds to a general-
ized innovation model [38]. By defining the signal

_ A 1
€ = —————
"7 Du@h)

we thus obtain a realization of (24) (Figure 5):

& = BTIND,R7'f, (31)

&t =Yt — @Iﬁt\t—l (32)
& =BT ND (R pier + hyj—1) (33)
}Alt+k\t = Ds_legt : (34)

The realization (32)-(34) has good numerical properties
since all involved filters are internally stable. The prod-
uct Rflcpt can be updated efficiently, with a compu-
tational complexity proportional to nj, for scalar FIR
models with autoregressive inputs [8].

Corollary 1. The Wiener optimized filter My. The
estimator (11) optimized by Theorem 1 is given by

ibt+k|t=Mk(q_1)§0t6t = D;'Q,RR 'yvier  (35)

where the causal rational matrix R(q™') is given by

1

R S [B-q'NQ,]'ND, =5

X7'ND, (36)

where X ;(¢7") is a polynomial matrix which solves
B-q¢'QN=D,X, . (37)

O
Proof. Multiply both sides of (33) from the left by

B and then substitute the expression for q_lﬂt“‘t, ob-
tained from (34) with & = 1, into (33). We obtain

Bé& = ND R 'piee +q'NQ, & .

Thus,
€ = RR_I(,DtEt . (38)

The use of this expression in (34) gives (35)-(36), while
(37) is verified in Appendix A. The leading coefficient of

X, is fo which has full rank, so X7 (¢7!) is causal O

Note that R™! will always be a right factor of the
optimal M, and that D ;! will be a left factor. While
the learning filter L£;(¢™!) must be stable, M(¢™!) in
(11) need not be stable, since it is a block in a feedback
loop, see Figure 1. By (36), marginally stable model
factors D, will be present in all elements of M.

If we define

D) 2 I-q'F(g? (39)
s0 (3) could be expressed as
hy =F (g Yh1+C (g Ve (40)

the realization (35) can then, after multiplying by D,
be rewritten as

hovkie = Fhigr1i + Du@QyRR ey . (41)

The marginally stable factor D, is a common factor in
(41) and must be eliminated before implementation.

D. White Gradient Noise

By assuming the gradient noise 7; to be white, with zero
mean and with a known covariance matrix R,, both the
design process and the implementation is simplified. It
is shown in Part II [28] that the feedback noise is indeed
negligible or white in several types of problems.

For white gradient noise, there exists a closed-form
solution to the Diophantine equation (26). The solu-
tion for one-step prediction is presented in the following
lemma. The iterations yielding arbitrary lags k are pre-
sented in Corollary 2 in Appendix C.

Lemma 1. For white gradient noise 1, with covari-
ance matrix R, the solution to the Diophantine equa-
tion (26) for k =1 is given by

Q") a(Ba™") — D (a7")B,) (42)
Li.(q) = BoB.(e) —RT'R,R™'D.(q) (43)

where f3, is the leading coefficient matrix of B(¢™') O



Proof. With MM, =R, and N =1, (25) becomes

BB, =CR.C.+DR'R,R'D. (44)

and with £k =1 and N = 1, the equation (26) becomes

¢CR.C.=Q,B,+qDLy. . (45)

By substituting the expressions (42) and (43) into the
right hand side of (45), the lemma is verified O

Furthermore, the solution B(q~!) to the spectral fac-
torization (25) can in the white noise case be obtained
conveniently from the solution to an algebraic Riccati
equation. See Result 3.3 in [27] for details.

The implementation of the tracker is also simplified
since by (42) and N =1 in (36),

B-4a'Q,)"' D,

= (B-(B-Dgy) 'D, = Diuﬁgl (46)

R =

which simplifies the realizations of (35) and (41). By
using (46) in (38), the innovation processes are

1 . e
€ = D—ﬁo 'R 190t5t ;€& =fg 'R 1<Pt5t -

u

(47)

Example 1. First order models and LMS-like algo-
rithms. Assume that (22) is a vector of coupled first
order autoregressive or random walk parameters

Di@Y=Q1-ag)I ; C(g ") =1

where a is a real scalar with |a| < 1 and R, is given. The
gradient noise is white, with R, known. The spectral
factorization (44) then becomes

(Bo+B1a~ ) (By+B1q) = Re+(1—ag " )R™'R,R™! (1(—a)q)
48

Using R, 2 R™'R,R™!, we obtain

BoBo + B1Bi =
5153 = 505; =

These expressions represent a set of coupled second order
equations in the elements of Sy and f;.

