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Abstract

A simple derivation methodology for optimization of linear quadratic
controllers is presented, in the discrete time polynomial systems framework.
A control law variation, regarded as a potential feedforward from the in-
novations, is used. Orthogonality is evaluated in the frequency domain,
by collectively cancelling unstable poles by zeros. The suggested method,
summarized as a three—step scheme, is exemplified on a disturbance mea-
surement feedforward and an output feedback problem. It is a simple and
more direct alternative to the “completing the squares” approach.
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1 INTRODUCTION

The study of linear quadratic control laws in input—output form has been a subject
of long-standing interest. The Wiener solution of Youla et al [2] and use of the
polynomial approach of Kucera [3],[4] are two well-known contributions. For LQ
problems, the polynomial equations approach provides a systematic way of eval-
uating the causal factors of a classical Wiener—Hopf solution. Efficient numerical
algorithms for solving polynomial equations exist [3],[6]. For a given LQ problem,
the corresponding polynomial equations can be derived, following Kucera, by com-
pleting the squares in the criterion. See, for example, [3], [4], [9], [15], [18].

We have found the method of completing the squares to be rather cumbersome. A
new way of deriving the design equations, which requires significantly fewer alge-
braic steps, is suggested here. Essentially, an old variational argument is utilized
in a novel way. Orthogonality between signals and variations is evaluated in the
frequency domain, to obtain polynomial equations which define the control law.
The method is a short, simple and direct alternative for use within the polynomial
system framework. When it is used, the resulting equations are, of course, the
same that would have been obtained by a ”completing the squares”—reasoning.
Subsequent discussion of solvability of the equations and stability of the solution
remains unaltered. The use of the method in discrete-time control problems will
be explained. Application to continuous-time problems is straightforward. In a
companion paper [1], based on [8], the optimization of estimators is considered.

An outline of the technique is presented in Section II. Application to open—loop
problems is considered in Section III, exemplified in detail by a disturbance mea-
surement feedforward problem. Feedback control is discussed in Section IV, where
an output feedback problem is considered. The reasoning is summarized as a step—
by—step procedure in Section V.

Remark on the notation

The backward shift operator is denoted ¢ *. It corresponds to 2! in the frequency
domain. Trace and transpose of matrices M are denoted trM and M’ respectively.
For any polynomial matrix P(z~!), P, = P(z)'. The arguments are often omitted.
A square polynomial matrix, of full normal rank, is called stable (or strictly Schur),
if its determinant has all zeros in |z| < 1. Rational matrices R(z!) are called
stable if all their elements are transfer functions with poles in |z| < 1. If P(¢ ')
is a square polynomial matrix, all elements of the rational matrix P(q_l)f1 are
causal if and only if the leading coefficient matrix of P(¢™!), denoted P(0), is
nonsingular. The degree of P(q™!) is the highest degree of any of its polynomial
elements.



2 OUTLINE OF THE PROCEDURE

Consider the control of a linear discrete—time system, which is stochastic and time—
invariant. Its inputs u(t) € R™ are to be calculated, based on linear combinations
of measurable outputs z(t) € R", so that the signals y(¢) € RP are controlled.
Denote the regulator

u(t) = =R(qg")z(t) (2.1)

where R (z 1) is a causal rational m|n-matrix, to be designed so that the controlled
system is stable and the infinite-horizon quadratic criterion

J = E{trtVy(t)(Vy(t)) + trWu(t)(Wu(t))'} (2.2)

is minimized. Above, V(¢!) and W(q!) are polynomial weighting matrices,
of dimensions p|p and m|m, respectively. (Use of rational weighting matrices
is straightforward, but requires additional coprime factorizations.) Variational
arguments will be used in order to minimize (2.2). For this purpose, introduce the

alternative requlator
u(t) = —R(qg1)z(t) + n(t) (2.3)

where n(t) € R™ is a linear function of measurements up to time t. The only
restriction on this variational term is that the control law is causal and the total
system is internally stable. The use of (2.3) results in the modified signals

y(t) = wolt) +oy(t)
(2.4)

u(t) = uo(t) + du(t)

where y,(t) and w,(t) result from control by (2.1), while dy(¢) and du(t) are caused
by the variation n(t). The criterion can then be expressed as

J == JO + 2J1 =+ J2 (25)

where

J, = E(tr(Vy,) (Vy,) + tr(Wu,)(Wu,)")
Ji = Etr(Vy,)(Voy) + tr(Wu,)(Wéu)') (2.6)
Jy, = E(tr(Véy)(Voy) + tr(Wou)(Wou)') .

