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principle’’

Anders Ahlén and Mikael Sternad
Systems and Control Group, Department of Technology, Uppsala University, P.O. Box 27, S-75103 Uppsala, Sweden

Received 16 march 1992

Abstract. This paper is written with two purposes in mind. First, it points out some mistakes made in the paper ‘‘Optimal deconvolution
filter design based on orthogonal principle’”, recently published in this journal. Secondly, in order to sort out the reason for those mistakes,
the relations between inner—outer factorization, spectral factorization, whitening filters and Diophantine equations in minimum mean
square error (MMSE) filter design are stressed. It is emphasized that computation of an inner matrix corresponds to performing a spectral
factorization and the inverse of the outer matrix is a whitening filter. Furthermore, finding the causal part of an expression is the same as
solving a Diophantine equation.

Zusammenfassung. Diese Arbeit wurde mit zwei Absichten geschrieben. Als erstes werden einige Fehler in der Arbeit ‘‘Optimal
deconvolution filter design based on orthogonal principle’’, die kiirzlich in dieser Zeitschrift publiziert wurde aufgezeigt. Zweitens
werden die Beziehungen zwischen Inner—outer-Faktorisierung, spektraler Faktorisierung, Whitening-Filtern und Diophantine-Gleichun-
gen beim MMSE-Filter-Entwurf herausgestellt, um die Ursachen fiir solche Fehler zu beseitigen. Es wird betont da$} die Berechnung
einer inneren Matrix mit der Durchfiihrung einer spektralen Faktorisierung korrespondiert und die Inverse einer dufleren Matrix ein
‘Whitening-Filter ist. Weiterhin ist das Finden des kausalen Anteils eines Ausdrucks dasselbe wie die Losung einer Diophantine-
Gleichung.

Résumé, Cet article est écrit avec deux buts & Pesprit. Premiérement, il met en évidence certaines erreurs commises dans 1’article
‘‘Optimal deconvolution filter design based on orthogonal principle’’ publié récemment dans ce journal. Deuxiémement, dans I’ optique
de classifier les causes de ces erreurs, les relations entre factorisation interne—externe, factorisation spectrale, filtres blanchisseurs et
équations diophantines dans le cadre de la conception de filtres MMSE sont mises en exergue. Il est insisté sur le fait que le calcul d’une
matrice interne correspond & une factorisation spectrale et que I’inverse d’une matrice externe est un filtre blanchisseur. De plus, la
recherche de la partie causale d’une expression revient & résoudre une équation diophantine.

Keywords. Deconvolution; inner—outer factorization; Wiener filters; filter design.

1. Introduction

Linear MMSE-deconvolution is a never-ending
source of inspiration in the search of new approaches
to filter design. A variety of methods are available, all
of them having their own advantages. For example, the
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Kalman filter has received much attention in seismic
deconvolution due to its versatility in handling various
time-varying models, see for example [12].

In Wiener filtering, the classical method is to find a
whitening filter in cascade with the causal part, {+} ,
of a cross-spectral density multiplied by the conjugated
whitening filter. See for example [3]. More recently,
the polynomial systems framework, developed by
Kucerain [ 11], has been used in order to solve filtering



52 A. Ahlén, M. Sternad / Filter design via inner—outer factorization

problems. In [8] completing the squares method is
used, whereas in [2] a variational approach utilizing
orthogonality in the frequency domain is suggested.
The advantage with completing the squares method is
that only elementary concepts, quadratic forms, are
needed, whereas the benefits with the method suggested
in [2] is that it leads to the solution in a very short and
direct way. A characteristic feature of Wiener-type
approaches is that they involve, directly or indirectly,
the solution of a spectral factorization and a Diophan-
‘tine equation.

It is well-known that solving an algebraic Riccati
equation is essentially the same as solving a spectral
factorization. It has also been stressed that extracting
the causal part in classical Wiener filtering is the same
as solving a Diophantine equation. See for example [ 2,
8]. Thus, the previously complicated step of finding
{+} .+ can now be automatized.

In [5], Chen and Peng suggest an alternative way of

obtaining the MMSE deconvolution filter. It consists -

of a direct application of the factorization approach
extensively used by Vidyasagar in [ 13]. The main tool
is the orthogonality principle in combination with
inner-outer factorization. Although the paper [5]
offers an alternative and interesting way of deriving a
solution to the deconvolution problem, it contains some
fundamental mistakes and lacks technical accuracy. For
example, it claims that neither a spectralifactorization
nor a Diophantine equation has to be solved. This is
due to an incorrect use of inner—outer factorization. We
will demonstrate that inner—outer factorization is, in
fact, very closely related to spectral factorization and
the design of whitening filters, As noted above, evalu-
ation of causal brackets { -}, corresponds to the solu-
tion of a Diophantine equation. Thus, while (a
corrected version of) the approach presented in [5]
offers new insights into the relation between alternative
solution methods, it does not provide any computa-
tional advantages.

