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Abstract—We investigate the use of an antenna array at
the receiver in frequency-division multiple-access/time-
division multiple-access systems to let several users share one
communication channel within a cell. A decision-feedback
equalizer (DFE) which simultaneously detects all incoming
signals is compared to a set of DFE’s, each detecting one signal
and rejecting the remaining as interference. We also introduce
the existence of a zero-forcing solution to the equalization
problem as an indicator of near–far resistance of different
detector structures. Near–far resistance guarantees good
performance if the noise level is low.

Simulations show that with an increased number of users
in the cell, the incremental performance degradation is small
for the multiuser detector. We have also applied the proposed
algorithms to experimental measurements from a DCS-1800
antenna array testbed. The results from these experiments
confirm that reuse within a cell is indeed possible using either
an eight-element array antenna or a two-branch diversity sector
antenna. Multiuser detection will, in general, provide better
performance than interference rejection, especially when the
power levels of the users differ substantially. The difference
in performance is of crucial importance when the available
training sequences are short.

Index Terms—Antenna arrays, decision-feedback equalizers,
interference suppression, multiuser channels, multivariable sys-
tems.

I. INTRODUCTION

I N A WIRELESS cellular communication system, multi-
element antennas, also known asantenna arrays, can be

used at the receiver to increase the system capacity. Antenna
arrays can enhance the desired signal and suppress the inter-
ference so that the radio spectrum can be used more frequently
across the network, thereby decreasing the so-calledreuse
factor. When all frequencies are utilized in every cell, the
system is said to have reuse factor one.

To increase the capacity of a frequency-division multiple-
access or time-division multiple-access (TDMA) cellular sys-
tem which has reuse factor one, several users within a cell
would have to share each of the available frequencies and
time slots; the system must supportreuse within a cell.1
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This will cause severe cochannel interference (CCI) at the
receiver. Antenna arrays are then indispensable tools for
separating the signals from different users. With an antenna
array, beamforming [1] can be used to suppress CCI. However,
in situations with frequency selective fading, beamformers that
operate only in the spatial domain can suppress only a few
interferers. In this paper, we illustrate, compare, and explore
two more elaborate ways of using an antenna array at the
receiver to accomplish reuse within a cell.

1) Detect the signal from one user at a time while treat-
ing the other users as interference. In the following,
this approach will be denotedinterference rejectionor
interference cancellation.

2) Detect the signals from all users simultaneously, which
will be called multiuser detection.

Interference rejection using linear receivers is studied in [2],
whereas decision-feedback equalizers (DFE’s) are used for the
same purpose by Monsen in [3] and Balaban and Salz in [4].
DFE’s are also the topic of [5], but in an adaptive setting. In
[6], Bottomley and Jamal use maximum-likelihood sequence
estimation (MLSE) with spatial interference whitening to
suppress ISI and CCI. Interference rejection, i.e., taking the
covariance matrix of the interference into account, leads to
substantial performance improvements in all these papers.

Multiuser detection within a cell using antenna arrays was
first suggested by Winters in [7] and [8]. The emphasis of
these papers is on frequencynonselectivechannels and linear
detectors. In [9], extensions are made to frequency selec-
tive channels. Linear and nonlinear multiuser detectors have
been extensively investigated for application in code-division
multiple-access (CDMA) systems (see, e.g., [10]–[14]).

As will become evident in the following sections, the
performance of multiuser detectors is mostly superior to that
of interference cancellers. This is due to two reasons.

1) Nonlinear multiuser detectors can suppress interference
more efficiently than nonlinear interference cancellers.
(This is in contrast to mean-square error (MSE) optimal
linear detectors, such as those used in [8]. A MSE-
optimal linear multiuser detector is exactly the same
detector as a set of MSE-optimal linear interference
cancellers.)

2) The channel estimation is improved. When utilizing
training sequences from all users instead of treating all
except one as noise, the estimates of channel and noise
statistics will be based on more data. Therefore, the
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model quality is, in general, improved, which leads to
more precise tuning of the detector.

In this paper we will use DFE’s to illustrate the influence
of these two factors. Throughout the paper, we will compare
two equalizer structures.

1) The DFE presented in [5], which rejects interference.
2) The DFE of [15], which detects multiple signals simul-

taneously.2

These algorithms will be compared and studied by analysis
in Section III and by extensive simulations in Section IV.
In Section V, we apply the algorithms to experimental data
collected at an antenna array testbed.

II. CHANNEL MODELS

We shall now introduce the channel models upon which we
base the derivation of the detectors. These baseband models
are assumed to be linear and sampled at the symbol rate.3

They are also assumed to include the effects of pulse shaping
and analog modulation. The symbol rate is equal for all users.
Finally, we assume the channel models to betime-invariant
over the duration of a TDMA burst. The motivation for the
last assumption is solely for simplicity of presentation.

A. Multiple-Input Multiple-Output (MIMO)
Baseband Channel Model

We consider a case with transmitters and receiver
antennas. In the uplink,4 the transmitters represent
different mobiles, each being equipped with one antenna. Each
mobile transmits a signal to the base station, which uses an
element antenna array to detect all the signals. For downlink
transmission,5 we assume that the base station is equipped with

antennas, each of which transmits a separate message. Each
mobile has receiver antennas, which are used to detect one
(or several) of the transmitted signals.

