IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. 3, MARCH 1995

A Probabilistic Approach to Multivariable
Robust Filtering and Open-Loop Control

Kenth Ohrn, Anders Ahlén, Senior Member, IEEE, and Mikael Sternad, Senior Member, IEEE

Abstract—A new approach to robust filtering, prediction, and
smoothing of discrete-time signal vectors is presented. Linear
time-invariant filters are designed to be insensitive to spectral
uncertainty in signal models. The goal is to obtain a simple design
method, leading to filters which are not overly conservative.
Modeling errors are described by sets of models, parameterized
by random variables with known covariances. These covariances
could either be estimated from data or be used as robustness
“tuning knobs.” A robust design is obtained by minimizing the
‘Haz-norm or, equivalently, the mean square estimation error,
averaged with respect to the assumed model errors. A polynomial
solution, based on an averaged spectral factorization and a
unilateral Diophantine equation, is derived. The robust estimator
is referred to as a cautious Wiener filter. It turns out to be only
slightly more complicated to design than an ordinary Wiener
filter. The methodology can be applied to any open-loop filtering
or control problem. In particular, we illustrate this for the design
of robust multivariable feedforward regulators, decoupling and
model matching filters.

I. INTRODUCTION

OR any model-based filter, modeling errors are a potential

source of performance degradation. Here, we will pro-
pose a cautious Wiener filter for the prediction, filtering, or
smoothing of discrete-time signal vectors. As in the scalar
case, discussed in [36], it constitutes a generalization of the
polynomial equations methodology pioneered by Kucera [21].
The design is based on a stochastic description of model errors,
with relations to e.g., the stochastic embedding concept of
Goodwin and coworkers [11], [12]. To be more specific, our
problem formulation is as follows:

* A set of (true) dynamic systems is assumed to be well
described by a set of discrete-time, stable, linear and
time-invariant transfer function matrices

F=F,+AF. (1.1)

We call such a set an extended design model, in which F,

represents a stable nominal model, while an error model

AJF describes a set of stable transfer functions, parameter-

ized by stochastic variables. The random variables enter

linearly into AF, and they are assumed independent of
the noise.
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* A single robust linear filter is to be designed for the whole
class of possible systems. Robust performance is obtained
by minimizing the averaged mean square estimation error
criterion

J = traceEE(e(k)e(k)*®). 1.2)

Here, =(k) is the estimation error vector, E denotes
expectation over noise and E' is an expectation over the
stochastic variables parameterizing the error model AF.

The averaged mean square error has been used previously
in the literature by e.g., Chung and Bélanger [9], Speyer
and Gustafson [32], and by Grimble [13]. These works were
based on assumptions of small parametric uncertainties and on
series expansions of uncertain parameters. We suggest the use
of the criterion (1.2), together with a particular description
of the set (1.1): transfer function elements in AJF have
stochastic numerators and fixed denominators. Such models
can describe nonparametric uncertainty and undermodeling as
well as parametric uncertainty. A discussion of the utility, and
versatility, of linearly parameterized stochastic error models
can be found in [36].

Most previous suggestions for obtaining robust filters have
been based on some type of minimax approach [10], [24]. A
paper [26] by Martin and Mintz takes both spectral uncertainty
and uncertainty in the noise distribution into account. The
resulting filter will, however, be of very high order. Minimax
design of a filter R becomes very complex, unless there exists
either a saddle point or a boundary point solution. A crucial
condition here is that mink maxy equals maxs ming. If so,
one can search for models whose optimal filter gives the worst
(nominal) performance and use the corresponding filter. As
compared to finding the worst case with respect to a set of
models, this is a much simpler task. It can still, however, be
computationally demanding. See [19], [28], [31], [38], and
the survey paper by Kassam and Poor [20]. The condition
ming maxy = maxy ming is not fulfilled in numerous
problems, which makes them very difficult to solve. See, e.g.,
Example 5 in [36] and the example in Section IV.

Kalman filter-like estimators have recently been developed
for systems with structured and possibly time-varying para-
metric uncertainty of the type

z(k +1) = (A + DA(K)E)z (k) + w(k)
where the matrix A(k) contains norm-bounded uncertain

parameters. See [30], [7], and [39] for continuous-time results
and [40] for the discrete-time one-step predictor. See also [16]
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for a related method. For systems which are stable for all
A(k), an upper bound on the estimation error covariance
matrix can be minimized by solving two coupled Riccati
equations, combined with a one-dimensional numerical search.
This represents a computational simplification, as compared
to previous minimax designs. Still, the resulting estimators
are quite conservative, partly because they rest on worst case
design. This conservativism is illustrated and discussed in {29]
and [37].

The method suggested in the present paper is computation-
ally simpler than any of the minimax schemes referred to
above. It also avoids two drawbacks of worst case designs.
First, the stochastic variables in AF need not have compact
support. Thus, the descriptions of model uncertainties may
have “soft” bounds. These are more readily obtainable in a
noisy environment than the hard bounds required for minimax
design. Second, not only the range of the uncertainties, but also
their likelihood is taken into account by using the expectation
E(.) of the MSE. Highly probable model errors will affect
the estimator design more than do very rare “worst cases.”
Therefore, the performance loss in the nominal case, the price
paid for robustness, becomes smaller than for a minimax
design. In other words, conservativeness is reduced. There
do exist applications where a worst-case design is mandatory,
e.g., for safety reasons. We believe, however, that the average
performance of estimators is often a more appropriate measure
of performance robustness.

In the present paper, one of our goals will be to present
transparent design equations and to hold their number to a min-
imum without sacrificing numerical accuracy. We use matrix
fraction descriptions with diagonal denominators and common
denominator forms. This leads to a solution which is, in
fact, significantly simpler and numerically better behaved than
the corresponding nominal Hy-designs (without uncertainty)
presented in [1] or [14]. Somewhat surprisingly, taking model
uncertainty into account does not require any new types of
design equations. We end up with just two equations for robust
estimator design: a polynomial matrix spectral factorization
and a unilateral Diophantine equation. The solution provides
structural insight; important properties of a robust estimator
are evident by direct inspection of the filter expression.

This paper is organized as follows. The filtering problem,
model structure (1.1), and criterion (1.2) are discussed in more
detail in Section II. Section III presents the design equa-
tions and some tools for performance evaluation. The design
procedure is illustrated by a thorough numerical example in
Section IV. The resulting estimator reduces the impact of
model uncertainty and limited signal energy by using multiple
sensors in an efficient way. In Section V the design of robust
feedforward regulators, servos, and model matching filters is
discussed.

