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Feedforward control is dual to deconvolution
BO BERNHARDSSONT and MIKAEL STERNAD#

A duality is demonstrated between optimal feedforward control and optimal
deconvolution, or input estimation. These two problems are normally discussed
separately in the literature, but have close similarities. Duality between them
can be demonstrated if and only if one uses general problem formulations, with
frequency-shaped weighting in the criteria. From one of the problems, the dual
problem can then be obtained immediately from the block diagram, by
reversing the directions of arrows, interchanging summation points and node
points and transposing all transfer function matrices. This result applies for
continuous and discrete time problems, as well as for minimization of J = |G,
for any transfer function norms for which [|GT||=[|G|. A derivation of a
polynomial solution to the frequency-weighted discrete-time MIMO LQG
feedforward control problem illustrates the use of the duality.

1. Introduction

Duality relations have a long history as fruitful tools in control and
estimation theory. All control engineers are well aware of the dualities between
LQ state feedback and Kalman state estimation (see Kalman 1960 or, e.g.,
Kwakernaak and Sivan, 1972). Similar duality results are of use in the study of
H .-control and state estimation (see Doyle et al. 1989 and Shaked, 1990). For a
linear time-invariant system in state-space form, the dual system is obtained by
reversing the role of inputs and outputs and by transposing all matrices.

For a problem in block diagram form, there is, however, no need to compute
a state space realization to obtain the dual problem. In § 2 and 3, we present an
elegant way of obtaining the dual of a linear time-invariant control problem
directly, from its block diagram. Although we have not found Theorem 1 in §2
stated explicitly in the literature, we doubt that it is novel. However, we include
it because it is important for the following discussion. Also, the elegant
algorithm in § 3 is believed to be a part of the folklore of control theorists, but
is hard to find in the literature. The result is, however, very useful for example
when doing polynomial calculations and has certainly not greatly penetrated the
literature.

This method is used in §4—6 to clarify the question of what kind of

estimation problems are dual to feedforward control problems. This question has .

been discussed for example in Sternad and Ahlén (1988), where close cor-
respondences were pointed out between disturbance measurement feedforward
control and deconvolution, also called input estimation. In fact, by using loop
transformations on scalar problems, it was shown how one problem could be
transformed into the other. No dual relationship could, however, be obtained.
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394 B. Bernhardsson and M. Sternad

As will be clarified below, it is possible to demonstrate a dual relationship, if the
formulations of both problems are made more general than the ones discussed in
Sternad and Ahlén (1988). The general formulations include dynamic cost
weighting in the criteria.

Our interest has been mainly in LQG (or H,)-solutions based on polynomial
equations, a method pioneered by Kudera (1979). However, the duality holds
for any criterion J = min ||G|| based on a norm of a rational matrix G, for which
|G| = |G| It does for example hold also for an H, norm but not in the
MIMO case for the L; norm (Dahleh and Pearson 1987), defined by

n
1Glz, = m?‘le llgill
1 ]::

where g;(¢) is the impulse-response of element (i, j) of G(s).

By clarifying the duality relation between the two types of problems, we
achieve two goals. Firstly, the many correspondences between them are ex-
plained, and the understanding of both problems is enhanced, see § 6 and 8.
Intuition from the feedforward problem can be used in the formulation and
solution of input estimation problems and vice versa. Secondly, the construction
of algorithms for computer-aided design is simplified. Only one algorithm, which
solves both kinds of problems, needs to be implemented. We illustrate this in § 7
by deriving a polynomial solution to the discrete time LQG feedforward control
problem from the corresponding input estimator design equations.

2. Duality )

We begin our discussion by establishing a duality relation between the two
problems described by the block diagrams in Fig. 1. The left-hand diagram in
Figure 1 represents the ‘standard problem’. It was introduced around 1980 as a
standard way of representing a large collection of control and signal estimation
problems (see e.g. Pernebo 1981 or Doyle et al., 1989). Polynomial optimization
of LQG-controllers for the standard problem is described in Grimble (1991) and
Hunt ez al. (1991).