The signal from transmitter propagates through the
discrete-time baseband channel to receiver antenna

The channel is given by

(1)

where are complex-valued constants and where
represents the unit delay operator.6

The digital signal received at antennaat the discrete time
instant is denoted and can be expressed as

(2)

2This minimum-mean square error (MMSE) DFE was first derived in
[16] and independently in [17]. It resembles the DFE presented in [18]
but is derived under the constraint ofrealizability (finite decision delay and
causal filters) and generalized for straightforward application to channels with
different number of inputs and outputs.

3Since the bandwidth of the signal is at least at large as the reciprocal of
the symbol rate, symbol rate sampling actually constitutesundersampling.

4Transmission from the mobile to the base station, also known as the reverse
link.

5Transmission from the base station to the mobile, also known as the
forward link.

6For any signaly(k); z�1y(k) = y(k � 1):

Fig. 1. The MIMO channel model wheresj(k) is the symbol transmitted
at discrete-time instantk from user numberj; while xi(k) is the received
sampled baseband signal at antennai: The signalvi(k) represents additive
noise and out-of-cell CCI.

where is the symbol transmitted from userand the term
corresponds to noise and out-of-cell CCI. The signals
and the noises are assumed to be mutually un-

correlated, zero-mean wide-sense stationary stochastic signals.
Furthermore, all signals are assumed
to be mutually uncorrelated and white with zero mean. The
situation is depicted in Fig. 1.

To obtain a MIMO model, we introduce the signal vectors

(3a)

(3b)

(3c)

The vector of noise samples is characterized by the
matrix-valued covariance function

(4)

The vector of sampled antenna outputs can now be
expressed as

(5)

(6)

where we have introduced the MIMO impulse response

...
...

... (7)

with individual matrix coefficients (taps) In (6),
represents the maximum order of all scalar chan-

nels (1).
Remark 1: Although the focus of this paper will be on reuse

within a cell, out-of-cell interferers communicating with other
base stations could be included among theusers, which
are explicitly modeled. The fact that transmission in adjacent
cells is, in general, not synchronized on a burst-by-burst basis
will, in that case, be a major problem for multiuser detectors
for two reasons.

1) Channel estimation must be performed for one user at
a time, since the training sequences may not overlap.
This will reduce the estimation accuracy, which leads to
worse detection performance.
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2) During the transmission of any single user, different
users will interfere during different parts of the burst.
When the interference scenario changes, the multiuser
detector must be retuned.7

Remark 2: The considered system is sampled at the sym-
bol rate. A single-input single-output system, where-fold
oversampling is employed, is in fact equivalent to a symbol-
rate-sampled system with one input andoutputs. Hence,
with oversampling, the dimension of the received signal vector
increases with a factor equal to the oversampling factor.
Oversampling is in this sense equivalent to multiantenna
receivers. However, excessive oversampling of a band-limited
signal will lead to high correlation among consecutive samples,
which in turn may lead to an ill-conditioned problem. Yet
another way to increase the dimension of the received signal
vector is described in [20]. This method is applicable only
when the symbol constellation is one dimensional and doubles
the effective number of antennas.

B. Reducing the MIMO Model to Single-Input
Multiple-Output (SIMO) Model with Colored Noise

If we explicitly model the signal from only one of the
users, we have to consider signals from the remaining users
as interference. Assuming the signal of interest to be signal
number one, we define a disturbance vector as the sum
of all CCI and noise

(8)

where is column in (7). The interference is
characterized by its matrix-valued covariance function

(9)

The complete SIMO channel model thus becomes

(10)

The DFE performing interference rejection will be based on
this model.

Remark 3: If the model (10) is used as a basis for detector
design, estimation of the matrix-valued covariance function
(9) is vital. This becomes a major problem, since direct
estimation of will provide poor accuracy for the short
training sequences typically present in cellular systems. In
fact, the estimates of the covariance function will be so
unreliable that we, in Sections IV-B and V, are forced to
exploit only the spatial structure of i.e., we will assume
that for

III. T HE MULTIVARIABLE DFE

A. Design Equations

We shall use a multivariable DFE with a transversal feed-
forward filter and a transversal feedback filter

(11)
7In fact, this is a problem also for interference rejection (see [19]).

Fig. 2. The structure of the multivariable DFE, which exploitsN sensor
signalsxi(k) to compute estimates~s(k � `) of symbols fromM users. The
feedforward filter and the feedback filter are both causal and of finite-order. A
set of MISO DFE’s can be represented in the same way but with a diagonal
feedback filter.

Here, is the output of the array used as input to the
equalizer, and are the decisions previously made
by the equalizer. The soft estimate is passed through
the decision nonlinearity to produce the hard estimate

The feedforward filter is of order with
inputs and outputs, whereas thefeedback filter is
of order and has inputs and outputs. Note that the
feedforward filter is causal and the decisions on the symbol
vectors are made after a finite decision delayThis means
that the DFE is always realizable, in contrast to the DFE’s
presented in [4] and [18]. The MIMO DFE is depicted in
Fig. 2.

