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Digital Differentiation of Noisy Data Measured
Through a Dynamic System

Bengt Carlsson, Mikael Sternad, and Anders Ahlén

Abstract—The design of discrete time dlﬂ'erentlatmg filters, lII the
presence of colored noise and glectable transducer dy is
investigated. The signal and noise are described by ARMA models,
possibly with poles on |z| = 1. The MSE optimal filter, based on a
discrete time approximation of the derivative operator, is given by a
spectral factorization and a linear polynomial equation.

I. INTRODUCTION

The problem of estimating derivatives of signals from noise cor-
rupted measurements arises frequently. See, for example, [1], [2].
Several design principles have been suggested, see [3]-[7] for some
recent approaches. In [3] and [4], this problem was addressed by
means of stochastic signal models. Reference [3, sec. IV] pre-
sented an MSE optimal estimator design based on a discrete time
model. The transducer dynamics affecting the measurements were
assumed to be negligible. In some applications though, the trans-
ducers cannot be neglected without seriously degrading the esti-
mation accuracy. For example, a heating rate estimate may be re-
quired, based on sampled temperature data from a sensor with
bandwidth below the Nyquist frequency. In such cases, we would
like to estimate the derivative of the input to the transducer, rather
than the derivative of the measured signal itself. In this correspon-
dence, the differentiation problem is formulated in discrete time,
with the transducer dynamics taken into account. The optimal
(MSE) solution is derived.

Signal and noise models will be allowed to be marginally stable,

e., to have poles on |z| = 1. This enables us to treat drifting
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signals, described as autoregressive integrated moving average
(ARIMA) models, which frequently occur in differentiation prob-
lems. Shape-deterministic signals, such as ramps which change de-
rivative at random instants, can also be handled.

The purpose of this correspondence is thus to extend [3, sec.
IV]. Moreover, a new methodology for deriving Wiener filter de-
sign equations, suggested in [9] for stationary data, is shown to be
applicable (with small modifications) also for marginally stable
signal models.

II. PROBLEM FORMULATION

Consider the following discrete time model, where transfer func-
tions are expressed as ratios of polynomials in the backward shift
operator (g~! yk) = y(k — 1)):

*) = q~7 Ba7) (k>+M(q—1) & Q.1
= F2 .
TP S A VPR

D(g™"uk) = Clg™")e). 2.2)

In this model, discussed in [8], u(k) is the input to the transducer.
The measurement y(k) is affected by an additive colored noise pro-
cess. The signals are scalar and real valued. Let e(k) and v(k) be
white and mutually independent, with zero means and variances A,
and \,, respectively. All polynomials, except B(g™!), are monic.
Based on sampled measurements up to time k + m, we would
like to estimate the nth order derivative of u(k). Here, m < 0, m
=0, and m > 0 correspond to prediction, filtering, and fixed lag
smoothing problems, respectively. The derivative is a continuous
time concept. Following the lines of [3], a discrete time approxi-
mation of the derivative d"u(r) /dt" is introduced as
I
diky = q ) u(k).
This (fictitious) signal approximates the nth order derivative of an
underlying continuous time signal u(#), at the sampling instants.
The approximation may be noncausal (! > 0). Note that /, S, and
T'in (2.3) are user choices. The frequency response of ¢'S /T should
be close to (iw)" in the frequency band of interest. A simple choice
forn = 1is ¢'S/T = (g — q~')/2h, where h is the sampling
interval. This choice give a good approximation for w < 0.5/h,
say. See, for example, [3], [4], [10], [11] for a further discussion
of different approximations.
Introduce a stable linear derivative estimator

2.3)

dklk + m) = yk + m) 2.4

R@™
where Q(¢™') and R(g™") are to be determined so that the MSE
criterion

J = Ez(k)? = E(d(k) — d(klk + m))? (2.5)

is minimized. See Fig. 1.

HI. THE OPTIMAL DIFFERENTIATING FILTER

ForP(g"') = p, + pig™" + -+ + p,,q ™, of degree np, let
P, (g) denote the conjugate polynomial p, + pyq + * * * + p,,q™
Polynomials P(z™') are denoted stable if all their zeros are in |z]
< 1. Factors with zeros only on |z| = 1 are denoted marginally
stable. Arguments of polynomials will frequently be omitted, for
brevity. Following [3], [8], and [9], we introduce the polynomial

1053-587X/92$03.00 © 1992 IEEE
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Model Transducer Filter
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D(q7!) AlgY) R(g M|
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54 k) +

T(q7!)

Approximation of
a differentiator

Fig. 1. The differentiation problem, with colored noise and a dynamic measurement system. The signal d(k) is an approximation
of the nth order derivative of u(k). An MSE optimal linear estimator of d(k) is to be designed.

spectral factorization

r88, = CBNC,B,N, + pMADM A,D, 3.1

where r is a scalar, p 2 Ao/, and B(q_') is a polynomial of
degree

nB = max (nc + nb + nn, nm + na + nd). 3.2)

The following assumptions are made.