If we are interested in the one-step predictor, the so-
lution (42) for k = 1 directly gives Q,(¢™") as

Qi =q(fo+Pigt —Bo—aboa ') = fr—abo -

From (39), F(¢~') = aI and from (46), RD, = B;5'.
Thus, the realization (41) corresponds to a generalized
LMS update equation

ilt+1|t = ailt|t71 + (1 — aBo)By 'R prey

The update (49) is similar to the LMS/Newton law [45]
in that the instantaneous gradient is rotated by R™!. Tt
also contains leakage [42, 45] whenever |a| < 1. Further-
more, it has a matrix gain instead of the scalar gain of

R, + (1+d*)R,
—-aR,

(49)

LMS (8). The algorithm reduces to LMS when R = 021
(white regressors), a = 1, Re = 021 (random walk model
with uncorrelated parameters) and if the elements of the
gradient noise are uncorrelated and have equal variance
R, = cI. Then, 8, and $; from (48) become diagonal
and have all diagonal elements equal, so

(B1 —aBo)By 'R = pl

for some scalar u m|

IV. Low Complexity Designs

The design and implementation can be simplified fur-
ther, at the price of some performance degradation, by
placing successively harder restrictions on the hyper-
model and on the learning filter.

A. Generalized Wiener LMS

This algorithm is obtained by minimizing the tracking
MSE criterion (20) for possibly colored gradient noise
(21) and for hypermodels in common denominator form

1
hy = mC(q_l)et .

The structure of the learning filter is constrained to

(50)

hovie = Skla YR fy (51)

where Sy (¢7') is a diagonal stable rational matrix. The
design equations for this filter are derived and presented
in [27]. They consist of np, separate polynomial spectral
factorizations and n, scalar Diophantine equations.

When the regressors are white (R diagonal), or when
the update suggested in [8] for FIR models with autore-
gressively generated inputs can be used, the computa-
tional complexity of this estimator grows linearly with
the number of parameters ny.

B. The Wiener LMS Algorithm

A further simplification is obtained by minimizing (20)
for white gradient noise with covariance R,,, and for di-
agonal hypermodels with equal elements

hy = ——% (52)

The learning filter is restricted to (51) but with all filters
on the diagonal of Si(g!) being equal:

ilt+k\t = Lﬂk(;q,l)) R7'f,

(53)
Compared to Generalized Wiener LMS, this filter struc-
ture has reduced ability to handle situations where dif-
ferent elements of h; have differing dynamical properties,
but it is still a useful special case.



The resulting Wiener LMS (WLMS) algorithm can
be optimized for a given parameter-drift-to-noise ratio
~ 2 & R./trR7'R,R™'. The polynomials Q(q™")
and B(¢~') in (53) minimizing (20) are then obtained,
together with a polynomial Lg.(g), as the solution to
one polynomial spectral factorization and one polyno-
mial Diophantine equation

rBBx =
quCC* =

~CC, + DD, (54)
TQkPx + qDLgs - (55)

As in Lemma 1, there exists closed-form solutions to
(55). When the orders of the polynomials in (52) are
no higher than 2, there furthermore exists a closed-form
solution to the spectral factorization (54) [35].

An alternative realization of this estimator is

hye = ilt|t—1 + pR ™ ey (56)
; Qrle™);
ht+k\t = mht\t ) (57)

where Q(z7') can be shown to be stable and where the
scalar gain u equals the leading coefficient of Q (g™ 1)

; (58)

with 7 > 1 obtained from (54). The WLMS algorithm
is derived and discussed in [29] and is applied to the
tracking of fading mobile radio channels in [30].