The goal is now to select R so that J; vanishes. Then, the regulator (2.1) is
optimal; no perturbation n(t) could improve the performance, since .J, does not
depend on n(t) and Jy > 0.

Note that the condition J; = 0 can be expressed as

E((Vsy) (Wou)') ( VVV?Z ) —0 .
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The vector ((Vy,) (Wu,)") contains signals appearing in the criterion when the
regulator (2.1) is used. It is required to be orthogonal to the vector of perturba-
tions ((Vdy)' (Wdu)'), caused by admissible variations of the control law.

Assume y,(t), 0y(t), u,(t) and du(t) to be stationary. (This has to be verified, in
each particular problem.) Let ¢ be the dimension of the noise vector disturbing
the system. By using Parsevals formula, J; = 0 can be expressed as

1 dz

J = 5 j{zﬂ tr/\/l(z,z_l)j =0 (2.7)
where M(z,z7!) is a rational ¢|¢ matrix. The relation (2.7) is fulfilled if each
element of M(z,27")z"" is made analytic in |z| < 1. Then, the scalar integrand
trM(z,271)z71 is also analytic in |z| < 1, so the integral vanishes. These £ el-
ementwise conditions will be sufficient to determine R. By using matrix fraction
descriptions, (MFD’s), they can be satisfied collectively, as will be evident in Sec-
tion III and IV. This results in the same linear polynomial matrix equations as
those obtained by the ”completing the squares”—part of Kucera’s approach.

The outlined procedure is a constructive derivation technique. Its initial steps
are related to a proof by contradiction, first presented in [10]. In that approach,
the optimality of a filter or regulator, obtained by other means, is verified. It is
demonstrated that (2.7) is fulfilled, because the integrand is analytic in |z| < 1.
Such non-constructive proofs have been utilized in, for example, [7], [11]-[14].

3 OPEN-LOOP CONTROL: DISTURBANCE
MEASUREMENT FEEDFORWARD

Assume a stable system to be described by a model in right MFD form

y(t) = BA 'u(t) + DFtw(t) . (3.1)

Here, w(t) € R’ is a vector of stationary measurable disturbances, with spectral
density ¢, (e*), described by

w(t) = GH 'u(t) (3.2)

where v(t) € R’ is stationary white noise, with zero mean and covariance ma-
trix ¢ > 0. The polynomial matrices B(q™!), A(¢™!), D(¢7'), F(¢™!), G(¢7!) and
H(q™!) have dimensions p|m, m|m, p|¢, £|(, £|¢ and £|¢, respectively. Delays are in-
cluded in the corresponding polynomials of B(q~!) and D(q!). The pairs (B, A),
(D, F) and (G, H) need not necessarily be right coprime. Assume the following:



A1. The polynomial matrices A, F,G and H are all stable and have nonsingular
leading coefficient matrices.

A2. There exists a stable m|m right polynomial spectral factor (¢~ 1), defined by
8.8 =B.V.VB+ AW.WA (3.3)

with 3(0) nonsingular.

In order to minimize (2.2), the perturbed feedforward regulator
u(t) = —Ruw(t) + n(t) (3.4)

is introduced. We assume w(t), but not y(¢), to be measurable. All admissible vari-
ations can then be expressed as n(t) = Tw(t). The rational matrix 7 (¢!) must
be causal and stable, but is otherwise arbitrary. When the system is controlled by
(3.4), outputs and inputs are given by (2.4), where

Yo(t) = (DF'—BA ' R)w(t) ; 6y(t)=BA ' Tw(t)
(3.5)
u(t) = —Ruw(t) ;o ou(t) =Tw(t) .