Remarks on the Notation: Signals and polynomial coeffi-
cients may, in the following, be complex valued. (This is
required in, e.g., communications applications.) Let p; denote
the complex conjugate (and transpose for matrices) of a
polynomial coefficient p;. For any polynomial

P =po+piat + - +pnpg ™

in the backward shift operator ¢!, define the conjugate
polynomial

A K * *
P*(q) = Do +pig+--- +pnpqnp

where g is the forward shift operator. A polynomial P(g,q™')
having coefficients of both g and ¢~ will be called double
sided. Rational matrices, or transfer functions, are denoted
by boldface calligraphic symbols, e.g., R(g™!). Polynomial
matrices are denoted by boldface symbols, such as P(q™'),
while constant matrices are denoted as P. For example, the
identity matrix of dimension n is denoted I,. We denote
the trace of P by trP. For polynomial or rational matrices,
P,(g) and R.(g) means complex conjugate, transpose, and
substitution of g for ¢—!. When appropriate, the complex
variable z or €™ is substituted for the forward shift operator
q. Arguments of polynomials and matrices are often omitted,
when there is no risk of misunderstanding. The degree of
a polynomial matrix is the highest degree of any of its
polynomial elements. Square polynomial matrices P(qg ') are
called stable if all zeros of det P(z~!) are located in |z| < 1.
A rational matrix is defined as stable if all its elements are
stable. Causality is defined in the same way.

A rational matrix G(¢~') may be represented by polynomial
matrices as a matrix fraction description (MFD), either left
G = AT'B; orright G = ByA; 1. It may also be represented
in a common denominator form G = B/A, where B is a
polynomial matrix. The scalar and monic polynomial A is
then the least common denominator of all elements in G.
Denominator matrices in MFD’s are assumed to have identity
matrices as leading coefficients of their matrix polynomial
representations, thus 4;(0) = I above.

II. THE ROBUST ESTIMATION PROBLEM
Consider the following extended design model

y(k) = G(g~Hu(k) + H(g (k)
u(k) = F(g~")e(k) @.1)
f(k) =D(g")u(k)

where G, H, F, and D are stable and causal, but possibly
uncertain, transfer functions of dimension p|s, pjr, s|n, and
£s, respectively. The noise sequences {e(k)} and {v(k)} are
mutually uncorrelated and zero mean stochastic sequences. To
obtain a simple notation they are assumed to have unit covari-
ance matrices, so scaling and uncertainty of the covariances
are included in F and M, respectively. The signal y(k) is
assumed measurable, while f(k) is the signal to be estimated.

A. Multisignal Estimation
From data y(k) up to time k + m, an estimator
f(klk +m) =R(g™)y(k +m) @2)

of f(k) is sought. See Fig. 1. The estimator may be a predictor
(m < 0), a filter (m = 0), or a fixed lag smoother (m > 0).
Here R, of dimension £|p, is required to be stable and causal.
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AF
e(k) Fo
Fig. 1. A general linear filtering problem formulation. Based on noisy

measurements y(k + m), the signal f(k)is to be estimated. Model errors
in transfer functions are described by stochastic error models.

The transfer function R is designed to minimize the averaged
mean square error (MSE) criterion (1.2)

J = trEE(e(k)e(k)*) = EE(e(k)*e(k)) ZEE|E, (k)2
= 2.3)

where

e(k) = (e1(k) -+ ee(k))T & W(g1)(F(k) — f(klK +m)).

Above, W is a stable and causal £|{ rational weighting
matrix, with a stable and causal inverse. It may be used by
the designer to emphasize filtering performance in particular
frequency bands. In filtering problems, W is not assumed
uncertain.

Model (2.1) offers considerable flexibility. For example,
when estimating a signal u(k) in colored noise, we set G =
D = 1,, giving f(k) = wu(k). In deconvolution, or input
estimation problems, G is a dynamic system and D = I,. In
a state estimation problem, u(k) is the state vector, G and
D are constant matrices while M v(k) represents (colored)
measurement noise. Other special cases are discussed in [2],
[3], and [8].

Example: An application where uncertain dynamics in G
is of interest is equalizer design for digital mobile radio
communications [23]. A signal u(k) then propagates along
multiple paths, with different time delays, represented by
delays in G. The receiving antenna may have p > 1 elements
(diversity design). See, e.g., [4]. Thus, an appropriate model
of G is a column vector of FIR channels, i.e., a vector
of polynomials. The polynomials coefficients are estimated
from short and noisy training sequences, with a known input
{u(k)}. Estimation errors are inevitable. The task of a (robust)
equalizer is to estimate u(k), based on noisy measurements
y(k +m), a nominal model G, and an estimate of the amount
of model uncertainty O

B. Parameterization of the Model

We choose to parameterize G and H as left MFD’s having
diagonal denominators,! while F, D, and W are parameterized
in common denominator form

G=A"'B; H=N"'M .4

1 1 1
.7-'—50, D—-fS, W:EV

'Note that this is a natural choice, if transfer functions are obtained by
means of identification.
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We have made these choices to obtain tidy and transparent
design equations and to avoid coprime factorizations, which
are known to be numerically sensitive. In (2.4), it is assumed
that G, H, and F may be uncertain. Introduction of uncertainty
in the weighting matrix W is not motivated in filtering
problems. Its role in open-loop control will be discussed in
Section III-B below. It is shown in Appendix C that uncertainty
in D does not affect the optimal filter design, provided it
is uncorrelated to uncertainties in other blocks. Therefore,
uncertainty in D is not introduced.

The extended design models, cf. (1.1) and (2.1)

G=6G,+AG, H=H,+AH, F=F,+AF

are now expressed in polynomial matrix form. Using B, =
AB,, B, = A,B; etc. we introduce
G=A;'B,+ A{'B.AB
'=A7'ATY(B, + B;AB)2 A7'B
H=N,'M, +N7'M;AM

=N;'N7Y(M,+ MAMEN'M (25
1 1
F= D_C° + D—CIAC
: 1
AC) £
D, D )=

Above, G, = A; !B, represents the nominal model and AG =
Al‘lBlAB the error model. The same holds for H and F.
The diagonal polynomial matrices A = A,A;, N = N,N;,
and the polynomials D = D,D;,T and U are all assumed to
be stable, with causal inverses. Denominator polynomials are
assumed monic. In the error models, the polynomial D, the
diagonal matrices A; and N, and the matrices C, B; and
M are fixed. They can be used to tailor the error models for
specific needs. For example, if multiplicative error models are
deemed appropriate, we use A; = A,, B; = B,B,, etc., with
B,, to be specified.

The matrices AB, AC, and AM contain polynomials,
with jointly distributed random variables as coefficients. These
coefficients parameterize the class of assumed true systems.
One particular modeling error is represented by one partic-
ular realization of the random coefficients.? Element ij of a
stochastic polynomial matrix AP is denoted

AP 2 [AP], = Apd + Apq + -+ Apll g~ (2.6)

where 8p is the degree of AP, ie., the highest degree
appearing in any polynomial AP%. All coefficients have zero
means, so the nominal model is the average model in the set.
Only the second-order moments of the random coefficients
need to be specified, since the type of distribution, and higher
order moments, will not affect the filter design. The parameter

2For a given system realization, the coefficients are assumed time-invariant
and independent of the time-series e(k) and v(k). This is in contrast to
the approach of Haddad and Bemstein in [15], who represent the effect of
uncertainties by multiplicative noises. For a given uncertainty variance, a
noise representation would underestimate the true effect of (time-invariant)
parameter deviations in the dynamics.