For purpose of illustration, we begin with a discus-
sion of scalar deconvolution problems in Section 2. The
general multivariable case is then discussed in Section
3, while specific technical errors in the solution pre-
sented in [ 5] are pointed out in Section 4. Conclusions
are summarized in Section 5.

Signal Processing

2. Design of scalar MMSE deconvolution
estimators

We will compare two ways of solving the linear
scalar MMSE deconvolution problem. First, the poly-
nomial-based solution, discussed in for example [ 1, 2,
5], is recapitulated. Then, after a brief summary of
inner—outer factorizations, a corrected version of the
factorization approach taken in [5] is presented. The
design equations are shown to be the same as in the
polynomial based approach, if interpreted correctly.

2.1. The scalar MMSE deconvolution problem

Consider the following problem set-up described in
[1, 5], see also Fig. 1:

y(6) =Zu(t) + Dn(t), u(t)==Lr(1), (2.1)
wjth
_«Blg™h) Cg™H M(qg™hH
#=q"* . F=ro . D=
7A@ D(g™Y) N(g™)
A, =EBn(0)?, A.=Er()?, p2EA,/A,. (2.2)

Above, all signals are real-valued scalars, in discrete
time ¢. All polynomials (in the backward shift operator
g y(£) =y(t—1)), except B, are monic. The trans-
ducer #, the stochastic signal model . and the noise
model & are all stable. (In the frequency domain, z is
exchanged for g. The stability areais thus located inside
the unit circle.) The noise sequences {r(¢) } and {r(?) }

Deconvolution
Filter

Fig. 1. The input signal u(¢) is to be estimated from data y(f) so that
E[u(r) —a(t|t+m)]? is minimized.
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are independent and zero mean, with variances A, and
A, tespectively. In the sequel, we will use
P (z)=1+pz+-+p,,7" to represent the conju-
gate of P(z ') =1+piz '+ +p,z "

The objective is to estimate #(¢) based on data y (1)
up to time ¢+ m, such that

J=E(u(t) —a(t|t+m))2=E[u(t) — Fy(t+m)]>
(2.3)

is minimized by a stable and causal linear estimator & .
The problem formulation includes prediction (m <0),
filtering (m=10) and fixed-lag smoothing (m>0).

2.2. The polynomial solution
Introduce the polynomial spectral factorization
vBBy =CBNC,B,N, +pMADM A,D,, (24)

where vis a scalar and 8(g ~") is the stable and monic
spectral factor, This polynomial also appears as the
numerator of the innovations model of y(¢) in (2.1),

A e(t), Be()’=2A,. , (2.5)

y(t)=DAN

A stable B (having all zeros strictly inside |z| =1)
exists if and only if CB and pM have no common factors
with zeros on |z| = 1. The criterion (2.3) is then min-
imized by the estimator

_O,NA
B

where Q, (g ~!) together with L, (g) is the unique solu-
tion to the Diophantine equation

Yorad

, (2.6)

q " CCy By Ny =0, vBy +qDLy . (2.7)

For a proof, see [1] or [2], where examples and
expressions for the degrees of Q) and L, are also given.
The above solution, which involves solving a spectral
factorization (2.4) and a linear system of equations
(2.7), can be shown to be optimal also when .2, 7
and & are allowed to have poles on the unit circle [1,
41.

2.3. Inner—outer factorizations

Consider rational matrices with n rows and m col-

umns, having stable discrete-time transfer functions as

elements. Let such matrices be denoted G"*(z '), or

just G, and their conjugate transpose G4"(z) (or Gy).

In the sequel, we will need the concepts of inner and

outer matrices. Below, we summarize some definitions

from [7, 13].

— A stable rational matrix G*'"(z 1), n=m, is inner
if G,G=1, for almost all |z| =1. It is co-inner if
n<mand GG, =1, for almost all |z| =1.