The use of finite-impulse response filters in (11) and the use
of model-based (indirect) design of the equalizer is motivated
in [21].

To make derivation of optimal equalizer coefficients fea-
sible, we adopt the common assumption that all previous
decisions affecting the current symbol estimate arecorrect,
i.e.,

(12)

Optimal coefficients of the DFE can then be computed from
known channel and noise statistics.

Two criteria can be used for the determination of the
coefficients of the filters and : the peak distor-
tion criterion and the minimum-mean square-error (MMSE)
criterion.

1) Zero-Forcing (ZF) Design:A scalar equalizer derived
by minimizing the peak distortion criterion minimizes the
residual ISI. A scalar equalizer which removes all ISI is called
a ZF equalizer. A natural multiuser extension to the peak
distortion criterion is to minimize the residual ISIand CCI
[4], and a multiuser ZF equalizer can be defined accordingly.

Definition 1: Consider the channel model (6) and a multi-
variable equalizer which forms the estimate of a
transmitted symbol vector If

(13)

where is uncorrelated with all transmitted symbol vectors
then the equalizer is said to beZF.

By substituting (5) and (12) into (11), the ZF condition (13)
is seen to imply the relation

A DFE will thus be ZF if and only if and
constitute a solution to the polynomial matrix, or Diophantine,
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equation [22]

(14)

2) MMSE Design:The coefficients of a MMSE equalizer
are determined to minimize

(15)

where the expectation is taken over the signal vector and
the noise vector defined in (3b) and (3c), respectively.

Under conditions which will be discussed in Section III-C,
the MMSE DFE reduces to the ZF DFE when the covariance
matrix of the noise in (6) goes to zero. In the following,
we shall focus on the MMSE criterion, since the performance
of a MMSE DFE is superior to that of a ZF DFE.

The matrix coefficients of the MMSE optimal multivariable
DFE can be calculated as follows.

Theorem 1: Consider the multivariable DFE described by
(11), the channel model (6) with transmitters and
sensors, and the noise statistics (4) withbeing nonsingular.
Assume all signals to be white with unit variance,
mutually uncorrelated, and uncorrelated with the noise vector

If all past decisions are assumed correct, then the unique
matrix polynomials and in (11) of orders
and , respectively, minimizing the MSE
(15), are obtained as follows.

1) The feedforward filter
is determined by solving the system of

linear equations

...

... (16)

where is the matrix

...
...

... (17)

and where

...
...

... (18)

2) The coefficients of the feedback filter
are given by

(19)

where

Proof: See the Appendix.
Remark 1: To compute a set of MMSE MISO DFE’s, we

use Theorem 1 repeatedly for each user of interest, with
and with the noise statistic described by (9),

substituted for

Remark 2: For a given detection scenario, the structure of
the DFE is determined by the degrees of the feedforward and
feedback filters as well as the decision delay. The impact of
these three variables is outlined below.

• The degree of the feedforward filter should be chosen
to be as large as possible, at least equal to the decision
delay When the noise is assumed to be temporally white

(16) will give for
This is, however,not true when the noise is temporally
colored, and choosing a feedforward filter degree which is
larger than the decision delay can in this case give better
performance.

• The degree of the feedback filter should be large
enough to cancel all postcursor taps (taps with delay

in the linearly equalized channel The
number of postcursor taps equals so we
conclude that

• The decision delay is chosen as a tradeoff between com-
plexity and performance: the larger the decision delay, the
better the performance. However, choosinglarger than
the delay spread only leads to minor improvements in
performance.

Remark 3: In most DFE derivations (see, e.g., [4], [18],
[23]), the following structure is assumed.

• A noncausal continuous-time filter matched to the re-
ceived signal, followed by a symbol rate sampler, is used
as a front end to the DFE.

• The discrete-time DFE, which operates on the sampled
matched filter outputs, has feedforward and feedback
filters with infinite impulse responses.

The derivation is based on the channel transfer function, and
the resulting DFE is optimum when the decision delay is
infinite. In contrast, the DFE obtained from Theorem 1 is a
multivariable generalization of Monsen’s adaptive feedback
receiver [24]. The structure of the DFE is fixed, with finite
impulse response (FIR) filters of predetermined degrees in both
feedforward and feedback links. This structure is by no means
optimal. However, for a DFE having this structure, Theorem
1 gives the optimal choice of the equalizer coefficients.

B. Complexity

To compute the MMSE MIMO or MISO DFE, we need
to solve the system of linear equations (16) and determine
the feedback filter via (19). The number of required complex
multiplications is indicated in Table I for both MIMO and
MISO DFE’s.