408 [EEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. 3, MARCH 1995

covariances are denoted E(Api)(ApSF)* and are collected in
covariance matrices P(A”I’,Ek); see Section II-C.
We now introduce the assumption
« Al. The coefficients of all polynomial elements in AC
are independent of those in AB.
It is possible to exclude Assumption Al, but it does simplify
the solution, and it is also reasonable in most practical cases.

Error models can be obtained from ordinary identifica-
tion experiments, provided the model structures match. For
SISO systems, error models can be estimated in presence
of under-modeling, using a maximum likelihood approach
[11]. Even if the statistics is hard to obtain, one could
still use the elements of covariance matrices pragmatically,
as robustness “tuning knobs.” They are then used similarly
as when weighting matrices are adjusted in LQG controller
design. An objective could be to obtain reasonable perfor-
mance for the uncertainty set, for a prespecified acceptable
degradation of performance in the nominal case. The error
models may also be used to account for a slowly time-varying
dynamics [25].

One way of obtaining the models (2.5)—(2.6) is by series
expansion of state-space models with parametric uncertainty
[37]. Parameter deviations are represented by stochastic vari-
ables. For small uncertainties, a first-order expansion can
be used, which will directly lead to models of type (2.5).
For larger uncertainties, a second-order Taylor expansion is
usually sufficient; see [29]. Error models for nonparametric
uncertainties can be adjusted directly to frequency domain
data. In that context, a very useful concept is provided by the
stochastic frequency domain theory of Goodwin and Salgado;
see [12].

C. Covariance Matrices for the Stochastic Coefficients

To represent the uncertainties of the system in a natural
way, covariance matrices will be organized as follows. The
ijth element of a stochastic polynomial matrix AP can be
expressed as

AP9(g ) =¢"(q

)by Q.7

The cross covariance matrix P(” %) of dimension &p +
1/6p+ 1, between coefficients of AP” (q‘l) and AP%(q71),
is given by

Pg,l':,’ek) - Eﬁuﬁe;c o
E(ApY )(A k) E(ApY)(Apg)*
E(Apg) )(Ap k) E(Apy, )(Ap k)
2.9)

where P(”l;” ) js Hermitian and positive semidefinite, while
P(”J?Ek) — (P(lk U))* Thus

B(APY AP =E(oT (g7 )pispine” () =9 Pl
Q. 10)

With autocovariances, (ij) = (£k), we model the un-
certainty within each input—output pair. Cross-dependencies
between different transfer functions may also be known. For
example, uncertainty in one single physical parameter may
very well enter into several transfer functions between inputs
and outputs. Such effects are captured by cross covariances,
(i) # (k).

We collect all matrices of type (2.9) into one large covari-
ance matrix, organized as shown by (2.11) at the bottom of
the page. If AP has dimension n|m, then Pap is composed
of nm by nm covariance matrices P(”’lk) The structure of
(2.11) is useful from a design point of view. If, for example,
a multivariable moving average model, or FIR model, is to be
identified, then (2.11) is the natural way of representing the co-
variance matrix. If we instead prefer to use the blocks P(”’lk)
of (2.11) as multivariable “tuning knobs,” a given amount of
uncertainty can be assigned to a specific input-output pair.

III. DESIGN OF ROBUST FILTERS

A. An Averaged Spectral Factorization

We define an averaged spectral factor B(g~!) as the nu-
merator polynomial matrix of an averaged innovations model.
It constitutes a key element of the robust filter. The average,

where over the set of models, of the spectral density matrix &, (&™)
of the measurement y(k) is given by
T —1y _ -1 —ép\ . 5., — ij (¥ T — .
©T(q™Y) = (g7t q7%) 5 By = (DpF ApY --- Apg)T. E{®, (e -IN-188. N7 ACL.
P(2 8) { y(e )} DD*A ﬂﬂ* *
r (11,11 11,1m - p(11,n1 11,nm
P P‘Ap ’ PiE™ Pl
17:n,11 im,lm 11;, 1 1n:1,nm
_P(AP ) P( i) LP(AP " P(AP )
Pap = 2.11)
‘PXLIIL,II) szrl’,lm) 'PXLI];,nl) P(Anli,nm)
P(nm 11) P(nm ,1m) LP(nm ,nl) P(Anfr;n,nm)
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The square polynomial matrix §(z~ ) is given by the stable
solution to

BB, = E{NBCC.B,N, + DAMM A,D.}. 3.D
Note that N~ and A~? are diagonal and will thus commute.
The averaged second-order statistics of y(k) is thus described
by the same spectral density as for a vector-ARMA model
- | ’
(k) = AT N Be(k) (32
where €(k) is white with a unit covariance matrix. This model
is denoted as the av;raged _innova;ions model. (Note that
g(k) # y(k), but @;5(e*) = F{S,(¢**)}). When constructing
the right-hand side of (3.1), the following results are useful.
Lemma 1: Let H(q,q~!) be an m|m polynomial matrix
with double-sided polynomial elements having stochastic co-
efficients. Also, let G(¢~') be an n|m polynomial matrix with
polynomial elements having stochastic coefficients, indepen-
dent of all those of H. Then
E|GHG.) = E[GE(H)G.]. (3.3)
O
Proof: See Appendix A.
Now, introduce the double-sided polynomial matrices

CC.2E(CC,); BcBc.2E(BCC.B,);
MM.2E(MM.,). (3.4)
Invoking (2.5) and using the fact that the stochastic coefficients
are assumed to be zero mean, gives

CC. = C,C,. + C1E(ACAC,)C,.
#cBc. = B,CC.B,, + BiE(ABCC,AB,)B,.

MM, = M,M,, + MiE(AMAM)M,,. (3.5
Factorizations to obtain C, Bg, etc. need not be performed.
The double-sided polynomial matrices are expressed as CC,,
etc. merely to simplify the notation.

Lemma 2: Let Assumption Al hold. By using (3.4), (3.5)
and invoking Lemma 1, the averaged spectral factorization
(3.1) can be expressed as

BB. = NBcBc,N, + DAMM.AD..  (3.6)

O

Proof: See Appendix A.

With a given right-hand side, (3.6) is just an ordinary
polynomial matrix left spectral factorization. It is solvable
under the following mild assumption

* A2. The averaged spectral density matrix E{®,(e*)} is

nonsingular for all w.

This assumption is equivalent to the right-hand side of
(3.6) being nonsingular on |z| 1. Then, the solution to
(3.6) is unique, up to a right unitary factor. (If HH, = 1,
then BB, = (BH)(H.f,).) Under Assumption A2, a solution
exists, with 8 having nonsingular leading coefficient matrix

B(0). Its degree, n3, will be determined by the maximal degree
of the two right-hand side terms of (3.6).

To obtain the right-hand side of (3.6), averaged polyno-
mial matrices E(APHAP,) have to be computed, where
H(q,q7') = CC, or I. It is shown in Appendix B that the
ijth element of E(APHAP,) is given by

o 0
E[APHAP*],] =trH
0 o7
PG - PG O
X : : : 3.7
Pap™ - PGIILO T

where <pT was defined in (2.8). The block covariance matrix
in (3.7) constitutes the block-transpose of the 4jth block [ - ]
of Pap in (2.11). Average factors in (3.5) are readily obtained
by substituting AC, AB, and AM for AP in (3.7).