The signals are stationary for stable R, since 7, F~! and A~! are assumed stable.
The use of (3.5) in (2.6) gives

1 d
ho= o= §  wlV(DF - BA'R)9,T.A BV
21 Jz|=1 z
—if aWREL T2 (3.6)
211 Jiz|=1 whixtixl )

By using trAB, = trB,.A, the matrices in both terms get equal dimension £|¢. The
use of (3.3) and of ¢, = GH "WH,_'G, from (3.2) then gives

1
h= o $UlT AT (BV.VDEG — B.AATRGHWHG)E (37
™ o

When (3.7) is set to zero, it corresponds to (2.7). Note that F~!, A~! and H !
have elements with poles only in |z| < 1, since they are stable, while V, D, G, 3
and 1/z contribute poles at the origin. They must all be eliminated. For that
purpose, introduce a right coprime factorization

F'G = GyF; ! (3.8)

!'Two conditions are, together, sufficient for A2 to be fullfilled.

1) The matrix [B,V, A,W,] has full (normal) row rank m. This is a condition for the existence
of a spectral factor [3]. It is fulfilled, for example, if all m inputs are penalized.

2) The greatest common left divisor of B,V, and A,W, has nonzero determinant on |z| = 1.
This assures det 3(271) # 0 on |z| = 1. The factor 3 is unique, up to a left orthogonal factor.



with G5 and F, both of dimension £|¢. Since F~! is stable and causal, so is F;t.
The position of R in (3.7) enables direct cancellation of A~ if A3™! is a left
factor of R. With F; 'G! as a right factor of R, G is also eliminated, while £
can be factored out to the right, to be cancelled later. The regulator becomes

R =AB'QF,'G! (3.9)

which is stable and causal, since 37!, F, ! and G~! are stable and causal. The m|/
polynomial matrix Q(z~!) is not yet specified. Thus,

L d
™

The elements of 7, (z)A;'(z) and H_'(2)G.(z) have poles strictly outside |z| = 1,
since 7, A and H are stable. Thus, the integrand is made analytic inside |z| =1
if there exists a polynomial matrix L,(z), of dimension m|¢, such that

(B,V,VDG, — ﬁ*Q)Fz—lH—11 =1L, (3.11)
z

or

8.Q + L,zHF, = B,V,VDG, . (3.12)

This is a bilateral Diophantine equation in Q(z7!) and L,(z). Thus, the regulator
can be obtained by solving (3.3) for 8, computing G5 and F5 from (3.8), solving
(3.12) for @ and L,, and using the control law u(t) = —AB'QF; 'G'w(t). The
reasoning from (3.5) up to equation (3.12) constitutes a simple derivation of the
optimal control law.

Remarks. In SISO problems, with V =1, W = pA(¢!), G =Gy and A = F =
F5, (3.9) is given by R = Q/SG, while (3.12) reduces to equation (3.12) in [11].

The single Diophantine equation (3.12) determines the regulator uniquely 2. Since
det 3,(2) has zeros strictly outside |z| = 1, while det H(z~')F5(2~!) has zeros only
inside |z| = 1, the invariant polynomials of 3, are coprime with all those of HF5.
Thus, a solution (Q°(271), L°(2)) to (3.12) always exists. See Lemma 1 of [19].
All solutions can be expressed as (Q, L) = (Q° — XzHF,, LS + 5.X), where the
polynomial matrix X is arbitrary [3]. However, causality requires Q(z') to have
only nonpositive powers of z as arguments, while L,(z) must have no negative
powers of z as arguments. Otherwise, it would contribute zeros at the origin in
(3.10). Thus, X = 0 is the only choice, so the solution to (3.12) is unique. u

2This holds in general for open-loop control and estimation problems, if the involved systems
are stable or marginally stable. If det H(2~!) had zeros in |z| > 1, two coupled Diophantine
equations would sometimes be required to determine R, and formally assure a finite criterion
value Jy. However, such control laws, designed to cancel exponentially increasing disturbances,
are of no practical interest.