From Table I, we see that the complexity of a set of MISO
DFE’s is clearly comparable to a MIMO DFE for a realistic
number of transmitters All differences in complexity arise
from the different feedback filters. Both the feedback filter
adjustment and the feedback filter operation is more complex
for one MIMO DFE than for MISO DFE’s. However,
in a DFE, the major complexity resides in the feedforward
filter. First, to compute the coefficients of the feedforward
filter, we need to solve a system of linear equations. Second,
the feedforward filter must be implemented with multipliers,
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TABLE I
NUMBER OF COMPLEX MULTIPLICATIONS NECESSARY TOCOMPUTE AND

RUN THE MIMO DFE AND A SET OF M MISO DFE’S FOR M USERS

AND N SENSORS. DECISION DELAY OF THE DFE’S IS `; THE DEGREE

OF THE FEEDFORWARD FILTER IS ns, AND THE DELAY SPREAD ISL:

DEGREE OF THEFEEDBACK FILTER IS nQ = L + ns � ` � 1

whereas the feedback filter typically can be implemented using
only adders.

C. Near–Far Resistance, Well-Posedness, and ZF Solutions

A MMSE DFE balances suppression of ISI and CCI against
noise amplification. When the power of the interfering users
is large, rejection of these strong signals is of paramount
importance, whereas suppression of the noise is less important.

This situation has been studied extensively for CDMA mul-
tiuser detectors, in which case the ability to cope with strong
interferers differs among detectors. If a CDMA multiuser
detector is able to handle the detection of weak signals (often
originating far from the receiver) in the presence of strong
(near) interferers, the detector is said to benear–far resistant
[25].

We may then ask under what conditions are MIMO and
MISO DFE’s near–far resistant? To investigate this question,
we let the noise covariance tend to zero in (4) [and (9)].
If all ISI and CCI can be removed, the MMSE equalizer will
reduce to a ZF equalizer, and the estimation error will vanish.
In this case, perfect equalization is possible forany power of
the interfering users. If no ZF equalizer exists, all ISI and CCI
cannot be removed, so the estimation error will not vanish.

When a ZF solution exists, good performance can be
achieved when the signal-to-noise ratio (SNR) goes to infinity.
The consequences of this fact must, however, be interpreted
with some care. When the ZF problem is in some sense well-
conditioned, the corresponding MMSE equalizer will work
well also at realistic SNR’s. However, when the ZF problem
is ill-conditioned,8 the corresponding MMSE solution may
not provide adequate performance, despite the fact that a ZF
solution does exist. We believe, however, that the likelihood
for this situation to occur is small.

We can therefore use the existence of a ZF DFE as a proof of
near–far resistance for the MMSE MIMO DFE or the MMSE
MISO DFE. In more general terms, the existence of a ZF
solution also indicates that the equalization problem is well
posed in the sense that it can provide a useful solution: good
performance can be guaranteed, if the noise level is sufficiently
low.

8This would occur, for instance, if the channels of different users were
almost identical.

A solution to the ZF equation (14) exists if and only if [22]

Every common right divisor of and

is also a right divisor of (20)

If (20) is fulfilled, we know that a ZF solution exists. However,
it remains to specify the filter degrees of such DFE’s. This is
the topic of Theorem 2.

As a prerequisite, we need the following definitions. We
first factorize into three matrix polynomials

(21)

The factors of (21) are defined as

(22a)

(22b)

(22c)

where

the propagation delay for user

(23a)

the greatest common polynomial factor9

of the channels

from user to all antenna elements (23b)

We also define

(24a)

(24b)

We are now ready to formulate Theorem 2.
Theorem 2: Consider the MIMO channel model (6) with
sources and sensors with and assume that (20)

holds. A generically necessary10 condition for the existence of
a ZF MIMO DFE (11) with decision delay and feedforward
filter degree is then

(25)

The condition

(26)

is generically necessary for existence of a set of MISO DFE’s
with decision delay and feedforward filter degree

9Such a common factor could be caused by, e.g., the pulse shaping function.
10Generic necessity of the degree conditions in Theorem 2 should be

understood in the sense that when these claims are violated, a ZF equalizer
exists with probability zero if the channel tapsHHH0; � � � ; HHHL are random
matrices with independent elements.
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Proof: See [21].11

When either the condition (25) or the condition (26) is
violated, the corresponding detector will not have enough
degrees of freedom to completely cancel all the interfering
rays which impinge on the array.

Remark 4: To some extent, oversampling can be used to
effectively increase the number of antennas, as mentioned
in Section II-A. Also, when the symbol constellation is one-
dimensional, the conditions above can be somewhat relaxed.

Remark 5: If either the condition (20) or the degree con-
dition (25) or (26) is not satisfied, then the corresponding
MMSE detector will not work as intended when the signal
levels for the interfering users are large. However, the effects
of the nonexistence of a ZF equalizer will be visible already for
moderate SNR’s, since the residual CCI will cause bit errors
at all noise levels.

The impact of a violation of the inequality (26) will be
demonstrated in Section IV-A.3.

IV. M ONTE CARLO SIMULATIONS

To explore the performance of the MIMO DFE as a tool
for joint multiuser detection, extensive simulation experiments
are conducted. The experiments are designed to illustrate
several key aspects of a real-world implementation of a
system employing reuse within a cell. We also compare the
performance of the MIMO DFE (multiuser detection) with the
performance of the MISO DFE (interference rejection).

Some of the simulation scenarios correspond to both uplink
and downlink situations. In a few of the scenarios, specific
uplink issues are investigated.