B. A Second Spectral Factorization

In the feedforward control problems discussed in Section
V, we shall allow for W being uncertain. Using a common
denominator form, W is parameterized in a similar way as JF
(cf. (2.5))

2z + AVV1i

4 AV
i 7 (Vo + AVVY)

1
W = Vo ﬁV

(3.8)

A stable square matrix V, with V(0) nonsingular, is intro-
duced as a solution of the right spectral factorization

AR

V.V =EWV.,V)=V,V,+V,EAV,AV)V,. (3.9)

Also, introduce the following assumptions
» A3. The coefficients of AV are independent of all other
stochastic coefficients.
» A4. The right-hand side of (3.9) is nonsingular on the
unit circle. )
Whenever W is known, W =V, /U, = V /U), (3.9) need
not be solved, and V = V, = V. This will be the case in
filtering problems.

C. The Cautious Multivariable Wiener filter

Theorem 1: Assume an extended design model (2.1), (2.4),
(2.5), (3.8) to be given, with known covariance matrices (2.11).
Assume A1-A4 to hold. A realizable estimator of f(k) then
minimizes the averaged MSE (2.3), among all linear time-
invariant estimators based on y(k + m), if and only if it has
the same coprime factors as

Fkk+m) = Ry(k+m) = %V_lQﬂ“lNA y(k +m).
3.10)

3When solving (3.6), we have utilized an algorithm by Je¥ek and Kuéera,
presented in [18]. It provides a solution with an upper triangular full
rank leading coefficient matrix. For an overview of spectral factorization
algorithms, see [22].

T
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Here, B(¢~!) is obtained from (3.6), V(g~') from (3.9) while
Q(q™1) together with L.(q), both of dimensions £|p, is the
unique solution to the unilateral Diophantine equation

¢ ™VSCC.B,.N.=Qp, +qL.UTDI, (3.11)
with generic* degrees

nQ@ =

nL, =

max(nd + ns + né + m,nu + nt + nd — 1)
max(né + nb, + nn — m,nf) — 1

(3.12)
where ns = deg S etc. When applying the estimator (3.10) on
an ensemble of systems, the minimal criterion value becomes

_ . L 11y, 1
tItEE(E(k)FJ(k) )mlnfhrzﬂj‘ijF{L*ﬂ* B LFUTDD*T*U*

XVSC|Li-C.B,.N.B; 67 NB.C]

X é*s,,fa}d;z. (3.13)
O
Proof: See Appendix C.

Remarks: The only new type of computation, as compared
to the nominal case described in [1]-[3], is the calculation of
averaged polynomials using (3.7).

Since both V' and B are stable, the estimator R will be
stable.5 If Assumptions A2 and A4 hold, V(0) and B(0) are
nonsingular, so R will be causal.

Note that the diagonal matrix NA = N,N1A4,A; appears
explicitly in the filter (3.10). Thus, important properties of the
robust estimator are evident by direct inspection. For example,
assume some diagonal elements of N7 or A7! in the error
models to have resonance peaks, indicating large uncertainty
at the corresponding frequencies. Then, the filter will have
notches, so the filter gain from the uncertain components of
y(k + m) will be low at the relevant frequencies.

The nominal Wiener filter has as a component a whitening
filter. The robust estimator has a similar structure. By mul-
tiplying R by the stable common factor D/D, the filter in
(3.10) will contain B~ NAD as right factor. This averaged
counterpart of a whitening filter is the inverse of the averaged
innovations model (3.2).

The model structure (2.4)-(2.5) was selected to obtain a few
simple design equations. Other choices are possible, but lead to
various complications. For example, if stochastic polynomials
had been introduced in the denominators, no exact analytical
solution could have been obtained. Also stability would have
been a problem. The use of general left MFD representations,
instead of forms with diagonal denominators or common
denominators, would have led to a solution involving seven
coprime factorizations. Such a solution is presented in [29],
but it provides less physical insight. It does also exhibit worse
numerical behavior, since algorithms for coprime factorization
are numerically sensitive.

4In special cases, the degrees may be lower.

5Stable common factors may exist in (3.10). They could be detected by
calculating invariant polynomials of the involved matrices. If such factors have
zeros close to the unit circle, it is advisable to cancel them before the filter is
implemented. Otherwise, slowly decaying (initial) transients may deteriorate
the filtering performance.

Furthermore, (3.11) is a unilateral Diophantine equation,
since @ and L, appear on the same side of the terms in which
they are involved. (When the unknowns appear on opposite
sides, the equation is bilateral.) This property is a consequence
of our choice of U, T, and D as scalar polynomials. Unilateral
equations can easily be transformed into a system of linear
equations, AX = B, where A is a block-Toeplitz matrix. For
an example, see Section IV.

Robust design also makes the solution less numerically
sensitive. Almost common factors-of det 8, and UTD with
zeros close to |z| = 1 would make the solution of (3.11)
numerically sensitive. In the presence of model uncertainty,
the risk for this is less than in the nominal case, due to the
presence of averaged factors in (3.5). The averaged spectral
factor B will, in general, have its zeros more distant from the
unit circle than the nominal spectral factor, given by (3.20)
below. This reduces the numerical difficulty of solving both
(3.6) and (3.11).

For every cautious Wiener filter, there exists a system
(without uncertainty) for which this estimator is the optimal
Wiener filter (see [29]). It is therefore possible to represent
model uncertainties by colored noises and then design a
Wiener filter for the corresponding system. This correspon-
dence provides a way of understanding the structure of the
above desing equations. We do not recommend such an
equivalent noise-approach in the actual design, however, for
two reasons:

o It is far from trivial to obtain a noise spectrum having
similar effect on the filter design as do uncertainties in the
block G in Fig. 1. This is true in particular if the block
F is also uncertain, and if the problem is multivariable.

« It is advantageous from a design point of view to
have separate tools which handle different aspects.
Error models should represent the effect of modeling
uncertainty; noise models should represent disturbances;
criterion weighting functions should reflect the priorities
of the user. A method which does not distinguish between
these aspects will tend to confuse the designer.

The attainable performance improves monotonically with
an increasing smoothing lag m. The following result gives the
lower bound of the averaged estimation error. This bound can
be approached pointwise in the frequency domain for m < oo,
by using a criterion filter W with a high resonance peak.