— A stable rational matrix G""(z™ 1), n<m, is outer
if and only if it has full row rank n, V| z| = 1. In other
words, it has no zeros in |z| > 1. It is co-outer when
n>m if and only if it has full column rank m,
V|z| =1L

— A stable rational matrix G"'"(z "), with full rank
pémin{m, n} for all z=e! (no zeros on the unit
circle), has an inner—outer factorization

Gn}m=G;1|pGl;|'" , (28)

with the outer factor G, having a stable right inverse.
It also has a co-inner—outer factorization

Gn|n1=Gg0]PGlc71|m (29)

with the co-outer factor G, having a stable left

inverse. If n <m, the co-outer matrix is square, and

its inverse is unique.

Inner and co-inner matrices are generalizations of
scalar all-pass links. Multiplication by a (co)inner
matrix does not affect the spectral density or power of
a signal vector. Note that a matrix G is co-inner (co-
outer), if GT is inner (outer).

The important property of outer and co-outer matri-
ces is that they are stably invertible. (Additionally, the
inverses are causal if the instantaneous gain matrices
G,(0) and G_,(0) have full rank p.)

2.4. The solution based on inner—outer factorization

Following [5], minimizing (2.3) is equivalent to
minimizing
[9/\1/2 O—J_JOTI:Zm_k?_C—AUZ ZmM/\I/ZZI
D r r n

2

J=

»
2

(2.10)

AD N

where
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1
Ix(z= 1|2 :Ejtr ¢xx>,< dz/z.

Proceeding with the factorization approach along the
line of [5, 13], the trick is to factor the second term of
(2.10) as

us [z"'*’%}«l” z"’%)x,%’z] =UsUs,  (211)
where U, is co-outer of dimension 1|1 and U,; is co-
inner of dimension 1|2. The scalar co-outer will have
a stable inverse if the left-hand side of (2.11) has full
rank 1 forall |z| =1.' The inverse U (z 1) is causal
if and only if U,,(0) #0.

By invoking (2.11), the criterion (2.10) can be writ-
ten as

2

C
J= H[BA}/Z o] - U, Uy,

2

Now, multiplying the interior of the norm in (2.12)
from the right by U,;,., which is normpreserving, and
using the co-inner definition, U Ugy, =1 on |z] =1,
gives

2

J=

C
“:B/\;l’/z 0:|Uci* _JOTUCO

2

By decomposing into causal® and noncausal parts, the
causal and stable filter %, which minimizes J, is readily
found from

C
JOTUCO={[—/\}’2 OJUci} ,
D .

where {-}, stands for the causal part. The optimal
filter thus becomes

C
57={[—/\}’2 O:IUci} Ugt.
D S,

'In other words, BC and A}*M should have no common factors
with zeros on |z| =1. Note that this precisely corresponds to the
condition for the existence of a stable spectral factor in (2.4).

%One should reason in terms of causal and noncausal parts rather
than in terms of stable and unstable parts, which may lead to the
wrong decomposition.

(2.13)

(2.14)

Signal Processing

(2.12)

The left inverse U is guaranteed to be stable.?

The factorization-based solution thus consists of first
performing a co-inner—outer factorization (2.11) and
then the causal-noncausal factorization required in
(2.13). We will now show the correspondence of these
two steps to the solution of (2.4) and (2.7).

If the spectral factorization (2.4) has been solved,
the co-inner and co-outer factors can be obtained as

)\1/2
Uco =—= IB >
ADN

(2.15)

U [AI/Z m—kCBN )\’11/22’”MAD:|
a=| A2

AI/ZB AI/ZB

It is easily verified that U= U U, and, with v=A_/
A

A.CBN(CBN) . + A,MAD(MAD)
UyUy = =1
)\SBB*

(2.16)

Furthermore, U,, given by (2.15) has no zero in
|Z] = 1, and is stably invertible, whenever a stable spec-
tral factor S exists. The construction above is an appli-
cation of the standard way of performing inner—outer
factorizations: by means of spectral factorization. See
[7] and Section 3 below. No simpler method that
avoids spectral factorization exists. From the problem
formulation, it should be obvious that spectral factori-
zation cannot be avoided here: we only have one scalar
measurement and two independent signal/noise
sources. ‘

Using (2.15), the optimal filter (2.14) can be
expressed as

9={[/\i/29 O]Uci*} Ut
D +

B {/\,z ~mtkCC BN, ADN
)\’SDB* + B

, 2.17)

3The reason for introducing a co-inner-outer factorization in
(2.12) is the need for a stable inverse in this final step between
(2.13) and (2.14). The use of an inner—outer factorization (2.8)
would not work here even though a right inverse to U, would exist.
The reason is that the solution (2.14) would not satisfy (2.13). Only
the use of a left inverse of U, would satisfy (2.13).
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where the scalar A7 '/? from U has been absorbed
into the { -}, -factor.