In our scenario, one, two, three, or four BPSK modulated
signals impinge on an antenna array with four antenna ele-
ments. Each signal has passed through a frequency-selective
three-tap channel. Each tap is time-invariant over the duration
of a TDMA burst, but subject to Rayleigh fading between
bursts. Different taps in the channel fade independently.12 The
channels from different transmitters to one receiver antenna
are mutually uncorrelated. The signals are received in the
presence of additive Gaussian noise, which is both temporally
and spatially white. The smoothing lags and feedforward filter
lengths of both DFE’s are chosen equal to the length to the
channel impulse response

In different simulations, the system specified above is in-
vestigated under the following additional conditions.

• Known channels (Section IV-A) with:

a) equal average SNR of all users and uncorrelated
antennas;

b) equal average SNR of all users and correlated an-
tennas; and

c) different average SNR of the users and uncorrelated
antennas.

11[Online]. Available HTTP:/http://www.signal.uu.se/Publications/abstracts/
r981.html

12We thus assume uncorrelated scattering [23] and neglect the impact of the
pulse shaping. In practice, the pulse shaping will introduce some correlation
among adjacent taps, but with full-response signaling, this correlation is small
and will not affect the results in the simulations.

• Estimated channels (Section IV-B):

a) estimation using the training sequence only;
b) estimation using detected data, with a so-called

bootstrapmethod [26].

A. Known Channel Coefficients and Noise Covariances

In this section, we shall study the idealized case when all
channel coefficients are exactly known. Effects caused by dif-
ferences in detector structure can be studied here in isolation,
since effects of channel estimation errors are avoided.

1) Equal Average SNR for all Users and Uncorrelated An-
tennas: This is the basic scenario, where all users have the
same average SNR, and the channels from a single transmitter
to different antenna elements are uncorrelated. In practice, the
condition of all users having the same average SNR can be
fulfilled by using slow power control, which compensates for
the propagation loss and the shadow fading. The condition of
uncorrelated antennas presupposes a sufficiently large antenna
spacing at the base station. For downlink transmission, the
antennas at the mobile must also be placed sufficiently far
apart, although the required spacing is much smaller than at
the base station.

The above scenario is simulated for an average SNR per bit
between 0 and 15 dB, where the average SNR per bit [23] for
user is defined as

(27)

where we have divided by to enable a fair comparison be-
tween scenarios with different number of antenna elements.13

We assume that is equal at different antenna elements and
thus independent of

Fig. 3 shows the estimated BER as a function of the average
SNR per bit. With four users, the performance of the MIMO
DFE at dB is around 6 dB better than the performance
of the MISO DFE. This difference arises from the fact that the
MISO DFE uses up all its degrees of freedom to cancel the
interference from the other users. This task is easier for the
MIMO DFE since its feedback filter takes care of some of the
suppression of the cochannel interferers. For fewer users, the
difference between the two approaches is smaller. See Table II
for a performance summary.

2) Equal Average SNR for all Users and Correlated Anten-
nas: In a realistic uplink scenario with phased array receivers,
the channels from a single user to the different antenna
elements will be correlated. However, successful multiuser de-
tection does not require uncorrelated antennas. With perfectly
correlated antennas, the antenna array can form narrow beams,
which enhance the desired signal and suppress interference,
arriving from other directions.

In this simulation, we will assume that a uniform linear
array is present at the base station. The mobile is assumed

13Thus, we donot use the SNR per channel, defined as

j
c
�
= N


j
b
:

Also note that signals from other users donot affect 
j
b
: Adding users will

instead increase the resulting bit-error rate (BER) for a fixed

j
b and thereby

demonstrate the performance degradation as a function of the system load.
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Fig. 3. Comparison of the MIMO DFE (MU) and the MISO DFE (SU) for
known channels, equal transmitter powers, and uncorrelated antennas. The
numbers to the right of the graph are the number of errors used to estimate
the BER for the average SNR per bit
b = 15 dB.

TABLE II
PERFORMANCE LOSS EXPERIENCED WHEN ADDING USERS ASCOMPARED TO A

SINGLE-USER SYSTEM FOR THE SIMULATION SCENARIOS IN SECTIONS IV-A.1,
IV-B.1, AND IV-B.2. ALL VALUES ARE ESTIMATED AT AN SNR OF 15 dB

to be located inside a cluster of scatterers, which act as
secondary transmitters. The shape of the cluster determines
the actual antenna correlation, but different shapes give similar
results [27]. We will assume a circular scatterer distribution.
For this scenario, Fulghumet al. [28] obtained the following
approximation for the antenna correlation

(28)

where

antenna separation, expressed in carrier wavelengths;
antenna separation, expressed in carrier wavelengths;
distance between the receiver and the transmitter;
angle of the incoming signal with respect to antenna
broadside;

and where is the Bessel function of the first kind and order
zero. To model the frequency selective fading, we use the
model proposed in [27]. In this model, each vector tap in the
impulse response will be associated with a separate cluster of
secondary transmitters. The angular locationsof scatterer
distributions corresponding to different column vector taps in
the impulse response are assumed to be independent stochastic
variables, uniformly distributed in the interval

The antenna correlations according to (28) will depend on
the angles which are not under the system designer’s control.
Therefore, we shall address the performance of the DFE as a
function of the correlation coefficient according to (28) that

Fig. 4. Comparison of the MIMO DFE (MU) and the MISO DFE (SU) for
a uniform linear array withcorrelated antenna elements. The channels are
known and the SNR per bit is
b = 10 dB for all users. The estimated BER
is shown as a function of the antenna correlation~� that would result if all
signals were impinging at an angle of� = 0

�:

would result if the signals would all impinge from an angle

(29)

The quantity can be measured for a given environment and
array, and the corresponding performance can be predicted
from the simulation results presented below.