Al) The model denominators 4, N, and D have zeros in |z] <
1.

A2) No common factors of CBN and MAD have zeros on or out-
side |z| = 1.

A3) The denominator T of the derivative approximation is cho-
sen stable.

Under A2, (3.1) can be solved for a stable 3. This implies de-
tectability of an innovations model y(k) = (8/DAN)n (k). (Mar-
ginally stable modes are then observable from y(k). Corresponding
denominator factors cannot be cancelled by factors of 8, which are
all stable.) The main result is presented in the following theorem.

Theorem 1: Assume A1-A3 to hold. The criterion (2.5) is glob-
ally minimized if and only if the filter transfer function in (2.4) has
the same coprime factors as

g_aM

R 8T 3.3)

where 8(¢™") is the stable spectral factor from (3.1) and where
0,(g™ "), together with L, (g), is the unique solution to the linear
‘‘diophantine’’ polynomial equation

q'*"""SCC,B,N, = Qr8, + gDTL, (3.4
with degrees
nQy=max(nc+ns—I—7+mnd+n—1)
nL=max (nc + nb +nn + 1+ 7 —m,nB) —1. (3.5)
The minimal criterion value becomes
N
B = 55§+ %@A—;’*ﬁﬂ*’i’ﬂ% (3.6)
Proof: See Appendix. u

Remarks:

e With (3.5), (3.4) corresponds to a linear system of equations
with an equal number of unknowns and equations. It is nonsingular
since D(z"') T(z™") (with zeros in |z| =< 1) and 8, (z) (with zeros
in |z| > 1) cannot have common factors. Thus, a unique solution
to (3.4) exists. In problems where unstable D are allowed and where
D and 8, have common factors, two coupled diophantine equations
would be needed. For simplicity, we do not treat this case here
since it is of very limited practical interest.

o The transfer function B/A is allowed to have poles on the unit
circle. Transducers will, however, seldom have this property. A
consequence of A2 is that N is not allowed to have common factors
with either 4 or D with zeros on the unit circle.

e In certain special cases, some of our eariler results could be
utilized. When the transducer dynamics can be neglected, 7 = 0
and A = B = 1. The problem and solution then reduce to the ones
presented’ in [3]. An alternative approach is to include the deriv-
ative approximation into C/D and its inverse into B/A. The prob-
lem is then reduced to a deconvolution problem, by making the
substitutions u(k) = d(k), C = CS,D = DT,B =BT, A = AS and
r =1 — I See [8, sec. IIIB] or [8, Example 2}. Unfortunately,
assumption A2 would then seldom hold. Marginally stable or un-
stable common factors of the new C and A would be a frequent
problem. They could, in general,” be avoided only for stable S.
This would, however, exclude most realistic derivative approxi-
mations since S, in general, in not stable. No such problems occur
in the solution (3.1)-(3.4).

¢ From the proof of Theorem 1, we note that the derivation
technique suggested in [9] is applicable also for models with poles
on |z| = 1. Exactly the same tricks can be used as in the noncon-
structive proofs in [3] and [8]: stationarity of a variational term
n(k) is assured by a restriction on the zeros of admissible estimator
variations. The stationarity of z(k) rests on cancellation of margin-
ally stable modes and is verified separately.

e There exist efficient numerical algorithms for performing
polynomial (FIR) spectral factorization. Closed-form expressions
exist for second-order spectral factors [12]. If the right-hand side

There, § and T are denoted B and 4.

20ne exception would be when marginally stable factors of § are also
factors of D or B in the original problem. They could then be cancelled in
at least one block in the transformed problem, and a stable 8 would result.
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of (3.1) is g, + gi1(q + q‘l) + gz(q2 + qAZ), r and B(qvl) =1
+ B1g™" + B,q" % will be given by

2 8 8 P,
YSES &t E"'gz - 81

8
r=ar WA/ B=—— B=T 6

r+ g’

IV. A NuMERICAL EXAMPLE

We will here give a simple example, to illustrate the design pro-
cedure. Assume that u(k) = u(k — 1) + e(k), i.e., D(g~') = 1 —
g 'and C(g') =1, and

yk) = — utk — 1)

1
1-0.7g @1

1
+ —
[ +0ag W

with p = A, /N, = 0.1. As an approximation of a first-order deriv-
ative of u(k), we use

dik) = q(0.5 — 0.5¢7Huk), Gt =1 4.2)

which has fairly good accuracy in the transducer passband. A
3-lag smoothing estimator (2.4) will be designed. Using (4.1), the
spectral factorization (3.1) is

BB, = (1 + 0.4z7")(1 + 0.42) + 0.1(1 — 0.7z7")
(1 —-zha -07)0 -2

with stable solution, from (3.7), 8(g~') = 1 + 0.0670¢"" +
0.0441g72 and r = 1.5878. We obtain nQ, = max {3,0} =3 and
nL = max {0, 2} — 1 = 1 from (3.5). Equation (3.4) is, using m
=3,

' 731 + 0.4¢)(0.5 — 0.5¢72)
=(Q, + Qg7 + Qg7 + Q3¢7*)1.5878(1 + 0.067q
+ 0.0441¢%) + q(1 — ¢" YL, + Lig).