In Fig. 1, y represents the measured variables, z are signals to be controlled,
w are exogenous signals and u are the control inputs. Many control and filtering
problems are formulated as the design of Ky, to minimize the influence of w on

2
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Figure 1. Dual problems: the left-hand figure represents the standard problem; the dual
problem is given to the right. .
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z. All G are here linear time-invariant transfer functions, in continuous or
discrete time. (Time-arguments of signals, and arguments of transfer functions,
are suppressed in the following.) Duality between the two block diagrams in
Fig. 1 can now be stated as follows.

Theorem 1. Problem duality: For all norms satisfying ||GT|| = |Gl|, the two
problems ‘

. 1 - 2
Ji = min ”sz”: J, = min ”sz“
K1 K
in Fig. 1 are dual, in the sense that the two optima are equal J = Jy, and the
optimal controllers are related by KT =K, A necessary condition for the

problems to be dual is that the minimal values of the norms are invariant under
transposition.

Proof: The closed loop from w to z in the first problem is given by
Gy = Gu + Gp(I — K1G») ' K1Gy
Transposing gives
(G1)T = Gh + GHKIU - GnK1)7' Gy

= Gh + Gu(I - KiGR)'KiGy
which is exactly the closed loop from w to z in the second case if K, = K 1. The
sufficiency of the assumption |GT| = [|G| follows from

1G] = I(Gan"l = IG2l

It ||GLll# I(GL,)T|| at the minimum, then J; and J, will differ, Thus, it is
necessary that |G|l = [[(GLy) " at the minimum. O

Remark 1: The dual systém can be obtained by transposing the following
matrix, where the state-space representation of the transfer functions Gy is
[A, B], C,', Dl]], i, ] = 1, 2:

A By B,
Ci Dy Dp
C, Dy Dp O

Remark 2: Depending on the specific type of problem set-up and norm,
restrictions may have to be imposed on the properness and stability of some or
all of the blocks Gj. g

Remark 3: Fundamentally, duality is a relation between two systems: the role
of their inputs and outputs are interchanged, and the time is reversed. For a
time varying, continuous time system, the transformation can be seen as
obtaining the adjoint system, followed by a time reversal. With finite final time
tf, the transformation of the state-space description is

[A(t) B(1) ‘i‘y‘i’;‘;ﬁf[—AT(t) -CT(1) re'fv;‘:;al[AT(tf—t) C(ty — 1)
c(y D@ | — | BY) D BT(;—t) DT(t;— 1)

The last transformation follows because the solution to o= —f(t— t, v(f)) is
the time reverse of the solution to % = f(¢, x(¢)), see e.g. Kwakernaak and




396 B. Bernhardsson and M. Sternad

Sivan (1972), Lemma 4.1. (The dual system is identical to the so-called modified
adjoint system, see Kailath 1980). With time-invariant systems, the transforma-
tion (1) reduces to a transposition.

Duality between systems can be used for obtaining correspondences, or
dualities, between optimization problems. The original example is LQ state
feedback and Kalman filtering (Kalman 1960). If the solution is time-invariant,
we no longer have to think of the dual problem as defined in reversed time.
Thoeorem 1 states that duality essentially involves only transposition for a large
class of problems with time-invariant solutions.

3. Block diagram version of duality

For time invariant systems given in block diagram form, the dual to an
optimization problem, in the sense of Theorem 1 can, if it exists, be obtained
directly from the block diagram. The idea is old, but has to the author’s
knowledge not been published for the general set-up of Theorem 1. The
correctness of the following algorithm is easily proved and is left as a nice
exercise.

Algorithm: The following block diagram transformations give the dual block
diagram.

Step 1 ]éxchange w:s and z:s. ]
Step 2 Exchange u:s and y:s.
Step 3 Reverse directions of arrows. 1 )]

Step 4 Interchange summation points and node points.

Step 5 Transpose the transfer function blocks. ]

An example is given in Fig. 2, and also in Fig. 4 below. O

4. Feedforward control

The design of feedforward links from measurable disturbances and from
command signals is an important complement to a feedback design. We will
here, in particular, consider the design of LQG (or H,)-controllers.