V. [Iterative Design

For slow time-variations, the feedback noise is by defini-
tion negligible [28], so we may perform a one-shot design
using 1; = ¢;v¢. When the noise v; is white, the solution
for white gradient noise can be used, with R,, = RoZ if
Evw} = 021 and if ¢; and v; are independent.

Otherwise, the design can be performed iteratively,
by using long simulation runs to estimate the covariance
function element matrices

R,,(j) = Elmn ] - (59)

In a model (21) with N = 1, the covariance function of
the gradient noise can be represented by

M@ HYM.(@) = Y Ry - (60)

Jj=—nm

Note that only the total covariance function (60), not the
MA-model matrix M, is needed in the design equations
(26) and (25).

We proceed as follows:

1. Perform a one-step predictor design for slow time-
variations, i.e. use n; = @uv; to design L£1(q™!). Verify
that the closed loop of Figure 4 is stable, so that the
resulting error ilt|t—1 is stationary. If not, scale up the

assumed covariance function of 7; to decrease the gain
of £, (q_l).

2. Based on a long simulation of hy = H(q ')ey,
¢¢ and vy and on the corresponding estimate hyy i), =
L1(g7)f;, obtain an estimated gradient noise time se-

ries from (17) as
i = fr — Rhy = e — R(hy — hye 1) - (61)

Obtain an estimate R,,(j) of the covariance function
(59),(60) by using sample averages over 7.

3. Design a new estimator £1(¢™").

Repeat steps 2. and 3. until the difference in the esti-
mates ﬁt“‘t becomes small for consecutive estimators.
Then, construct an estimator for the desired lag k.

It will be possible to find an initial stable solution
under mild conditions. If H is stable, then £ (w) —
0 V w when the assumed noise power is increased. If Z;
has bounded elements, then the small gain theorem [43]
will therefore imply that the closed loop of Figure 4 can
be stabilized by assuming a sufficiently high noise power
in the design of L;.

The covariance function estimate provides additional
information. If R,,(0) does not differ much from Ro?2,
then the time-variations can be regarded as slow, and
step 1 above turns out to be sufficient. If tr R, (j) <<
tr f{nn(O) for all j # 0, then the gradient noise can be
regarded as white so the design of Section IIL.D can be
used, with R, = R,,,(0).

It should be emphasized that the design methodology
assumes a good hypermodel. With incorrect models,
there is no reason to believe that the iterations mini-
mize the tracking MSE.

Ezxample 2. Iterative design and a comparison to
Kalman, WLMS and LMS tracking. Consider the up-
link of a TDMA-based mobile cellular communication
system in which two mobile users transmit at the same
frequency in the same time slot [40, 41]. One of the users
could represent a strong out-of-cell co-channel interferer.
A receiver with two diversity branches (multiple anten-
nas or polarization diversity branches) detects both users
uj and u? simultaneously. We model the situation by

( Yt ) _ ( Bi'(¢') B’ ) ( ui )+< v, )
yi B'(¢") B*@@") uf vi )’
(62)
where y} is the sampled baseband signal at receiver i.
Two-tap channels are assumed as in the IS-136 system

[30], so
BY (7)) =bgy + b7 a7t . (63)

The model (62) can then be expressed in the linear re-
gression form (1) where

(utl wi_y uwl Wi, 0 0 0 0 )

e=1 0 0 o



and

he= (B BB B3GR W 0 R)T . (o4)
Here, the symbols uLT are assumed known. (In reality
the unknown parts of the received symbol sequences have
to be estimated.) Assume {u{} to be white complex-
valued QPSK symbols with R = Ig, while the noise v; =
[vf vZ]T is white with variance o2Is.

The messages are transmitted from moving mobile ter-
minals, so the channel taps b;/, will be time-varying (fad-
ing). The second order statistics of fading radio channels
can be approximated by autoregressive models, here as-
sumed to be of second order.