4 STOCHASTIC FEEDBACK CONTROL

Feedback control for a fairly general model structure is now considered. A multi-
variable counterpart to the model structure for system identification utilized in
[16],[17], is

Ay(t) = F'Bu(t) + D 'Ce(t) (4.1)

where y(t), e(t) € RP and u(t) € R™. The polynomial matrices A, F, D and C
have dimension p|p, while B has dimension p|m. The noise e(t) is white, stationary
and zero mean. Its covariance matrix ¥ > 0 has dimension p[p. A number of well
known simpler model structures, inherent in (4.1), are obtained by setting one or
several polynomial matrices to the unit matrix. In the identification context, we
assume the considered model structures to be identifiable. A causal feedback reg-
ulator u(t) = —Ry(t) of dimension m/|p is sought, so that the closed loop system
is stable and the criterion (2.2) is minimized.

While a left MFD-form is well suited for identification purposes, a right MFD-
form is more appropriate for controller design. Assume that C1) is stable and has
full (normal) rank p. Then, the noise term in (4.1) can be viewed as an extended
innovations model,> A"'D~'ae(t), with « stable and defined by aa, = CyC,.*
The innovations e(¢) are normalized so that Ee(t)e(t)’ = I,. The model (4.1) can
then be converted to

y(t) = B2 Ay u(t) + C2A7'e(t) (4.2)

where ByA,' and CyA;' are minimal right MFD’s of A™'F~'B and A~'D™'q,
respectively. Since « is stable, so is C5. We make the following assumptions.

B1. The leading coefficient matrices A(0), F'(0), D(0), C(0), and thus also A5(0),
C5(0) and A3(0), are nonsingular. Furthermore, B(0) = 0, so B»(0) = 0.

B2. The rational matrices FD ! and DF ! are stable. Thus, there may exist
unstable right factors D, of D, D = D,D,, but they must also be right factors of
F, F=F,D,, while D, and F, are stable.

B3. The polynomial matrices F'A and B have no unstable common left factors.

B4. There exists a stable m|m right spectral factor, 3(¢~1), defined by

with 3(0) nonsingular. (Cf Footnote 1.)

3An innovations model and its inverse are normally defined stable. Here, it is extended to
contain unstable factors.

“White measurement noise w(t), with covariance matrix ¢ > 0, is often present at the output.
In other words, A~'D~1Ce(t) = A~'D 'ae(t) = A~'D~'Cu(t) + w(t). In such a case, full
rank p is automatically fulfilled and « is a spectral factor defined by aa, = CC + AD¢$D, A,
so that (0) is nonsingular. If the greatest common left divisor of Ct) and AD¢ has nonzero

determinant on |z| = 1, « is stable.



Remarks. Unstable modes present only in the noise description could never be
stabilized. Unstable modes appearing only in the deterministic subsystems make
straightforward LQG-design impossible. Both these cases are excluded by B2
above. It implies that D, could as well be included in A. Assumptions B2 and
B3 together imply stabilizability and detectability of (4.1). Assumption Bl means
that the models (4.1) and (4.2) are causal, with the deterministic subsystems being
strictly causal. The disturbance models are causally invertible. ]

The innovation sequence £(t) in (4.2) is stationary. At time ¢, it represents the
most recent information. Whatever could possibly be achieved by a variation of
the regulator, could as well be achieved by adding to the regulator (2.1) a potential
feedforward from the innovations, n(t) = Te(t). Such a control variation preserves
stability, since the feedback loop is unaffected. Hence, introduce the perturbed
regulator

u(t) = —Ry(t)+n(t) ; nt)="Te() (4.4)

where T (¢71) is an arbitrary, but stable and causal m|p transfer matrix. In order
to obtain simple expressions for the closed—loop system, the relations
(I, + BoA'R)™'By = By(A;'RBy+1,)7!
(4.5)
(Im + RB2AY) 'R = R(I, + BoA,'R) !

which are straighforward to verify, are introduced, as well as the p|p and m|m
transfer matrices

Vo= (I, + BoA;'"R)'CoA3Y  , V1= (RBy+ Ay)™" . (4.6)

The signals y(t) and u(t) of the closed loop system ((4.2) controlled by (4.4)) are
then given by (2.4), where

Yolt) = Yoe(t) 0y(t) = B2 Te(t)
(4.7)
uo(t) = —RV,e(t) du(t) = A1 Te(t) .