The simulation results are presented in Fig. 4 for an SNR
of 10 dB and antenna correlations between zero and one.

It is evident from Fig. 4 that successful multiuser detection
and interference rejection are indeed not dependent on uncorre-
lated antennas. The performance of all algorithms deteriorates
when the antenna correlation is increased from zero to one.
This is due to the diminished diversity effect, resulting from
a decrease in the number of diversity branches. However, the
multiuser detection approach retains its superior performance
as compared to the interference rejection approach.

Remark 1: Notice that doesnot imply that all channel
taps are uncorrelated, only that a signal that impinges from

would result in uncorrelated taps. Therefore, the BER
for does not coincide with the BER for dB in
Fig. 3, whereall taps are uncorrelated.

Remark 2: Of course, antenna correlation also affects the
performance of the proposed downlink scheme. This is in-
vestigated in [16], and the results for a multiuser detector
operating in the downlink are very similar to the uplink case
investigated here.

3) Different Average SNR for the Users and Uncorrelated
Antennas: In Sections IV-A.1 and IV-A.2, we assumed that
power control was used to compensate for the propagation
loss and the shadow fading. In the scenario investigated in
this section, we will relax this assumption: even the average
received powers will differ among the users. This will generate
the so-callednear–far problem.
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Fig. 5. Comparison of the MIMO DFE (MU) and the MISO DFE (SU) for
known channels,different transmitter powers, and uncorrelated antennas. In
this simulation, 25 000 channels were randomly selected. Over each channel,
1000 symbols were transmitted. User number one has an SNR per bit of


1

b

= 10 dB, while the SNR per bit
i

b
of the other users is equal and varies.

We estimated the BER of a user having an average SNR
per bit of 10 dB in a scenario where there are one, two, or
three additional users, each having an average SNR per bit
that is between 0 and 10 dBhigher, i.e., between 10 and 20
dB. The result from this simulation is depicted in theright
half of Fig. 5.

In a MIMO DFE, decisions concerning one user affect
future symbol estimates of all users. Incorrect decisions on
the symbols from a weak user will thus impair the decisions
of other stronger users. In this case, a MISO DFE may yield
better performance since (possibly incorrect) decisions of the
weaker users’ symbols do not influence the estimates of the
stronger users’ symbols.

To investigate this effect, we estimate the BER of a user
having an average SNR per bit of 10 dB in a scenario where
there were one, two, or three additional users, each having an
average SNR per bit which was between 0 and 10 dBlower,
i.e., the SNR per bit of the remaining users varied between 10
and 0 dB. The result from this simulation is depicted in the
left half of Fig. 5.

From the leftmost part of Fig. 5, it is clear that for the
investigated differences in power levels, error propagation is
not so severe that the BER of a MIMO DFE exceeds the
BER of a MISO DFE. On the other hand, from the rightmost
part of Fig. 5, it is evident that for the MIMO DFE, four
users can coexist in the cell, even when the received average
powers differ substantially. However, the performance of the
MISO DFE is seriously affected by the increase of the power
levels of the interfering users, since this MISO DFE does not
comply with the ZF condition (26). Inserting numerical values
into (26), we find that complete suppression of all cochannel
interferers is impossible whenever As the transmitter
powers of these users increase, the estimation error due to
residual interference increases, resulting in an increased BER.
The MIMO DFE on the other hand is capable of completely
removing the interference from the stronger users, at the
expense of a slightly increased noise amplification.

Fig. 6. Comparison of the MIMO DFE (MU) and the MISO DFE (SU) for
estimated channels, equal transmitter powers, and uncorrelated antennas. The
channel was estimated usingonly the training sequence. The numbers at the
right edge of the graph are the number of errors used to estimate the BER
for an SNR per bit of


b
= 15 dB.

B. Estimated Channel Coefficients

1) Estimation Using the Training Sequence Only:To
demonstrate how the MIMO DFE works in a more realistic
case, channel estimation is introduced. The data is transmitted
in bursts with a structure similar to that of GSM. A training
sequence of 26 symbols is located in the middle of each
burst. Together with data symbols, tail symbols, and control
symbols, this results in a total burst length of 148 symbols.14

The channel estimation is performed using the offline least
squares method, and the spatial color of the noise is estimated
from the residuals of the channel identification. The temporal
color of the noise is not estimated due to the limited amount
of data. Apart from this, the simulation conditions are the
same as in Section IV-A.1. The results are indicated in Fig. 6.