$2
Gy
]
d u J\y
w —=1 Gy Gy ..1{_>G5__>Z1
system
.Gz

Figure 2, Feedforward control problems.
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The feedforward problem to be considéred is shown in Fig. 2. The system
output is described by '

y = Gau — Gad

where G5 represents the system, including a possible fixed feedback controller.
Here, d is a measurable signal, which is modelled as filtered white noise,

d=G1W

The problem is to calculate the optimal causal, stable and linear feedforward
regulator

u= KFFd

which minimizes a mean square of the sum of filtered outputs and filtered
control signals:

minE (trz;z1 + tr 2223)
z1 = Gsy
Z9 = G4u

All transfer functions are assumed known, stable, proper (in continuous time) or
causal (in discrete time). In discrete-time problems, both G, and G3 may
include delays. In a disturbance measurement feedforward problems, d repre-
sents measurable disturbances. These are eliminated in frequency regions of
interest (defined by Gs), if z1 = G5(G3Kpr — G2)Gyw is small. In command
feedforward problem, d represents command signals, and Gyw are stochastic
models describing their second-order properties. Servo filters Kgg are then to be
designed, based on a response model G,. Good model following is achieved, in
frequency regions of interest, if z; is small. (In a multivariable setting, d can of
course include both measurable disturbances and command signals.)

For a discussion of scalar discrete-time LQG feedforward design, see e.g.
Sternad and Soderstrom (1988) or Hunt (1989). Multivariable problems are
discussed in Hunt and Sebek (1989) and Sternard and Ahlén (1992), using the
polynomial equations approach. A solution to MIMO discrete time problems is
discussed in § 7.

5. Estimation of the input to a dynamic system

Many filtering, prediction and smoothing problems are special cases of the
set-up presented in F1g 3. The signal u is the input to a linear system Gi. A
possibly filtered version of it, u;= GJu, is to be estimated, based on n01sy
measurements y of the system output. With white noise wy and w,, G5 w1 and
Giw, represent stochastic models of signal and noise. The transfer function G1
is a frequen ¥ shaping weighting filter.

When G3 contains dynamic elements, the problem is an input estimation or
deconvolution problem. Otherw1se we have an output or state estimation
problem. A dynamic element G7T may represent an analogue or digital com-
munication channel. The filter K is then a linear recursive equalizer. Its task i 1s
to reconstruct the transmitted signal u. In process control and superv181on G3
can represent a transducer, with slow dynamics. The task of the filter Ky is then
to estimate the input u to the transducer.
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w
G;
1 A
u é y Ue
wy —D’Gg Gg Kg 29 'Glll‘ —t Z
system
Y = up
Gy

Figure 3. Signal estimation; the filter Ky is sought which estimates (a filtered version of) the
input u.

The filter G; in the lower (fictitious) signal path can be of use in several
ways. In discrete time, it may include an advance or delay Ig™" i.e. ug(t) =
u(t — m). Depending on m, @(t — m|t) is then a prediction (m < 1) filtering
(m=0) or a fixed lag smoothing (m > 0) estimate. The block G, may also
contain filters, to emphas1ze the est1mat1on accuracy in certain frequency
regions. Filters in either G1 or G2 can be used for affecting the relative
accuracy, in different frequency regions, in the estimation of u. For a discussion
of advantages and disadvantages of these two methods, see Ahlén and Sternad
(1989). Thus, the measured output is described by

y = Ggu + G:fwzg u= G;fwl

All systems are assumed to be known and stable and the white noise signals w;
are stationary, zero mean and mutually uncorrelated. We consider the problem
of finding the best causal, stable and linear estimator of a filtered version Gaiu
of the input

= Kgy
which minimizes a frequency weighted version of the mean square estimation
error
minB (trzzT); z = G1(f; - qu)

Such an estimator is a Wiener or stationary Kalman filter. All blocks, except
G3, are assumed proper in continuous time and causal in discrete time.

A solution to the discrete-time version of the MIMO H, estimation problem
" introduced above will be discussed in § 7.

6. Duality between feedforward control and input estimation
Using the set-up in Fig. 1, the feedforward problem in Fig. 2 is represented
within the standard problem by the rational matrix

~G5G2G1] [ Gs5Gs
0 Gy
Gy 0

with z1, z, as controlled outputs, d as measured output, w as exogenous input
and u as control input. Transposing this matrix gives the dual problem
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[-G1G3Gs 0] Gi
[G3Gs Gi] O

This is exactly the estimation problem of Fig.3, with z as output to be
minimized, y as measured output, wy, w, as exogenous inputs, #; as ‘control
input’, and Kg = K 5. Alternatively, we may use the block diagram transforma-
tions in § 3 on Fig. 2 directly, which gives Fig. 4.