1 1
1 —2pcos(wp ;T/V2)g 1 + p2q—2

D(q_17 wD,jT)
(65)
According to the discussion of [30], (65) provides a rea-
sonable approximation to Rayleigh fading statistics [16]°
if

Wp,j = 2mvo /A (rad/s)

is the maximal Doppler angular frequency at the carrier
wavelength A for mobile number j, moving at velocity vy,
and if the pole radius is selected as p = 0.999—0.1w,T for
wpT < 0.10. The sampling time (symbol length) T is set
to 41.15us and A = 16cm (~1900 MHz) as in D-AMPS
1900 systems. We investigate wp € [0.02 0.10], corre-
sponding to vehicle speeds from 45km/h to 225km/h.
If the two vehicles have different velocities, corre-
sponding to wp,1 and wy » respectively, and if the chan-
nels to different receivers are assumed uncorrelated, an
appropriate hypermodel (22) is thus given by

D(g Hh=e (66)
with a diagonal auto-regression matrix

D(q7') = diag[ D11(¢7") D12(g7") Da1(g™") Dzz(q_l))]
67
63)

~~

D;j(a") =D(g ", wp; T)I

and a block-diagonal covariance matrix for e;

R, = diag[ Reii Reiz Rear Reae ]

gijo 9
R... — ij ]
“ ( gi  oijt )

All 0y, are assumed equal. The receiver is assumed to
be synchronized to mobile 1, resulting in zero correlation
in the taps from mobile 1 (g1 = 0). We assume corre-
lation 0.8 in the taps from mobile 2 and fix the velocity
of mobile 1 to 45km/h, while the velocity of mobile 2 is
varied. The SNR is equal for both users.

where

5Stable AR models of order 2-4 are actually often a better
approximation of reality than the classical Jakes Rayleigh fading
model of [16], which assumes an infinite number of local scatter-
ers equally distributed on a circle, and has infinite peaks in its
spectrum.
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Figure 6: The sum of squared four-step channel tap predic-
tion errors tr P4 in Example 2 when the first mobile moves at
45km /h while the second mobile has velocity 45km/h (lower
curves) and 225km/h (upper curves). Results for one-shot
designs assuming n: = v (dashed), full iterative design
(solid) and the Kalman estimator (dash-dotted).
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Figure 7: Absolute values of correlations in Example 2 at
SNR 30dB, wp,»T = 0.10, estimated based on 10000 data.
Correlation functions for element (3,3) of E(n:nis,) (dash-
dotted), E(n:h;,.,) (solid) and E(ilt|t—1ilzk+-r\t+r—l) (dotted).

Prediction estimates of the channel taps are required
in equalizers [30]. We here design four-step prediction
estimators (k = 4) according to the iterative scheme
outlined above for the two cases wp 27 = 0.02 and
wp,2T = 0.10, and for an SNR per channel in the range
10dB-30dB. Figure 6 displays the tracking MSE tr P, for
two designs: a non-iterative design assuming slow time-
variations (dashed curves) and the full iterative design
(solid curves), using simulations of (66) of length 10000.
Only a single iteration was required at all design points
except at 30dB in the upper curves.

The performance of the constant-gain tracker is close
to that of the Kalman estimator at all operating points.
This performance can be well approximated at many,
but not all, operating points by the non-iterative de-
sign for slow parameter variations. The exceptions are
high vehicle speeds at low SNR’s: in the upper curve of
Figure 6, the use of 1, = p;v; at SNR 30dB results in in-



stability. A design theory based on slow time-variations
simply cannot handle such situations. However, when
the covariance matrix for 7, is scaled up in the first it-
eration, our iterative design is completed successfully.

As illustrated by Figure 7, the gradient noise is white.
This is predicted by the theory of [28] for two-tap FIR
channels. Furthermore, there was no significant correla-
tion between the innovations sequence of 7, (which here
equals 7;) and old tracking errors, as required by As-
sumption A3. This is true even at the most difficult
design point, SNR 30dB and wp, 2T = 0.10 (solid line for
lags < 0).

In Table 1, we compare the tracking MSE for Kalman
predictors, the Wiener design, here denoted the gen-
eral constant gain algorithm (GCG) as well as a ro-
bustly designed WLMS algorithm [29, 30], exponen-
tially windowed RLS and an LMS estimator. We also
compare their computational complexity, as measured
by the required number of real-valued multiplication-
accumulation operations per sampleS.