Corollary 1: The limiting estimator for m — oo, the
nonrealizable cautious Wiener filter, can be expressed as

lim ¢"R = lSéC*Bo*N*ﬁ*—lﬂ—lNA'

(3.14)

Its average performance is given by (3.13) with L = 0. If
W = I, the spectral distribution of the lower bound of the
estimation error f(k) — f(k|k + m) is

lim trF ¢f_f(ei“’)

m—00

1 .
= TDD.T. tr{SC

[In - C’*Bo*N*ﬂ;lﬂ‘lNBof}]fl’*S*}. (3.15)
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The bound can be attained at a frequency w; by an estimator
with finite smoothing lag, if it is designed using a weighted
criterion where

U(e™™1) = 0. (3.16)
O
Proof: In a similar way as in Appendix A.3 of [8], it is
straightforward to show that L — 0 as m — oo in (3.11).
Thus, (3.11) gives

lim ¢™Q = VSCC,B,.N.B; .

m—o0

(3.17)

The substitution of this expression into (3.10) gives (3.14).
The use of L =0,V = I, and U = 1 in the integrand of
(3.13) gives (3.15). When U(e™*1) = 0, we obtain the same
effect on the Diophantine equation (3.11) at the frequency w;
as if L — 0: the rightmost term vanishes. Thus, at w1, the gain
and the phase of the elements of the polynomial matrix ¢™Q
are approximately equal to those of (3.17) and the estimation
error approaches the lower bound (3.15) [

Remarks: Note that for realizable estimators (m finite), the
lower bound (3.15) is only attainable at distinct frequencies w;
by means of frequency weighting. For frequencies outside the
bandwidth of W, the estimate may be severely degraded. The
results of Corollary 1 are illustrated at the end of the example
in Section IV.

D. Analytical Expressions for Performance Evaluation

Theorem 2: Let a nominal estimator R,, be designed based
on a nominal model, with no uncertainties. Applying it, instead
of (3.10), on an ensemble of systems results in an increase,
as compared to (3.13), of the averaged MSE. The increase is
given by

teEE(e(k)e(k)*)n — 0 EE((k)e (k)" Jmin =
[W(R, —R)z"D A 'N~18|3 (3.18)
where f is defined by (3.1)—(3.6) and R is the robust estimator
(3.10). |
Proof: To obtain (3.18), the nominal filter R, is ex-
pressed as R+ (R, —R). The optimality of R implies that any
modification gives an orthogonal contribution to the criterion.
This, and the use of the averaged innovations model (3.2),
gives (3.18). Mixed terms vanish, due to the orthogonality. g
Theorem 3: Let a robust estimator R be designed by
(3.6)«3.11). When applying it on a system equal to the
nominal model, the increased MSE, as compared to the
minimum obtainable with a nominal estimator R,,, is

trE(e(k)e(k)") — trE(e(k)e(k)*)pn =

IW(R — R.)2™ D7 AT N B, 13- (3.19
Here, D;' AN, is the nominal innovations model and
B, is obtained from the nominal spectral factorization

ﬂoﬂo* = NoB,CoCouBouN oy + D,A,M,M,.A,.D,,.
(3.20)
O
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Signal )
Modei

Transducers

Fig. 2. Model and filter structure in the design example.

Proof: Analogous to that of Theorem 2, by expressing
RasR,+ (R -R,).

Remarks: Expression (3.18) can be used for arbitrary linear
estimaters R,, for example, minimax-designs. Expression
(3.19) quantifies the price paid in nominal performance for
obtaining a robust design. The averaged innovations model
in (3.18), and the nominal innovations model in (3.19), to-
gether with the filter W, can be seen as weighting func-
tions.

The largest effect of robust filtering is obtained at moderate
and high signal-to-noise ratios. If the variance of broad-band
measurement noise is increased, the gains of both the nominal
and the robust filters decrease. If the noise level is high,
performance differences between nominal and robust solutions
tend to be small.

IV. A DESIGN EXAMPLE

Assume that a scalar signal u(k) is to be estimated. It is
described by a first order AR-process without uncertainty

1

k) = TGt

(k) ; Ee(k)®> =1.

Thus, P=8/T=1,D; =1,D =D, =1-0.5¢"1,C, =1,
and C; = 0. This signal is measured by two transducers
(p = 2), with nominal models being second order FIR filters.
The transducers are modeled by

y(k) = (Bo + AT*AB)u(k) + w(k)
with

—2
0.100 + 0.080¢ > @1

B
B, = <B§1> = (1 — 1.4¢7" +0.92¢72

1 0
A= (o 1-0.6q-1)’

Ap (BB _ ABY + AbY 2
T \ABZ ] T\ AW + Ap2gT + ABg2 )

Thus, B; = A, = I, and A = A, are used in (2.5). See
Fig. 2. :

In the first transducer B!, there is only a single uncertain
parameter. It affects the coefficients Abl! and AbL! with
opposite signs, so they have zero mean, variance 77 and
cross-covariance —r%. In the second transducer, the stochastic
coefficients are assumed mutually uncorrelated, with zero
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means and equal variance r2. Thus, the auto-covariance ma-
trices are

1 0 -1
PULW =20 0 o0 |; PV =rlL (2
10 1

The scale factors (standard deviations) of the uncertainties

are set to
™ = 0.02; T2 = 0.10. (43)

Coefficients of AB!! and AB?! are assumed mutually uncor-
related. The complete covariance matrix (2.11) then becomes

pL1l) 0
Pap=( 4B :
aB ( o P )

The measurement noises w; (k) have variance 0.01. They are
white and mutually uncorrelated. Thus, w(k) = Mv(k), with

M=M,=01I. “4.5)

(4.4)

The goal is now to design a filter (m = 0), which estimates
u(k) based on the two measurements y;(k) and yz(k). Fre-
quency weighting is not used used here (W = 1), but its
influence will be illustrated at the end of the example. In
(3.4)—(3.5), we obtain

CcC. = E(cc,) =1

MM, = E(MM,) =0.011, (4.6)

BcBe, = E(BCC.B,) = B,B,. + E(ABAB,).
Expression (3.7) or (2.10) gives

E(ABUABH) = oTPSE VT

=(1q¢¢Hri{ 0 0 0

=ri(-¢+2-q7%). @.7)

Note that E(AB!AB!') has zeros at z =1 and at z = —1.
Thus, the static gain and the high-frequency gain are assumed
to be exactly known. Furthermore

The spectral factorization (3.6) has dimension plp = 2|2.
Using (4.6), it reduces to

BB, = BcBe, + DAMM A, D,

= A1B,B,. A1, + E(ABAB,) + 0.01DA; A1, D,

where

5 _(ri(-¢*+2-¢7%) O
E(ABAB,) = ( B 37"%) .

By using the Newton-based algorithm described in [18], a
stable averaged spectral factor, with $(0) nonsingular, was
found to be (4.9), as shown at the bottom of the page. _

In the Diophantine equation (3.11), we use m = =0,V =
V=18=1€6C,=1,N, =L, U=1Lad T = 1L
Equation (3.11) thus reduces to

BoAr = QB, + LiqD I 4.10)

The degrees (3.12) are n@ = 0, nL, = 2. By expressing the
polynomial matrices as matrix polynomials, (4.10) becomes

(B3 +Biq+B3?) I+ Alq) =Qo (B +Bia+B30° +B34°)
+(Ly+Lig+L3g%)
x (—0.5+¢)I.