Following the lines of Section II, an optimal feedback regulator is sought, so that
the closed loop system is stable and causal. If such a regulator exists, all transfer
functions in (4.7) are stable. (The stability will be verified later, after obtaining
the optimal regulator.) The cross term J; in (2.5) can then be evaluated in the
frequency domain. Invoking (4.7), and using the trace rotation trAB, = trB,A,
we obtain

Ji = E{tr(VY,e(®))(VBI1Te(t)) — tr(WRY,e(t)) (W A1 Te(t))'}

1 dz
= — ?{ {@VYol, oV Ba Ve = WWRYLL TV An W}~

1 d
= o PUTIL(BLVY — A WIWR)Y,— . (4.8)
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Since T, Vi and ), are all assumed stable, ), contributes poles in |z| < 1, while
no element of 7, and ), has any pole in |z| < 1. Hence, to fulfill (2.7), we require

1
(B2*V;<V - A2*W*WR)yo_ = L* (49)

z

where L,(z) is an m|p polynomial matrix. By inspecting (4.9) and consulting (4.3)
we find that deg L, < deg 3, — 1. Up to this point, the derivation procedure has
followed the same lines as in Section III, where the counterpart to (4.9) determined
the polynomial matrix equation directly, cf (3.11). Here, we need some additional
steps since, being present also inside ),, R occurs nonlinearly in (4.9). We strive

to attain a polynomial matrix relation. Hence, postmultiply (4.9) by zY; ! =
zA3C, (I, + By A 'R), express R as a right MFD, R = Y X! and rearrange the
terms, to obtain

(B V.V — 2L, A3Cy )X = (Ap,WW + 2L, A3Cy ' By ALY (4.10)

Observe that A;Cy ' ByA;' = a~'DF~'B is stable by B2. Thus, we can introduce
a minimal right MFD
A3051B2A51 = Bgcfl (411)
with C} being stable. A polynomial matrix relation is obtained from (4.10), if
X = CQXQ Y = 011/2 .
Then, (4.10) becomes

(BQ*‘/;VOQ — ZL*A3)X2 = (AQ*W*W01 + ZL*B?,)}/Q .

Denote B, V,VCy — zL, A3 2 Qi(z,271) and Ao, W,2WCi + 2L, B3 £ Qs(z, 271).
Introduce the minimal left coprime MFD X['Y; as

X7V =YXt = Q7'Q .

Coprimeness implies that there must exist a polynomial matrix 7, such that Q3 =
vX1 and @; = Y], or equivalently,

AQ*W*W01+ZL*B3 = ’)’Xl (412&)

It remains to determine . Postmultiply (4.12a) by C7'A,, (4.12b) by C; ' B,y and
add them. Invoking (4.3) and (4.11), we thus obtain

B.B3 =~v(X1C7 Ay + Y105 By) (4.13)

or
L= B '8, (X1C ' Ay + V1O, ' By) (4.14)
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Stability of the closed loop is assured if v = f3, 5, since with M; £ 3~1X,C; " and
N 2 371Y,C5t, (4.14) is the well known Bezout identity, [2],[3]. Obviously, M;
and N are stable transfer matrices, free of unstable hidden modes, since C;, Cs
and 3 are stable. The Bezout identity guarantees the stability of (FA + BR)™ !,
R(FA+ BR)™!, By), and Ay));. See e.g. [3], chapter 5. Since

Vo=, +A'F'BR)'A'D 'a=(FA+BR) 'FD 'a
and FD~! is assumed stable by B2, all transfer functions in (4.7) are stable.