As has been explained, for example in Appendix B
of [2], solving the Diophantine equation is nothing
but a numerically efficient way of performing the causal
bracket operation {:},. Introduce polynomials
Ovq~ ") and L, (g), such that the impulse response of
the rational function inside the brackets of (2.17) can
be expressed as the sum of a causal part and a noncausal
part

Ag"TC(g ) Co (@) B4 (P Ny (9)
A.D(g™") Bu(q)

_01(g7" | gLy (@) (2.18)
D(g ) ABala) '

Thus,

{)\'.qu%—kcc*B*N*} =% (2 19)
XD B, . D '

By setting the expression (2.18) on a common denom-
inator, we obtain the Diophantine equation 2.7).4
Inserting (2.19) into (2.17) gives (2.6):

5 Q1 ADN_0\NA
D B B

Thus, the polynomial-based and the factorization-
based solutions are identical and require virtually the
same calculations. Observe that the inverse of the co-
outer U, is nothing but the well-known whitening fil-
ter. Thus, (2.17) also coincides with the classical Wie-
ner solution.

(2.20)

3. Multichannel deconvolution

Let a rational matrix G"!"(z~1) have full rank for
all |z| =1. Inner—outer and co-inner—outer factoriza-
tions G = G;G, = G,,G; can then be found in a straight-

“Note that in order to obtain the minimal estimation error, it is
important to include the direct term in the causal part, i.e. there should
be a free ‘g’ in the noncausal part in front of L, in (2.18). See also
[6]. If the solution is obtained as in [1, 2], this is automatically
taken care of,

forward way, see for example [7]. When n > m, G, of
dimension 7 |m, is found from G; = GG ', where G,
is a stable m|m right spectral factor of G,G. On the
other hand, when n<m, G, of dimension n|m, is
obtained from G,; = G,' G, where G, is a stable n|n
left spectral factor of GG, For the deconvolution prob-
lem, a variant of the latter relation will be used in
Lemma 1 below.

When the signalsin (2.1) are vectors, matrix fraction
descriptions [10] may be utilized to parametrize the
rational matrices. Let /7, & and .% in (2.1) be rational
matrices, given by

#=A"B, 9=N"'M, F=D"'C, (3.1)

where (A, B, C, D, M, N) are polynomial matrices in
the backward shift operator, of dimensions p|p, p|s,
s|ec, s|s, p|j and p|p, respectively. The white noises
r(t) and n(t) are stationary, with zero means and
covariance matrices ¢p> 0 and /> 0 of dimensions ¢ | ¢
and j|j, respectively.

Introduce the coprime factorizations

D~ 'B=BD~', N 'P=DAN"', (3.2)

with D, N and P being polynomial matrices of dimen-
sion p|p while Bis p|s.

LEMMA 1. The matrix & £ [7"# ZV?  "D¢'/?]
of dimension p|c+j, where p<c+j, is assumed to
have rank p. Then, & has a co-inner—outer factoriza-
tion such that & = U U, where U, and U, of dimen-
sions p|p and p|c+j, are rational matrices given by
Uo=A"'D7'N'B,

Uci: [Zm,B_INECQSUZ Z'",B_IﬁM!/II/Z] .
The polynomial matrix B, of dimension p|p, is defined
by the polynomial matrix left spectral factorization

BBy =NBCHCy BN, +PMyM, P, . (3.4)

(3.3)

PROOF. Immediate, by direct multiplication and
verification of the co-inner matrix property
UciUci*zlp' D

Introduce the p|p spectral density matrix
¢y(w) é%%* |z=ei“' = Uco Uci Uci* Uco* !z=eiw
=UcoUco>k |z=eif“a (35)

Vol. 35, No. 1, January 1994




56 A. Ahlén, M. Sternad / Filter design via inner—outer factorization

and assume that

1. the polynomial matrices A, D and N are stable, with
nonsingular leading matrices

2. ¢,(w) is nonsingular for all frequencies w.

Then, B in (3.4) is guaranteed to be stable. We now

have the following result.