Thus, the model G; of the signal d corresponds to the weighting function of
the estimation problem. The systems G5 correspond to each other. The control
weighting G4 corresponds to the measurement noise, while the output weighting
G5 corresponds to the signal model of the estimation problem. As in other dual
problems, minimum variance control (G4 = 0) corresponds to estimation with
noise-free measurements. In continuous time, both are singular problems. Some
of the consequences of these correspondences will be discussed in § 8.

7. An illustration: polynomial solutions to discrete-time input estimation and
feedforward control problems
7.1. Input estimation/deconvolution
In a discrete-time estimation problem described by Fig.3, let the noise-
corrupted measurement vector y(¢), of dimension p, and the input u(¢), of
dimension s, be given by

= 41 -1
y(O) = A7 Bu(t) + N sz(t)} G

u(t)= D71Cwy(¢)

Here, (A, B,N,M,D,C) are polynomial matrices in the backward shift
operator ¢!, of dimension p|p, pls, p|p, plr, s|s and s|k, respectively. The
noise signals {w(¢#)} and {w,(¢#)} are assumed white and stationary, with zero
means and covariance matrices normalized to unit matrices. An optimal linear
estimator

as(t) = Ku(q )y(0) 4
of a filtered version of the input, of dimension /
ue(t) = T 1Su(t — m) Q)
‘Iz
T
Gy
[
z <=— G] TzK <@— GE = Gy [ w,
S a—

Figure 4. Result of block diagram transformations on the feedforward problem in Fig. 2; the
result equals the block diagram of the estimation problem in Fig. 3.
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is sought, such that the frequency weighted quadratic criterion
= wB{z(0z" (O} 2() = UTV(@0) = ug?) ©)

is minimized. In (5) and (6), T, S, U, V are polynomial matrices of dimensions
1, I]s, I|I and I]1.
Comparing with Figs 3 or 4, we have

Gi=U"'v
Gy =T7'Sq™"
Gi=A"'B
Gi=N"M
Gi=D"lC

We make the following two assumptions.

Assumption 1: The polynomial matrices A(q™Y), N(g™%), D(g™Y), T(q™1),
U(qfl), and V(q™) all have stable determinants and non-singular leading
coefficient matrices. (Thus, they have stable and causal inverses.)

Assumption 2:  The spectral density matrix @Y(e"") of the measurement y(t) is
non-singular for all w.

Define the following coprime factorizations

BD—l- DB (7
DAN™'= N"14 (8)
Vr=lsp=t= 71§ )

Stability of det 7" and det D and copnmeness of T~ 1S nnphes that det T' will be
stable. Causality of 77! and D! implies that 7! will be causal. Let P,
denote the conjugate transpose PT(g) of a polynomial matrix P(g~!). Define
the following left polynomial spectral factorization,

BBy = NBCC, BN, + AMM, A, (10)

Under Assumption 2, (10) will always have a solution B(g ™), of dimension p|p,
with stable determinant and non-singular leading coefficient matrix (see, for
example, Anderson and Moore 1979, Kudera 1979, 1980, Jezek and Kulera
1985).1 The following result now holds.

Theorem 2. The Wiener estimator: Let the system and input model be described
by (3), see Fig.3. Introduce the coprime factorizations (7)-(9) and the spectral
factorization (10). Under Assumptions 1 and 2, a stable and causal H,-optimal
estimator (4), minimizing (6), is then given by

(1) = VT 1 Qe *NDAy(2) (1)

1Two conditions on the polynomial matrices appearing in (10) do, together, guarantee that
Assumption 2 holds. (1): The matrix [N Bc AM] should have full (normal) row rank p and
(2): the greatest common left divisor of NBC and A M should have a non-zero determinant on
|z| = 1. While (1) is a condition for existence of spectral factors, (2) provides a spectral factor
B(z~1) such that det f(z 1) # 0 on |z| = 1.
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where Qg(q™Y), together with Ly(q), both of dimension l|p, are given by the
unique solution to the bilateral diophantine equation

q"8CC BN, = Qpfs« + qTUL, (12)

Proof: In Ahlén and Sternad (1991), this result is derived for the case
U =V = I. Only small modifications, leading to (9), (11), and (12) above, while
(7), (8), (10) remain unchanged, are required to extend that result to filtered
criteria z(£) = U™V (#4(t) — ug(t)). Note that since 7~* and ! are stable and
causal, (11) will be stable and causal. O

For a more detailed discussion of Wiener filter design using polynomial
equations, see Ahlén and Sternad (1991).