Transpose this equation, and note that since the coefficient
matrices are real-valued, P}7 = P;. By equating the two
sides for each power of g separately, a linear system of eight
equations, in block-Toepliz form, is obtained

By Bo —0.51; 0 0 Qg
B:+A:1Bo | B I, -05I, O Lo
Bo+A1B, - ﬂ2 0 I, —0.51, L,

A,B; B, 0 0 I Lo

With numerical values from (4.1) and (4.9), we obtain (x), as
found at the bottom of the page. The solution is

Q = (0.4005 0.7746)

L. = (0.0290 + 0.0200g — 0.2053 + 0.3224¢ — 0.1299¢%).

E(AB*AB2) = TPl =373, (4.8) @.11)
_{ 0.1339—0.01867¢g~* + 0.01622¢~2 0.07862 — 0.01488¢™! + 0.06905g2
A= (—0.147411—l +0.2908¢~2 — 0.1325¢~3  1.1585 — 2.0327¢* + 1.6219¢™% — 0.4765q‘3) (4.9)
1 1339 07862 -5 0O 0O 0 0 O 1
1 0 11585 0 -5 0 0 0 O 5
0 —-.01867 -.01488 1 0 -5 0 0 0 !
-2 [ _|-1474 -20327 0 1 0 -5 0 O £?
08 |~ o022 06905 o o 1 0 -5 0 o )
1.76 2008 16219 0 0 0 1 0 -—5]]|¢?
0 0 0 0O 0 o0 o0 1 O 7%
—.552 —1325 —4765 0 0 0 0 0 1 52
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Fig. 3. Bode magnitude plots for the nominal models of the two transducers
B'1(¢~1) and B?! (g™ !) (solid). The dotted curves show fifteen realizations
of possible true systems. Magnitude plots for the gains from y; (k) (upper)
and y2(k) (lower), are shown for the robust estimator (dash-dotted) and for
the nominal Wiener filter design (dashed).

Finally, the robust estimator (3.10) becomes

1
R=QF 'A; = ——(K} K}?) 4.12)
R,
where the monic denominator is R.(¢™!) = det 8 (¢~!)/ det
By. We obtain
K} =2.9922 — 4.5138¢7! + 2.7365¢~2 — 0.5687¢ >

K}? = 0.4655 — 0.3341¢~ ! — 0.06445¢™2 + 0.05841¢3
R, =1-1.8193¢7! 4 1.6043¢2 — 0.6584¢ >
+0.08479¢™* + 0.009182¢ 5.

A corresponding nominal estimator (with no uncertainty as-
sumed) is given by (K}! K}2)/R,, with

K;! =0.7419 — 1.0943¢7* + 0.3617¢~2
K2 = 0.8792 - 0.3767¢~! — 0.03145¢ 2
R, =1-1.7786g"" + 1.4269¢~% — 0.3938¢ 3.

Fig. 3 shows the Bode magnitude plots for the robust and
nominal estimators. Also shown is the nominal transducer
model and 15 randomly chosen systems. These were generated
by using B = B,+A; L AB, with covariance matrix (4.4) and
Gaussian distributions. The channel B!! has its uncertainty
concentrated around the notch, while B2! is uncertain mainly
at low frequencies.

The gains of the nominal estimator (dashed curves) are
determined exclusively by the nominal signal to noise ratios.
The gains of the robust estimator (dash-dotted) are determined
by the balance between noise levels and model uncertainties
in the two channels. For example, the robust filter “knows”
that channel 1 is well known, as compared to channel 2.
Consequently, a higher gain is used from y; (k) as compared to
the nominal case, and a lower gain from y»(k). The difference,
as compared to nominal design, is largest at low frequencies.
There, the dynamics of channel 1 is almost perfectly known,
while channel 2 is very uncertain. The nominal filter gain in
channel 2 is an approximate inverse of the nominal transducer.
In contrast to the nominal filter, the robust filter has hardly
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Fig. 4. Bode magnitude plots for the transfer function from u(k) to
@(k{k)for the nominal system, with robust and nominal estimators.

15 —B11 varies 5 ,bo in B21 varies
o)
1+ 4
k13 4
8 7
= = Ll 1
0.5 B

.1 -0.05 0 0.05 0.1
T

&O

/b1 in B21 varies b2in B21 varies "

MSE
SR
MSE

delta_bl

delta_b2

Fig. 5. MSE for robust (dashed) and nominal filter (solid). One of the four
uncertain parameters is varied, while the others are held at nominal values.
Also shown is the variance of u(k) (upper dotted). It corresponds to the error
caused by the “trivial” estimate #(k) = 0. The lower dotted curve is the
lower bound, achievable with knowledge of the true parameter values. Rings
(o) indicate the two standard deviation limits of each parameter.

any peak at the (uncertain) notch around w = 0.7. It utilizes
channel 1 more at this frequency.

Fig. 4 shows Bode magnitude plots of transfer functions
from u(k) to @(k|k). Since the noise levels are rather low,
the nominal estimator performs an almost complete inversion
of the nominal transducers. The robust estimator is somewhat
more cautious, but it also accomplishes a rather good inver-
sion. It utilizes the two measurement signals differently than
the nominal estimator.

Fig. 5 shows the mean square estimation error, when one
of the uncertain parameters

ABY = AR Er; AR

A2, Apl

is varied, while the others are zero. The four parameters above
span the set of assumed true systems, the extended design
model. On average, over the four uncorrelated stochastic
coefficients, the MSE is 0.32 for the robust filter and 0.90
for the nominal design. Note, however, that when r is varied,
the robust design (dashed) is actually slightly more sensitive
than the nominal design. This is a price pald for reducing the
sensitivity in the other dimensions.®

61t is natural that the robust filter has a somewhat increased sensitivity to
model errors in channel 1; it has higher gain in that channel. This result is due
to the much larger uncertainty in channel 2 at most frequencies. A designer

worried about this effect could simply increase the value of the standard
deviation 7 used in the design.
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Fig. 6. The average spectral density of the estimation error u(k) — a(k|k).
Shown in the plot are the lower bound, according to (3.15), (dash-dotted)
and the average spectral densities obtained with (dashed) and without (solid)
frequency weighting.

The robust estimator, of course, does not perform as well
as the nominal one in the nominal case. This is mainly due to
its somewhat lower gain from u(k) to @4(k|k); see Fig. 4. It is
evident from Fig. 5 that this performance loss is very small,
as compared to the improvement in nonideal situations.’

As an alternative, we tried to investigate minimax designs,
i.e., worst case Ha-designs, assuming rectangular parameter
distributions. This turned out to be prohibitively difficult, since
no point where ming maxap e(k)? = maxap ming £(k)2
could be found. These difficulties were in marked contrast to
the ease of designing a cautious Wiener filter based on the
averaged Ho-criterion.

Let us finally illustrate the effect of using a frequency-
dependent weighting function in the criterion (2.3). Assume
that the performance at frequencies close to w = 0.9 is of
particular importance. The choice

v 1

W= = T-121844-1 7 0.960452

(4.13)

with a high resonance peak (|z| = 0.98) at w = 0.9 should,
according to Corollary 1, result in a performance, at that
frequency, close to the lower bound. Fig. 6 confirms this.
Performance is substantially degraded at higher frequencies,
however, where estimation accuracy is not emphasized.