Summing up, the regulator is given by

R=YX'=0Y.X,'C,!' = C X, 'Y,C ! (4.15)

where X; and Y7, together with L,, are the solution of two coupled bilateral
polynomial matrix equations (obtained by inserting v = (3, into (4.12))

ﬁ*Xl - ZL*B?) = AQ*W*Wcl
(4.16)
ﬁ*Yi + ZL*A?) = B2*Vkvc2 -

Remarks. The result above corresponds to Theorem 6.12 in [3], for the case
F =D =1, (Multiply (4.16) by 271, let V and W be constant matrices and
substitute Z for z="#(zL,), E for 3, D, for C; and D, for C5.) In SISO problems,
Cl :CQ :C,AQ = AF and A3 = AD.

The reasoning above leads to the answer along a short and direct route. One reason
is that the variational approach, utilizing a potential feedforward from the inno-
vations, quickly leads to a condition (4.9) for optimality. Another reason is that
the two coupled design equations (4.12a),(4.12b) are obtained simultaneously. In
the ”completing the squares” approach, these equations are derived sequentially.
The suggested method becomes very similar in other feedback control problems,
such as the optimization of state feedbacks using the polynomial approach [5].

Solvability of (4.16) can be proved as in [3]. Since Z = 27" *'L, and degL, =
deg  — 1, it is clear that deg Z < deg (3 is fulfilled. Note that the free z in (4.16),
originating from the 1/z in (2.7), is the reason for this strict inequality.

Controllers with several degrees of freedom can be optimized with the proposed
approach. Several different variations must then be introduced, one for each degree
of freedom. The cross—term (2.5) will then consist of several terms, which should
be made zero separately. See [20] for an example.

5This will in fact be the only choice for (4.12a) and (4.12b) to be solvable, with respect to
X1(271),Y1(271) and L. (2).



5 CONCLUDING REMARKS

A simple derivation methodology for use within the polynomial approach to linear
quadratic optimization, has been presented. Its ability to derive solutions, in just
a few well defined steps, has been illustrated by means of a feedforward and a
feedback problem. Two key ideas in the reasoning can be distinguished.

e By means of Parseval’s formula, orthogonality is constructively evaluated in
the frequency domain, to obtain the design equations. An important insight
here is that the calculations become straightforward in the multivariable case
if the whole matrix M(z,271) in (2.7) is manipulated, not only its trace.
Otherwise, the regulator could not be specified uniquely.

e Feedback regulators are optimized by regarding the variational term n(t)
as a potential feedforward from the innovations. If that cannot improve the
control performance, nothing else can. Internal stability then becomes easy
to ascertain.

The suggested approach can be summarized as a step—by-step scheme as follows.

1. Convert the system description to right MFD—form and introduce a criterion—
related right polynomial matrix spectral factorization. Introduce a controller
perturbation. Obtain expression (2.4) for the perturbed controlled system.

2. Evaluate the crossterm J; of the criterion (2.5). Fulfill (2.7), J; = 0, by
requiring M(z,2z7")z7! = L,(z), where elements of £, have poles only in
|z| > 1. Ascertain this by means of polynomial (not rational) matrix equa-
tions. In open loop problems of practical interest, the result is a single Dio-
phantine equation.

3. In feedback problems, parametrize the regulator in right MFD—form, R =
Y X1 (with X5 and Y; right factors of X and Y), so that M(z,z 1)zt = L,
can be converted to a polynomial matrix relation of the form

Qi(z,2 ) Xa(27") = Qa(z, 27 )Ya(2 ™)

By representing Y>X; ' as a minimal left MFD, two coupled Diophantine
equations, determining the regulator, are obtained.

While Step 2 concludes an open loop controller derivation, the additional Step 3
is needed in feedback problems, mainly since R appears nonlinearly in the rela-
tion M(z,z 1)z"! = L,. Use of the Youla—Kucera parametrization is not required.

The methodology has been demonstrated on (slight generalizations of ) well-known
problems with known solutions. The purpose of the proposed method is, of course,
to facilitate the derivation of novel results. It has been used in [20] to derive e.g. a
MIMO combined feedback and feedforward regulator, and in [21] to derive design
equations for robust estimators and feedforward controllers.
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