7.2. Feedforward control
Let us, in the same way, express a discrete time feedforward structure,
described by Fig. 2, by right matrix fraction descriptions:

Disturbance/reference dynamics: Gy = G H Ot
Disturbance transfer/desired response model: G, = ¢~ D F,*
System: G3 = B.A;'  (13)
Input weighting function: G4 = W N !

Output weighting function: G5 = V U, 1

Assume A., N, U, F., -H, and G, to have stable determinants and
non-singular leading coefficient matrices. Introduce the coprime factorizations

~ UJ'B.=B.U; 14
N7'A U, = AN (15)
U'D,F.'G, = G, F3* (16)

Stability of det U, and det F and copnmeness of G2F 5 1mp11es that det F, will
be stable. Causality of U, Land F; 1mphes that F5 ! will be causal. Define the
following criterion-related right polynomlal spectral factorization

BesBe = NesBesVes VBN + Ay Wei WA, (17)

Assume that the right-hand side of (17) is non-singular on the unit circle. Then,
(17) will have a solution 3, with stable and causal inverse.

Now, the polynomial solution to the LOG feedforward design problem can
be stated as follows.

Theorem 3. The LQG feedforward regulator: Let the systemm and weighting
functions in Fig. 3 be given by the right MFDs (13). Introduce the coprime
factorizations (14)—(16) and the spectral factorization (17), non-singular on
|z| = 1. Then, a stable and causal H,-optimal feedforward regulator, minimizing

trE{(Gsy(D)(Gsy ()" + (Gau())(Gau(1)™}

u(t) = AUN B; ' OreF3 ' Gd(1) (18)
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where Qrpp(q™1), together with Li4(q) are given by the unique solution to the
bilateral diophantine equation
q—mNc*Ec*Vc*VcéZ = ﬁc*QFF + qu*HcFZ (19)

Proof: The solution to this problem will be derived by duality with (3)—-(6).
Use of the duality relations give (with P~T denoting the transpose and,inverse
of P)

Gi=H;"GI! UV

G’21‘= Fc—th‘q—m < T—ISq—m

Gi=A;"B;, < A'B

Gi=N;"W! o nN'M

Gs=U:Ve  eD7iC
By making the substitutions above, and transposing (7)-(12), design equations

are obtained for the LQG feedforward regulator. Substitution into (7)—(9) gives
Blu;T= DB

DAINT= N4
GeF.'DIU;" = T71§
By transposmg theseNfactonzatlons and defining BA BT, U 4 A DT A4, AAT
N ANT, G,28%, F,ATT, we obtain (14)- (16).
Use of the substltutlons and of (14), (15) in the spectral factorization (10)
gives
BBy = NeBeVeVerBouNey + AcWoWe de,
By transposing and deﬁmng ﬁc BT, we obtain the criterion-related right
spectral factorization (17).
The feedforward filter (18) is obtained by substitution into (11) and transpo-
sition: )
u(t) = (G TE;TQuB INTUTAD T a(r)
By deﬁnmg QFF QE, (18) is obtained. The filter will, of course, be stable and

causal, since F, " and $~! are stable and causal. Substitution into the diophan-
tine equation (12) gives

g "GV eV ikBiaNcs = Qubox + aF3He Ly (20)
By transposing this equation and using Qg = QE and Lq, 4 L%, we obtain the
diophantine equation (19). O

The minimal criterion value will, of course, be equal in the two dual
problems.