V. ROBUST FEEDFORWARD CONTROL

A class of feedforward control problems turns out to be
dual to the filtering problems discussed in Section II. We
include a brief separate discussion of them, since it offers
several engineering insights. Feedforward compensation does
not affect the classical sensitivity function. The effect of an %
model deviation at a particular frequency, however, on e.g.,
the step response, will very much depend on the (nominal)
magnitude of the transfer function at that frequency. As the
gain at a particular frequency is increased by a feedforward
link, model errors at that frequency become more and more
noticeable. Therefore, it is of value to take model uncertainty
into account explicitly in the feedforward design.

71t can also be noted that it is of advantage to use both channels. The
minimal MSE, for channels equal to the nominal models, is 0.07 if both
channels are used. It is 0.59 if only channel 1 is used and 0.11 if only channel
2 is used. The average MSE of the robust filter (0.32) is in fact lower than
the nominal MSE for an estimator which uses only channel 1 (0.59).

Fig. 7. A block diagram which is dual to the one in Fig. 1. Arrows are
reversed, summation points and node points are interchanged, and transfer
functions are transposed. The corresponding robust control problem is to

design RT to minimize the average, over the class of models, of the H2-norm
of the transfer function from v to = = (z] 21)7.

To stress the duality to filtering problems, the output of an
uncertain but stable model will be described by

y(k) = (G5 + AGT)u(k) + D w(k)
1
= (BTA;T + ABTBT AT )u(k) + TSTw(k) (5.1)
where A™T denotes inverse and transpose. The rational and
polynomial matrices above have properties as outlined in

Section IL The matrices G* and DT may contain delays. Based
on possibly delayed or advanced measurements of

w(k) = (WT + AW )u(k)
(1o, 1 oryr )
= (UOV" + UlAV V1>v(k),
E(v(k)Tv(k)) =1L (5.2)
a stable controller

u(k) = ~RTw(k +m) (5.3)
is to be designed to minimize the averaged Hy-norm of the
transfer function from v to (2 28)T £ (FTy)T (HTw)T)T
fT(DT _ gTRTZm)wT

—HTRTmeT

2

J = E’ 6.4

2

The control weighting HT = MTN~T and the output
weighting F T =¢t /D are normally specified by the designer
and exactly known, i.e., AHT =0, AFT = 0.

Problem formulation (5.1)-(5.4) may represent a distur-
bance measurement feedforward design. When m > 0, the
disturbance w(k) can be measured before it affects the system
via DT. (Such a situation could, equivalently, be described by
a delay ¢—™ in DT ) The formulation also covers reference
feedforward problems, feedforward decoupling, and model
matching. Then, w(k) is a command signal and WTv(k) is
a (possibly uncertain) stochastic model, describing its second
order properties. A servo filter RT is to be designed, so that
the output —GTu(k) optimally follows the response model
DTw(k).2 In decoupling problems, DT is diagonal.

The duality of feedforward control to the previously dis-
cussed filtering problem has been described in [5] for the

8The corresponding nominal result (without uncertainty) was discussed in
[35] and in [5]. See also [27], where common denominator forms were used.
The robust controller for SISO systems was presented in [36]. In [6], the

applicability of the averaged H2-criterion is demonstrated for a somewhat
more general class of open-loop type problems.
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nominal case. The corresponding result in the presence of
model errors is given below.

Theorem 4: A feedforward filter, which solves the robust
control problem (5.1)—(5.4) under assumptions A1-A4 is given
by transposing R from (3.10), or

u(k) = —ATNTﬂ‘TQTV_T%w(k +m) (5.5
where B8, Q, and V are given by (3.6), (3.11), and (3.9),
respectively. |
Proof: The averaged Hz-norm is invariant under trans-
position. Thus, it fulfills the basic requirement of [5]. By
extending the discussion in {5] to uncertain models the result
is obtained. -
The uncertainty AW7 of the disturbance or reference model
(5.2) enters via the spectral factorization (3.9). Transposition
of (3.9) gives

ViV =, VIVLUL + U VTE(AVTAVT WV,

(5.6)
This is the kind of left spectral factorization encountered when
two noise sources are described by one innovations model. In
fact, the uncertainty AW? has exactly the same effect on
the controller design as would a measurement noise on w(k),
with spectral density VI E(AVTAVT)VT, /U U.. We do
not need to solve a right spectral factorization (3.9) in this
problem. The left spectral factorization (5.6) can be solved
instead.

As in the dual filtering case, uncertainty in the direct
feedthrough, or response model D7 = ST /T does not affect
the ,oqptimal solution, if it is independent of the uncertainties
in G".

VI. CONCLUSIONS

A method for designing robust filters and feedforward con-
trollers, based on imperfectly known linear models, has been
presented. Modeling errors were described by sets of models,
parameterized by random variables with known covariances.
A robust design was obtained by minimizing the Hs-norm,
averaged with respect to the assumed model errors. The
estimator minimizes this criterion by balancing model uncer-
tainties against noise properties, at different frequencies and in
different measurement channels. When using robust filtering,
the greatest sensitivity reduction is obtained at moderate and
high signal to noise ratios. Dually, the largest impact of robust
control is obtained for designs with low input penalties.

One variant of the discussed filtering problems is to ex-
plicitlty define a part of the measurement vector as being
a noise-free signal. This signal could e.g., represent known
inputs to the system. Such a formulation is also of use in
the optimization of decision feedback equalizers for digital
communications [33], [34].

There exist efficient numerical algorithms based on a poly-
nomial equations approach. (We have implemented them as
MATLAB .m-files, and the code is available upon request.) For
multivariable problems of high order and high signal vector
dimension p, Riccati-based algorithms do, however, perform
better numerically. For dimensions of the measurement vector
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up to, say, four, algorithms based directly on polynomial
manipulation can in general be used safely. For higher di-
mensions, we recommend analytical solutions to be obtained
by an input—output approach, to gain engineering insight, but
algorithms e.g., for spectral factorization to be based on state
space formulations, cf. [22]

APPENDIX

A. Proofs of Lemmas

Proof of Lemma I: Let G = [GT...GT]|T, where
G, --- G, represent the n polynomial row vectors of the n|m
matrix. Then, with H of dimension m|m, the ijth element of
E(GHG,) can be expressed as

B(GHG.)); = E(G:HG;.)
= E_'(tI‘GJ'*GiH) = tI‘E(G]*G,)E(H)

In the last equality, we used the fact that all elements of G;,G;
are independent of all those of H. We also have that

trE’(Gj*G,-)E(H) = E(G,E(H)G]*) = [E(GE(H)G,,)]U

which proves (3.3), since E(-) operates on all elements of
GHG.. : u

Proof of Lemma 2: If the coefficients of the elements
of a polynomial matrix AP(g~!) are stochastic variables,
then so are the coefficients of the elements in APAP,. The
coefficients of the polynomial elements in AC and AB are
independent and so are the coefficients of the elements in
ACAC, and ABAB,. By defining CC, as H and AB as
G in Lemma 1 and using (3.4), the right-hand side of (3.1)
becomes

NE[BCC.B.|N. + DAE(MM,)A,D, =
NE[BE(CC.)B.|N, + DAE(MM,)A.D,
= NE[BCC.B,IN.+ DAMM,A.D..

il

By once more utilizing (3.4), we obtain (3.6).