THEOREM 1. Consider the system (2.1), (3.1) and the
factorizations (3.2). Under the assumptions 1 and 2
above and for p < ¢+, the optimal filter minimizing

J=tr EQu(r) ~Fy(t+m)) (u(t) —Fy(t+m))*
is given by
F=D"'Q,B 'NDA, (3.6)

where Oy, of dimension s|p, is determined from the
causal bracket operation

{q_mD_IC¢C*§*N*B;l}+ =D_1Q1, (3.7)

or equivalently, together with a polynomial matrix L,
.of the same dimension as Q., as the solution to the
bilateral (polynomial matrix) Diophantine equation

g "CPCy By Ny = Q1B +9DLy, . (3.8)
with degrees

nQ, <max(nc+m, nd—1) ,

nL<max(ni+nb+nc—m,nB)—1. (3:9)

PROOF. See Appendix A.

Note that in (3.6), 8~ 'NDA is the multivariable coun-
terpart to a whitening filter. It is also the inverse of the
co-outer factor (3.3). As in the scalar case, discussed
in Section 2, the deconvolution filter derived by inner—
outer factorization turns out to be equivalent to a pol-
ynomial-based solution. Again, inner—outer factoriza-
tion is based on (matrix) spectral factorization. As a
bonus, we obtain a solution which is guaranteed to be
causal, since algorithms exist for polynomial spectral
factorization, which guarantee that 8(0) is nonsingu-
lar. Thus, 8~ becomes causal. Also, the need for
coprime factorizations arises naturally. Solution of a
bilateral Diophantine equation (3.8) is a way of per-
forming the causal factorization (3.7). It could be very
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difficult to find Q,, of the right order, from (3.7),
unless connection to a Diophantine equation is made.
For a direct polynomial-based derivation of a solution
which contains the one above as a special case, see
Section 5C of [2].

4. Comments on ‘“‘Optimal deconvolution filter
design based on orthogonal principle’’

Based on the discussion in Sections 2 and 3, we will
now make specific comments on the paper [5]. First
of all, the authors claim that their solution could be
obtained without performing spectral factorization and
without solving a Diophantine equation. This might be
so in very simple cases. On the other hand, in such
cases neither a spectral factorization nor a Diophantine
equation has to be solved in the polynomial approach,
because the solution can be found immediately by
inspection. In any other case, this statement is not true.

The inner—outer factorization defined in ‘Fact 1’ in
[5] is incomplete and misleading. It should correspond
to a co-inner—outer factorization (2.9), but only does
so when n>m, with rank p=m. However, the case
n<mis of interest in the paper.® In that case, with rank
p =n, the matrix dimensions are incorrect. G, should
be n|n, not n|m. The dimension of G; should be n|m,
not m|m. Note, in particular, that the factorizations
used in Examples 1 and 2 of [5], on pages 367 and
369, are not co-inner—outer. Their dimensions are
incorrect.

We will now focus on the (scalar) Example 1in [5].
The first error is made in the co-inner—outer factoriza-
tion, as mentioned above. In the scalar case, U, should
be scalar and U, should be a 1|2 matrix. In the authors’
solution ‘U, is a 1|2 and ‘U;’ is a 2|2 matrix.® This
factorization is both deceptive and compelling. Later
on, in the calculation of # in (2.14), it forces/misleads
the authors to choose a right inverse of ‘U’ which does

SIn filtering problems, n>m represents a degenerate, singular,
situation: the number of measurements (dim y(¢) ) is larger than the
total number of independent noise sources (dim n(t)-+dim r(#)). A
nonsingular spectral factor cannot be found in such cases.

There is one exception when the authors’ partitioning becomes
correct, That is in the scalar noise free case. Then all involved matri-
ces are of dimension 1] 1. Otherwise, the matrix dimensions will not
agree.
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exist, instead of a left inverse’ which does not exist
since UL U, is singular. However, a solution % based
on aright inverse to ‘U, does not satisfy (2.13). (This
mistake seems to have created the illusion that no spec-
tral factorization is required.)

Next, when calculating the causal part, (here
denoted {*}. instead of {1 of
{([.ZAY* 01U}, the authors of [5] obtain the
answer

0.4778 +0.3658z ! ]

ZAV2 01U, =[
2, 10+ 1—0.1584z !