The feedforward design equations (14)—(19) constitute an extension of earlier
known results. In Sternad and Ahlén (1992), only the special case of polynomial
penalties in the criterion, N.=1 and U.=1I, were considered. (The two
coprime factorizations (14), (15) are then superfluous, with B, = B,, A, = A,.)
Hunt and Sebek (1989) consider a different combined feedback and feedforward
problem, without dynamic cost weighting.
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Remark: The extension to dynamic cost weighting clearly shows how the
weights influence the controller. This can help the user in the choice of weights.
It should, however, be noted that another possibility is to include the weights in
an extended system description, see e.g. Hunt (1989). O

Remark: In both the estimation and the feedforward control problems, one can
derive a second diophantine equation. For unstable systems, it would sometimes
have to be used in combination with (12)/(19) to determine the filter uniquely.
This is never necessary for systems with poles on or inside the stability limit.
Since strictly unstable systems are of little relevance in the open-loop design
problems considered here, we have not introduced this second equation, which
would just complicate the solution. However, the duality relations do, of course,
hold for that equation as well. O

8. Concluding discussion

It has been demonstrated that feedforward control problems are dual to a
special type of estimation problems: deconvolutton or input estimation problems,
where the input to a dynamic system G5 1s sought. (Output or state estimation
problems, without transducer dynamics G3, would correspond to rather trivial
feedforward control problems, with no dynamics between control input u and
the output y.) ‘

In Sternad and Ahlén (1988), several close correspondences were noted
between scalar Wiener-input estimation and LQG feedforward control problems.
These correspondences could not be interpreted as duality relations. The reason
for this can now be seen in the too restrictive problem formulations used in
Sternad and Ahlen (1988): G4=1 and Gs=1 in the control problem and
G3=1 and G{ =1 in the input estimation problem With duality established
between the more general problems discussed in this paper, the correspondences
between (MIMO) LQG feedforward controllers and Wiener input estimators can
now be placed into their correct perspective. Some design guidelines also follow.

(a) When the system Gj is of low-pass-type, both feedforward controllers
and Wiener input estimators tend to be high-pass. In the control
problem, an input penalty G4, penalizing high-frequency components of
the input, will reduce the high frequency gain of the controller Kgp. The
introduction of measurement noise G4Tw2 with significant high-frequency
content has the same effect on the estimator Kg. For scalar problems, a
resonance peak in Gy introduces al notch in both Kgr and Kg. Note the
presence of N in (11) and of N, in (18). They equal N and N,
respectively in scalar problems.

(b) Use of a posmve smoothing lag m in the estimation problem (w1th
¢~™I in G3) corresponds to a delay in the disturbance path (q " in
G,) of a regulator problem. A larger smoothing lag/delay will improve
the filtering/control performance.

(c) A negative m (prediction) would correspond to a non-causal block G,
containing ¢ 7™, in the control problem of Fig. 2. This is equivalent to
forcing a delay ¢, i.e. a computational delay, into the controller. (If
G, = g " IG), the block ¢g~" I can be moved up to G4 in Fig. 2, while
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its inverse, g™I, is included in the controller.) With everything else
being equal, the achievable performance would deteriorate as the
prediction horizon/computation delay —m increases.

(d) There are two ways of reducing the static feedforward control error:
either G; or the output penalty Gs should have high gain at low
frequencies. Likewise, there are two ways to obtain an estimator with
small error at low frequencies: either the frequency weighting Gf or the
input model G should have high gain at low frequencies.

(e) The polynomial solutions to the two dual discrete-time problems,
discussed in § 7, involve a spectral factorization, a diophantine equation
and up to three coprime factorizations. (The same is true for the
solutions to the corresponding continuous-time problems.) The transpo-
sitions used in going from one problem to the other explain why a left
spectral factorization (10), where 8 appears to the left, is involved in the
filtering solution, while a right spectral factorization (17) appears in the
control solution. Also, note that while it is natural to start from a left
MFD model (3) in the estimation problem, the dual control problem is
expressed in right MFD form (13). See also Kucera (1991), where use is
made of duality relations to investigate several other types of LQ
problems, using the polynomial equations approach.

We have compared properties of the LQ (or H,) solutions to the dual
control and signal processing problems above. Very similar remarks apply to all
criteria for which the duality holds, i.e. all norms for which |G| = |G|. In
particular, this applies to H .,-optimal solutions.
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