The Kalman predictor is designed based on a state-
space realization of (66) with 16 complex-valued states
and with (1) as the measurement equation. The Wiener
LMS algorithm (53) is not equipped to handle elements
of hy with differing dynamics. However, it was in [30]
found to be robust against variations of the Doppler fre-
quency of fading models, if wp, T is set at the high end of
its uncertainty range, and if an integrator is included in
the model (AR,I-modelling). We thus design (53) for a
model (52) with C =1 and D = D(q *,wp 2T)(1—q 1),
with D(g!,wp »T) from (65).

From Table 1, it is evident that the GCG Wiener de-
sign attains nearly the same performance as the Kalman
estimator, at much lower complexity.

The here presented GCG algorithm outperforms the
simpler WLMS scheme, at the price of a somewhat
higher complexity. At wp T = 0.10, this is due to the
better tuning of GCG to differing tap dynamics. At
wp,2T" = 0.02, the difference is essentially caused by the
ability of GCG to take the tap correlation for mobile
number 2 into account.

Note that the use of RLS would in this example give
both bad performance and a high computational load.

VI. Concluding Remarks
Within the class of constant gain algorithms presented
here, we can control the level of design complexity and
computational complexity by selecting models for the
parameters h; and the gradient noise 7.

The general constant-gain algorithm is based on the
general linear time-invariant models (21), (22). If the
gradient noise is assumed white, we obtain both a sim-

SMultiplications between complex numbers are counted as four
real multiplications, while multiplications or divisions between a
real and a complex number are counted as two real multiplica-
tions. We utilize the diagonal structure of D (¢”') and R, and
the block-diagonal structure of Re.
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SNR | wp»2T | Kalm. GCG WLMS RLS LMS
10 0.10 0.477  0.516 1.045 1.43 1.58
30 0.10 0.093 0.142 0.488 0.82 1.00
10 0.02 0.170  0.179  0.247 0.33 0.413
30 0.02 0.013 0.017  0.028 0.077 0.115

#mult. | 5440 416 272 1564 132

Table 1: Steady state sum of mean square tracking errors
tr P4 and number of real multiplications per time step in Ex-
ample 2, obtained by optimized Kalman tracking, the gen-
eral constant gain algorithm (GCG), WLMS, RLS and LMS
adaptation algorithms.

pler design and a simpler implementation. Finally, the
generalized WLMS and WLMS algorithms of Section IV
are the simplest alternatives. For white or autoregres-
sive regressors, their complexity grows linearly with the
number of estimated parameters.

For fast time-varying parameters, the feedback noise
contribution to the gradient noise 7; cannot be ne-
glected, so an iterative design has to be performed. An
alternative is to assume white gradient noise with diago-
nal covariance matrix R, and use the diagonal elements
as tuning knobs. For WLMS, we then have only one
scalar tuning knob, the parameter drift-to-noise ratio .

Compared to Kalman adaptation laws, a main ad-
vantage with the proposed class of algoritms is their
lower computational complexity. Another advantage is
that it becomes more straightforward to design fixed-
lag smoothing estimators. A disadvantage is that our
Wiener design is a steady-state solution, which could
lead to worse transient properties as compared to a
Kalman estimator. Improved transients could be ob-
tained by using an increased adaptation gain at the be-
ginning of the time series, which then decays to the
steady-state value.

An interesting problem for further research is to gener-
alize the proposed class of algorithms to handle also IIR
model structures of output error, AR and ARX type.

Appendix A: Proof of Theorem 1

To prove Theorem 1, the variational approach for the
derivation of polynomial design equations for Wiener fil-
ters [1],[2],[39] is adopted. Consider the filtering problem
depicted in Figure 3. The estimation error l~1t+k‘t is opti-
mal if and only if no admissible variation &;, subtracted
from Bt+k|t, can improve the estimate.

Consider the covariance matrix of the so perturbed
estimation error

E (hyyrie — &) (hegre — &)
Py + E&GE — Ehyprpnél — E&Ghy (A1)

P

If L is adjusted so that the cross-terms vanish, the op-
timal & must be zero and the covariance Pj obtained
with the unperturbed estimator is minimal.