(4.1)

This factor has incorrect dimension. It is a 1|2-matrix.
According to the solution in Section 2, it should be a
scalar transfer function. Furthermore, its first element
is numerically incorrect. This is the result one would
obtain if the free ‘g’ in (2.18) is neglected®. Note, that
the noncausal part should start with a pure advance g
or z, as pointed out in [6]. Taking the free ‘g’ into
account, one would obtain

0.4663 4+ 0.36767 ! ]
1—0.1584z7 ! '

([ZX2 01U} 4 =[

(4.2)

As a result, the corresponding noncausal part, here
denoted {+}_, s

0.0104
£ o] (43)

ZAV2 o1y, _=[—-——
UZ2, 10} 1+0.9z

Notice that (4.3) is a polynomial fraction in ‘g’ or °z’
and notin ‘g ™" or ‘z " as in the solution in [5].
Now, using (4.1) and the right inverse of the (incor-
rect) ‘U.’, a filter &, of the wrong order, is obtained,
after cancelling a common factor. This filter (with all
numerator coefficients positive), will, of course, not
satisfy (2.13). In fact, with the use of the authors’

"Even if the left inverse would exist, dimension problems would
arise.

8Neglecting the free ‘g’ leads to a non-unique causal-noncausal
decomposition, since modified degree conditions would force L, in
(2.18) tobe of order 2. (See Section 4 of [2].) By letting the highest
degree coefficient of L, be zero, the authors of {5] obtain (4.1). It
is one possible choice out of infinitely many, but none of them
provides an optimal filter.

‘outer’ matrix, no solution can be found since a left
inverse of that matrix does not exist. The correct filter
is

_O\NA
B

F = (0.9732+0.7617q ' +0.0616g >

—0.0203¢g *—0.002¢ %)/
(1+1.9223¢ ' +1.0744q >
+0.0909g *—0.0496g %) .  (4.4)

This is the filter the authors of [ 5] would have obtained
if they had completed their comparative calculations
based on [1]. Note that the correct filter order is four,
whereas in [5] it is of order five. Presumably the mis-
takes were overlooked due to the relatively acceptable
performance of the resulting filter. However, in general,
errors like those made in [5] will have a detrimental
effect on the performance.

The same types of errors were committed in Example
2. Some additional minor corrections are that the scalar
criterion should be expressed as J=tr E(e(#)e™(¢)) or
E[e"(#)e(1)], not Ee(t)e™(¢). Furthermore, J= | - ||3,
not ||+ ||,, since J is the mean square error. In order to
summarize, the derivation of the filter, from (10) to
(12) in [5] is correct, provided that a correctly dimen-
sioned co-inner—outer factorization and a left inverse is
chosen. (In virtually all practical cases, it will be an
ordinary inverse.) However, other parts of [5] and, in
particular, the examples contain errors and conceptual
mistakes.

5. Concluding remarks

It has been interesting to penetrate the solution pre-
sented in [5]. Correctly used, it gives some new
insights into filtering problems. It becomes obvious that
spectral factorization and Diophantine equation cannot
really be avoided. They are hidden, implicitly, in the
determination of the co-inner matrix and the causal
factor { - } ,, respectively. Conditions for existence and
solvability are not obvious in the inner—-outer approach.
They become apparent first when connections to spec-
tral factorization and Diophantine equations are made.

The inner—outer factorization is rather difficult to per- .
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form in the multivariable case, in particular since
rational matrices have to be used. The necessity of
coprime factorizations is another cause. The outer-
matrix relation to a rational spectral factorization and
to a whitening filter will, however, be a partial remedy.

Since the inner-outer factorization approach
involves virtually the same steps as in other approaches,
we suggest that the polynomial systems framework, as
utilized, for example, in [1, 2], is a more direct and
reliable route to the design equations.

Appendix A. Proof of Theorem 1

Utilizing Lemma 1, the MSE criterion can be written
I=ILZ9" 01~F ("7 PP oy
=[Z$'* 0]-FU,Uy|3
=[Z$"? 01Usy —F U, 3
As in Section 2, we then obtain the expression
FUeo ={[Z¢'? 0]Us4 )+

for the optimal causal filter & . Using (3.1)—(3.3), this
expression can be written as

FATIDTINT'B
={q "D 'CHC, B N, B:"}, . (A.D)

Partitioning the interior of the right-hand side into
causal and noncausal parts gives
q_’nD_IC(ﬁC*E*N*B;l =D~ TqLy Byt

(A2)
with D ~'Q, being the causal part { -} , .

After multiplication of (A.2) by D from the left and
B from the right, we immediately obtain
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g "C¢Cy B Ny =0Q,B, +qDL, , (A3)

which is a bilateral Diophantine equation in Qrand L.
It will have a unique solution if the degrees are chosen
as in (3.9), see also [2]. After extracting the causal
part D ~'Q,, the expression (3.6) for the optimal filter
is readily obtained by multiplying (A.1) by the p|p
matrix 87 'NDA from the right. [J
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