When we compare Figs. 3 and 6, we see that the difference
between the MIMO DFE and the MISO DFE is greater when
the channels have to be estimated. The inability to estimate
and, subsequently, use the temporal color of the interference
leads to a large performance degradation for interference rejec-
tion. Again, the difference in performance is larger when more
users are active in the system. Table II summarizes the perfor-
mance loss of the MISO DFE and the MIMO DFE for known
and estimated channels as compared to the single-user case.

2) Improving Channel Estimation Using the Detected Sym-
bols: Since channel estimation errors are a major cause of bit
errors in a digital cellular system, there is a great potential
for performance improvement in the reduction of the channel
estimation errors. One way of accomplishing this would be to
use detected symbols as regressors in the estimation algorithm.
By using these extra regressors, we can increase the length of
the training sequence from 26 to 148 symbols in the GSM case.
This bootstrapmethod is based on the assumption that when
the fraction of incorrect decisions from pass one is sufficiently
small, the channel estimation in pass two will provide better

14The pulse shaping used in GSM results in a channel with five highly
correlated taps. We have not included this feature in the simulation. Only the
burst structure resembles the one used in GSM.
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Fig. 7. Comparison of the MIMO DFE (MU) and the MISO DFE (SU) for
estimated channels, equal transmitter powers, and uncorrelated antennas. The
channel estimates were obtained usingboth the training sequence and detected
symbols. The numbers at the right edge of the graph are the number of errors
used to estimate the BER for an SNR per bit of


b
= 15 dB.

accuracy than the channel estimation in pass one. Bootstrap
equalization is discussed in [26] for both DFE’s and MLSE.

To test this algorithm, we repeat the simulation in
Section IV-B.1 with the use of the detected symbols to
improve the channel estimates, according to the bootstrap
algorithm described above. The results from the second pass
of the algorithm are shown in Fig. 7.

As can be seen from Fig. 7, the BER was reduced when the
tentative decisions were used to improve the channel estimates.
It seems that the performance of the multiuser detector was
impaired more by the poor quality of the channel estimates
than the performance of the detector performing interference
rejection. The difference between the two approaches is larger
when the two-pass algorithm is used than when only the
training sequence is used to estimate the channel. This is due
to the fact that the estimation of the covariance function of the
noise and the interference is still inaccurate, despite the fact
that we now have access to a training sequence of 148 symbols.

The performance at 15 dB of the bootstrap algorithm is
summarized in Table II.

V. APPLICATION ON EXPERIMENTAL DATA

The simulations in Section IV indicate that reuse within
a cell is indeed possible. But will it work in practice? To
investigate this, we will apply the methods described in
Section III to a set of uplink measurements.

A. Measurements

The measurements were performed on a testbed constructed
by Ericsson Radio Systems AB and Ericsson Microwave
Systems AB [29]. The testbed implements the air interface of a
DCS-1800 base station, and the measurements were performed
in Kista, a suburb of Stockholm, Sweden.

The array consists of four antenna elements, each having
two polarization diversity branches, resulting in eight antenna
outputs. A conventional sector antenna with two-branch po-
larization diversity is also included in the measurement setup

Fig. 8. Comparison of the MIMO DFE (MU) and the MISO DFE (SU)
applied to uplink measurements from a DCS-1800 testbed. The receive
antenna had eight outputs and two users were transmitting simultaneously.

for two reasons: to evaluate the impact of using more antenna
elements and to estimate the transmitted signal power.

A single mobile mounted in a van was used for all ex-
periments. The mobile transmitted GSM bursts, which were
received, sampled, and recorded, both for the sector and the
array antenna. Two sets of measurements were collected and
added to represent a situation when two mobile users share
the same channel. The algorithms investigated in Section IV
were then applied to the recorded data.

The performance of the DFE’s was evaluated as a function
of the averagecarrier-to-noise ratio (C/N).15 This quantity
cannot be directly measured. Instead, it was estimated indi-
rectly. For details, see [21].

B. Results

The frame structure in DCS-1800 is identical to the one
described in Section IV-B. In this case, five tap channels are
estimated, and is used.

The MMSE MIMO DFE and two MMSE MISO DFE’s
were used to demodulate the signals from the two users. In
both cases, the bootstrap algorithm described in Section IV-
B.2 was utilized. The results are shown in Fig. 8 for the array
antenna and in Fig. 9 for the sector antenna.

The results from the experiments on the measurements from
the array antenna are not surprising. For the lightly loaded
system with and the performance of a MIMO
DFE should be only slightly better than the performance of
two MISO DFE’s.

For the sector antenna, the results are more surprising: a
MIMO DFE performs slightlyworse than two MISO DFE’s.
The reason for this is twofold.

1) With the sector antenna, the channel is in fact flat fading.
All ISI is caused by the partial-response modulation,
and the same frequency selective fading is experienced

15The C/N corresponds to the SNR per channel discussed previously. We
use the notation C/N rather than SNR to stress the fact that the quantity has
been estimated indirectly.
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Fig. 9. Comparison of the MIMO DFE (MU) and the MISO DFE (SU)
applied to uplink measurements from a DCS-1800 testbed. The receive
antenna had two outputs and two users were transmitting simultaneously.

at different antenna elements. Hence, each column of
will have a common factor of degree For

and the ZF condition (26) then reduces
to where is the decision delay and
is the propagation delay of userTherefore, the choice

ensures the existence of a ZF MISO DFE for
this scenario, and the corresponding MMSE detector will
work well.