Derivation of the design equations. All admissible

variations can be represented by

&=T®Rhi+m)=TRD 'Ce+m) , (A2)

where T is a stable and causal rational matrix. Since
the signal & must be stationary, the factor D' in D ~!
must be canceled by 7. Thus, we require that T =
T sD,, with T s being some stable and causal rational
matrix. With ﬁt+k‘t given by (19), the first cross-term
of (A.1) is expressed as

Byl

=E ((¢"I- LiR)D "'Ce; — Lin:) (TRD ~'Ces +m))”

We now use Parsevals formula, cf. [34], to convert the
orthogonality requirement of h;;t); and & into the fre-
quency domain relation

5 L1
R I
z|l=

where qb;“;.*, the cross-spectral density between the esti-

mation error and the variational term, is, by Assump-
tions A2, A3 and A4 given by

dz

hex ? =0, (A3)

MM,
NN,

((zkI—LkR)D_IC R.C.D.' - L R_l) RT.
= (/*D'C R.C.N. - LiRD 'N"'pp,) N.'D.'RT.
(A.4)
where we utilized (25) in the last equality. The orthog-
onality requirement is fulfilled for all admissible 7, if
and only if the integrand is made analytic inside the in-
tegration path. For a formal proof of this property, see
e.g. Lemma A1l in Appendix A of [41].
This implies that in every element of the integrand,
all poles in |z| < 1 must be canceled by zeros. We first
cancel what can be canceled directly by £. Thus, let

L,=D7'Q,'NDR* | (A.5)

with @, being an undetermined causal polynomial ma-
trix. The filter Ly, as expressed by (A.5), contains the
marginally stable polynomial D, in D = D,D as a
common factor of all elements. After eliminating these
factors, the stable expression (24) is obtained. With
(A.5) inserted into (A.4), the integrand of (A.3) becomes

o5 *1 =D ' (*C R.C.N, - Q,B8,) D,'N,'RT. L
£ 5 z

Since T5, D ;! and N~! are all assumed to be stable,
and T = D,T is required to cancel the marginally
stable polynomial factor D, of D,

Nu(2) 1D (2) 'RT.(2)

N, 'D[IRT,.

will have no poles inside or on the unit circle. In order to
achieve orthogonality, it is thus sufficient and necessary
to require that

D! (:*C R.C.N. - Q,8.)

N | =

=L, (A6)
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where Ly, (2) is a polynomial matrix in z only. This is
equation (26). Thus, by the residue theorem,

~ 1
Eht-‘,—k‘t&; = 2—7‘7 fil ) Lk*D ;lN;lRT*dZ =0 .
zl=

Unique solvability of the Diophantine equation. The
Diophantine equation (26) will always have a solution,
since the invariant polynomials of 3,(g) are all unstable,
while those of D (¢~!) are stable or marginally stable
[1],[36]. Let Q;, L}, be one solution pair. Every solution
to (26) can then be expressed as

(QkaLk*) = (ng - quaLg* +X:B*) s

where the polynomial matrix X is undetermined. Since
Q). is required to be a polynomial matrix in ¢~ ! while
Ly, is required to be a polynomial matrix in ¢, X =0
is the only choice. Consequently, the solution to (26) is
unique. The degrees (27) of Q,, and Ly, are determined
by the requirement that the maximum powers of ¢!
and ¢ are covered on both sides of (26).

Stationarity of the estimation error. The estimator
L‘,Zpt in (24) is stable, and the noise 7; is assumed to
be stationary. Thus, the last term of (19) will be sta-
tionary, with finite variance. To verify stationarity and
finite variance of the estimation error ﬁt+k|t, it remains
to show that (¢*I — LP'R)h, has finite variance even
when the hypermodel contains D, (¢”"') # 1. This term
can be expressed as

('1-D;'Q,8'ND,) D 'Ce
= ¢D;'(B-q*Q,N)B'D,D'Ce .
The output from this filter will be stationary with finite

variance if marginally stable poles of D ;D ! = 1/D,
are canceled in the transfer function matrix, i.e. if