B. Calculation of Averaged Polynomial Matrices

Consider the matrices discussed in Lemma 1. Let the
polynomial matrices G = AP and H be of dimensions n|m
and m|m, respectively. Denote the i-th row of AP by

AP; = [AP" ... AP™

where AP* are polynomials with stochastic coefficients. If H
is assumed deterministic, the :jth element of E(APHAP,)
can be written as
E[APHAP,);;=ttE(AP; AP,)H =

=ttHE[AP?' - .- API™|T[APY ... AP™)

APIAPS? APmAPH
=trHE : .
APIIAPI™ APmAPI™
By using (2.10), we readily obtain (3.7) . [}
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C. Proof of Theorem 1

A technique for constructive derivation of polynomial de-
sign equations for Wiener filters was presented in [1]. This
method is utilized here to minimize (2.3). The estimation error
is given by

e(k) = W(S(k) = f(klk +m)). (€D

All admissible alternatives to a proposed estimate f(k|k+m),
can be described by

d(k) = Ry(k+m)+ink);  b(k) = My(k+m). (C.2)

Here, M is a rational, stable and causal, but otherwise arbitrary
transfer function. Define the weighted variation

v(k) 2 Wi (k)

_ %VM g (A‘lB%Ce(k) + N‘le(k)) .

Optimality of (2.2) is obtained if no perturbation v(k) will
improve the average estimator performance. This occurs if and
only if the error £(k) is orthogonal to any admissible weighted
estimator variation v(k). In other words

trEE(e(k)v(k)*) = trEE(e(k)*v(k)) = 0.
Then, the perturbed criterion value becomes

J = teEEW (f(k) — d(k)]W ((k) — d(k))]*
= trEE(e(k)e(k)* — e(k)v(k)*
— (k) v(k) + v(k)v(k)*)

= trEE(e(k)e(k)* + v(k)v(k)®). (C.3)

This expression is evidently minimized by v(k) = 0.
Since all transfer functions in (2.4) are assumed stable, both

e(k) and v(k) are stationary. Parseval’s formula may then be
used to express trEFEe(k)v(k)* as

- 1 1 m -1 1 m -1
trEEUV{(TS q"RA B)DCe(k)—q RN Mv(k)}

v {%Vqu (A‘IB%Ce(k) + N-le(k)) }

_ 1 1
=trE— —_
" onj }',{z‘zl UU.DD,
X V{z""‘%SCC*B*A:I —~RATINT!
x (NBCC.B.N,+ DAMM.A.D,)N; A}

x MV, % (C4)
Note that A and N commute, since they are diagonal. We
are allowed to move the expectation E inside the integration,
since, for any particular realization of the elements of AC,
AB, AM, and AV, all elements of the integrand are Riemann
integrable on the unit circle; see e.g., [17, Theorem 3.8]. The
use of the trace rotation, trV{---}M,V, = trtV,.V{.- JM,,

the spectral factorizations (3.1) and (3.9) and the Assumption
A3, leads to

— * _ 4 1 1 V.V
trEEe(k)v(k) "trgﬂ-j f Uu.DD. vy

x {z*mE(%SCC*B,,)A;l
—‘RA‘IN‘Iﬁﬁ*N;lA:l}M*% (C5)

From (C.5) it is now easy to see that uncertainties in

1 1 A - A 1
D= 7S+ A = ;F—E(SO-FSIAS) 2 (?Z)

independent of AC, AB and AV, will not affect the filter
design since, using Assumption Al

E‘(%SCC*B*) - E‘(%S)E(CC*)E(B*) =1 gee.B,.
_ N (X))
(The minimal criterion value will be affected, however,
which is evident form (C.12), below.) In the sequel we thus
use T, =T and S, = S.
Using (C.7) in (C.5) and extracting T to the left and A, 1
to the right now gives

— * 1 1 V.V
trEBe(k)u (k)" =try y( vU.TDD. "
{+"m$CC.B,.~-TRA'N"'BB.N;" |
X A:lM*%- €8

To make (C.8) zero, all poles inside |z| = 1 are eliminated.
This is achieved if, in every element of the integrand, all such
poles are cancelled by zeros. We first cancel what can be
cancelled by means of R directly. Thus
1

R=zV 'Qf'NA (€9
where Q(z~!) is undetermined. Inserting (C.9) into (C.8) gives
trEEe(k)v(k)* as

1 1 .
Mo }{ UU.TDD. "
. d
{z‘"‘VSCC*Bo*N* - Qﬁ*}N;lA;lM*f. (C.10)

Now, U,T,D, A, N are all stable, so they have zeros only
inside |z| = 1. The poles of M are inside |z| = 1. This
means that U-1, D71, A7, N7!, and M, have all their
poles outside |z| = 1. No poles will thus exist inside |z| = 1
in (C.10), if and only if

2~™VS8CC,B,.N, - Qp, = :L.UTDI, (C.11)

for some polynomial matrix L.(z). This is (3.11), if g is sub-
stituted for z. The filter (C.9) coincides with (3.10). Necessity
follows because choices of R other that (C.9) correspond to
v(k) # 0 in (C.3).

Unique solvability of (3.11) is demonstrated as follows.
The Diophantine equation will always have one or several
solutions, since the invariant polynomials of UT DL, are all
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stable, while those of 8, are all unstable. Thus, there exist no
common invariant factors. Let (Qg, Lo«) be one solution pair.
Every solution to (3.11) can then be expressed as

(Qv L*) = (QO

where the polynomial matrix X (g, ¢~!) is undetermined. Now,
Q is required to be causal, so it can not have any positive
powers of g as arguments, while L. must contain no negative
powers of ¢, to assure optimality. Thus, X(g,q~!) = 0 is the
only choice. We conclude that the solution to (3.11) is unique.

The degrees (3.12) are determined by the requirement that
the maximum powers of ¢! and ¢ are covered on both sides
of (3.11). They assure that the number of unknowns equal
the number of equations in the corresponding linear system of
equations. For details, see [1] or [3].

The minimal average estimation error, Jy,:, = trEE (e(k)
€(k)*)min, is obtained as follows. First insert (3.10) into the
criterion’ (2.3), use Parseval’s formula, take expectation and
use (3.1), (3.9) and (3.5) in this order. Then we obtain

~ XqUTD1L, , Lo, + XB,)

1 1 N
Jmln = t . P ——— * * *
or ?|{4=1 UU.IT.DD,’ V{SCC o

- 8CC.B, A;'R, T,z ™ — 2" TRA™*B,CC.S.

+ T’RA‘IN‘lﬂﬂ*N;lA:lR*T*}EiZf. (C.12)
Now, the use of (C.9), trV,V{---} = trV{.-.}V, and
completing the square gives
T —UL}{ L ___lvsee,s.v
™21 J1s=1 UULTT, DD, e
+ (z‘”f’SC‘C*Bo*N*ﬂ:l - Q)
x (ﬂ'lNBoC’C',S*V*z"‘ - Q*)
~VSCC,B,.N.B; B NB,CC.8.V, }dz
4

Finally, use Diophantine equation (C.11) in the middle term

and rearrange the terms to obtain expression (3.13).

- -
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