2) When all ISI is caused by the modulation, all rays im-
pinge on the array from the same direction. In this case,
spatial-only interference rejection is sufficient to sup-
press the interfering user. The MIMO DFE tries to reject
the CCI by means of an estimate of its spatio-temporal
color. This will lead here toworseperformance, since
parameters, which do not improve equalization, are
estimated.

With the array antenna, a few multipath components can be
resolved, which leads to a situation where the channels to
different antenna elements will have no common factor. In
this case, the interference canceller will have to place spatial
nulls in several directions, thereby sacrificing some degrees of
freedom, which leads to worse performance. In this case, the
multiuser detector can use its additional degrees of freedom
to cancel the CCI.

It should be noted that the investigated scenario constitutes
a very difficult detection problem: the two mobiles travel
exactly the same measurement route. Still, reuse within a cell is
possible, using either the array antenna or the sector antenna:
The detector performance is approximately 2 dB worse for
two users than for one user.

VI. DISCUSSION AND CONCLUSIONS

In our investigation of receiver algorithms designed to ac-
complish reuse within cells, we have compared MIMO DFE’s
which work as multiuser detectors to the use of interference
rejection, implemented by MISO DFE’s. Realizable MMSE
equalizers of both kinds have been derived, based on channel
models and noise spectral models.

In summary, extensive simulations indicate that channel
reuse within a cell is indeed a viable option, with multiuser de-
tection providing superior performance. Up to four users could
coexist in the same cell if the receivers utilize antenna arrays
with only four antenna elements. With multiuser detection, the
price paid for this in increased BER is rather small. We have
tested the algorithms on experimental measurements from a
DCS-1800 testbed. For the investigated scenario, reuse within
a cell is possible using either an eight-element antenna array
or a two-branch diversity sector antenna.

Differences in performance between multiuser detection
and interference rejection are partly due to the difference in
detectorstructure:a multiuser (MIMO) DFE utilizes feedback
from previously estimated symbols fromall users, while
the interference rejecting (MISO) DFE performs decision
feedback from the user of interest only.

The difference also results from the preconditions forchan-
nel estimation.In the multiuser case, input-output transfer
functions from each transmitter to each receiver antenna
can and must be estimated. For interference rejection, the
CCI constitutes colored noise, and multivariate noise models
estimated from short data records will have poor accuracy.

These factors will in general result in a higher performance
for the multiuser detector. This is particularly apparent when
the detectors are applied to heavily loaded systems (with many
users/interferers) and when the delay spread in the multipath
channel is large.

Both multiuser detectors and interference rejecting MISO
DFE’s can be made near–far resistant. However, the conditions
for this, as indicated by the existence of a ZF solution, are more
restrictive when using interference rejection.

Our conclusions are based on studies and comparisons of
symbol-by-symbol DFE’s. We would expect similar conclu-
sions to hold from a comparison of joint multiuser maximum-
likelihood (ML) detectors [30] to single-user ML detectors
with spatial interference whitening [6]. The results in [31]
confirm this assumption. However, for ML detectors the
complexity of the two approaches would differ substantially, in
contrast to the complexity of the two detectors described here.

APPENDIX

DERIVATION OF THE MIMO MMSE DFE

Suppose that a linear time-invariant FIR channel of order
is given by (6) and assume that

(30)

The objective is to estimate the symbol vector by
means of theMIMO DFE defined in (11), i.e.,

(31)

(32)

(33)
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Above, we have defined

(34a)

(34b)

and

(35a)

(35b)

The coefficients and are to be determined so
that the MSE of the estimate is minimized. The
mean square of

(36)

is minimized if the estimation error is orthogonal to all signals
which the estimate may be based upon, i.e.,

and The matrix filter coefficients providing the
minimum mean-square estimation error are thus determined
by the orthogonality condition

(37)

If we insert from (37) and from (32), we
obtain

(38)

Assume that all previous decisions were correct, i.e.,
and define

(39)

Due to the assumption of uncorrelated symbols made in (30),
(38) can then be simplified to

(40)

To evaluate the expectations in (40), we invoke the channel
model (6) to obtain an explicit expression for

...
...

. . .
...

...

... (41)

To obtain a more compact expression of (41), we introduce

(42a)

(42b)

Furthermore, we define the following matrices:

...
...

. . .
...

(43a)

where we have defined

The first columns in (43b)

Columns (43c)

Columns

(43d)

Equation (41) can then be written as

(44)

where was defined in (39). Using (44) and (30), we
can compute the expectations in (40) and insert them into the
normal equations (40)

(45)

where is given by (18). By observing that
from the second block row of (45) and inserting this into the
first block row, we obtain

(46a)

(46b)

Now observe that as defined in (17). Thus,
(46a) and (46b) can be expressed as

(47a)

(47b)

Here, (47a) coincides with (16), and if we complex conjugate
both sides of (47b) and evaluate for each matrix element
we readily obtain (19). Equations (47a) and (47b) are the
design equations for the MIMO DFE.
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