B—q*Q,N=D.X, (A7)

for some polynomial matrix X . This condition is ver-
ified by right-multiplying the left-hand side of (A.7) by
B, (which has zeros only in |z| > 1) and evaluating at
the zeros of D,,, denoted {z;}. We first notice that when
(25) and (26) are evaluated at {z;}, their most right
hand terms vanish when D, # 1. Thus,

BB.=C R.C.NN. ; 2*CR.C.N.=Q,B,

at z = z;. This directly gives 83, — z*’“QkNﬂ*L:Zj
0. Thus, since B,(z) has full rank on |z| =
B—zkQ.N|__ =0,s0 (A.7) holds

L
m|
Appendix B: Weighted Tracking MSE
Criteria and the Excess
Mean Square Error

Particular frequency ranges or linear combinations of the
tracking error can be emphasized by introducing

Bﬁrku = W(q_l)ﬁt+k|t ) (B.1)



where, in general, W(q™!) is a causal and stably invert-
ible rational matrix. The criterion to be minimized is
then given by B B

Jim BRE, Ry, (B.2)
with a minimizing solution readily obtained by slight
modifications of Theorem 1. Let W(q™') be parameter-
ized in common denominator form

1

W(q_l) - U(q—l)

Vi, (B.3)
where U(g™') is a scalar polynomial and V(¢™') is a
stably and causally invertible polynomial matrix. Intro-
duce the stable polynomial matrices D ¢ and V', via the
coprime factorization

1

VD;'=D, V. (B.4)

The solution for the weighted criterion is then obtained
by substituting equations (24) and (26) of Theorem 1 by

£=v-'D,' QB 'ND,R'  (B5)

and
qk‘v/C ReC «INy = Qkﬂ* + qUDuﬁ st* (BG)

When performing system identification, it is often of in-
terest to minimize the mean squared prediction error

E ||5t||g = Elly - ‘p:htlt—lllg =E ||90;;Bt|t—1 + Ut||§
= ftr Rv + trE(pt(p:ht|t,1hrlt71 , (B7)
where we assumed v; and cpfﬁﬂt_l to be uncorrelated.

The last term of (B.7) is known as the ezcess mean
square error. Evidently, (B.7) is minimized by mini-
mizing the excess MSE. However, it is very difficult to
minimize this term as it stands, unless ¢} and ﬁt‘t,l are
independent. Under that assumption, we should mini-
mize
trE (¢ )E (ilt|t—1}~l:|t71) =trRP; = tr RY/?P,RY/2 .
(B.8)

By introducing (28), the criterion (B.8) is minimized by
minimizing (B.2) |

Appendix C: Recursive Computation of
Estimators with Differing
Smoothing Lags

Corollary 2. Let Q,(q ') and L. (g) solve (26) for lag
k, having leading coefficients QX and LE*. Then,

¢(QuaH) - D@ HQk) (C1)

Qi1 (@h)

qLi«(q) + QEB.(q)

constitute the solution to the Diophantine equation (26)
for lag £+ 1 and

Qi_1(a) =q'Qua") + D (¢ HLE (By)

Li114(q) (C.2)

(C.3)
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Lin) = ¢ (Lin(@ - L§*(5)'8.(@)  (C.9)

constitute the solution to (26) for lag k — 1. O
Proof: It follows from (26) that Q,,; and L1«
should satisfy
¢"t'C R.C.N, = Q418 + 9D Liy1s - (C.5)
Multiplying both sides of (C.5) by ¢~* and using the
assumed relation (C.1) yields

¢"C R.C .N, Qv — DQ)B, + D L1

Q8. + D (L1 — QEB,) -

The use of (C.2) reduces this equation to the Diophan-
tine equation for lag k, which is by definition satisfied by
Q1 (g7"), L« (q). Equations (C.3) and (C.4) are verified
in the same way, with k— 1 substituted for k+1 in (C.5),
multiplying by ¢ and inserting (C.3) and (C.4) O

Remark. Since D is monic and the leading coefficient
of B« is B3, the leading coefficient matrix of the right
hand side of (C.1) and of (C.4) will cancel. No positive
powers of ¢ are present in Q) +1(q_1) and no negative
powers of ¢ are present in Ly _1.(q) O
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