By equating terms of equal power of g, the solution L,(q) =
—0.0383 — 0.0059¢, Q,(¢"') = (1 — ¢7')(0.0840 + 0.4198¢""
+ 0.3149¢7%) is obtained. Thus, the optimal differentiating
smoothing filter becomes

Qi@ "H( +0.4¢7H(1 - 0.7¢7")
1 +0.067¢"" + 0.044147*

dklk + 3) = yk + 3).

4.3) .

The transfer function has a zero at z = 1. (By evaluating (3.4) at
z = 1, this is seen to be the case whenever both D and S have zeros
at z = 1.) Furthermore, there are zeros at the pole locations of the
noise and transducer models. The minimal error variance is
0.0516\,. See Figs. 2 and 3 for an illustration of the design.

APPENDIX
PROOF OF THEOREM 1

The constructive derivation methodology suggested in {9] is uti-
lized. It is extended to cope with marginally stable systems. With
(2.1)-(2.4), the estimation error is

n--QB oM

S C
z(k)=<q’;—q ;;>5e<k)—q"’ﬁv<ky (A.1)

108 S —— ——
102 ;
100 g e
105 o o

Fig. 2. Spectral densities of the signal u(k) (solid line) and the measure-
ment noise (dashed line). The transducer magnitude is also shown (dotted
line).
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Fig. 3. Magnitudes of the derivative approximation S/T in (4.2) (solid
line), optimal filter Q/R in (4.3) (dashed line), and transfer function of
transducer and optimal filter BQ /AR (dotted line). Note that where the
signal dominates over the noise, the magnitude of BQ/AR is close to the
magnitude of S/ 7.

All admissible alternatives to a proposed estimate d(k|k + m),
given by (2.4), can be described by (Q/R)y(k + m) + n(k), where

nk) = Gytk + m) = G %Nﬂ(k + m). (A.2)
Here G is a causal, stable, but otherwise arbitrary rational function,
and 7 is the innovation. Optimality of (2.4) is asured if the corre-
sponding error z(k) is orthogonal to any admissible estimator vari-
ation n(k), i.e., Ez(k)n(k) = 0.

Assume E(z(k))? to be finite. (This will be verified when the op-
timal estimator has been obtained.) Evidently, to keep a perturbed
error variance (for n(k) # 0) finite, E(n(k))* must also be finite.
Thus, G in (A.2) must be constrained so that its numerator cancels
all zeros of DAN on the unit circle. Both z(k) and n(k) will then be
stationary and Parseval’s formula gives Ez(k)n(k) as

s B\ C M
E i<q’ P %) 5e® —q" % v(k)}

m-7 E m A_l
‘gq QAD ek) + q"G N v(k)}

B 13 L

Q)
T 2mi T RA/DA,D, *z

RNN,

_ N\ K (2!t7mscc, B N, NAR — TQrBB*} g %
T 2mi DTNARN,A, D, *z
(A.3)

In the last step, (3.1) was used. Now, Ez(k)n(k) = 0 is fulfilled if
all poles in |z| < 1 are cancelled by zeros in (A.3). With our con-
strainton G, (1/N,A,D,)G, will have poles only in |z| > 1. All
other poles are in |z| < 1. Thus, we require

Z!*7"mSCC,B,N,NAR — TQrfB, = zL,DINAR
for some polynomial L, (z) or, equivalently,

@' "SCC, BN, — 2L DT)NAR = QrB,BT.  (A.4)
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The right-hand side of (A.4) must contain R as a factor. We keep
our options open by not assuming a priori that R and Q have com-
mon factors. Furthermore, since R must be stable, it cannot include
factors of 3. Thus, set R = BT, and cancel BT in (A.4). Observe
that NA must be factor of Q, i.e., 0 = Q;NA. Cancel NA and
exchange g for z to obtain (3.4). With R = 8T and Q = Q,NA
(which may contain stable common factors), we have (3.3).

A unique solution {Q,, L, } to (3.4) is guaranteed by (3.5) and
the coprimeness of 8, and DT. The minimal variance (3.6) is ob-
tained by inserting (3.1), (3.3), and (3.4), in this order, into (2.5).
The “‘only if*” part of the result follows because choices of Q/R
other than (3.3) correspond to n(k) # 0. The criterion value would
be E(z(k) — n(k))* = E(z(k))* + E(n(k)) since Ez(k)n(k) = 0. It
would thus increase. '

It remains to verify the stationarity and finite variance of z(k).
Insert (3.3) into (A.1) to obtain

S _ NAB\ C NAM
z(k) = <q'; —-q"7 %“) D eky — q" Q;B—TN v(k).

(A.5)

Cancellation of 4 and N is assumed to be exact in (A.5) and 8T
will be stable. It remains to show that poles on |z] = 1 in C/D
must be cancelled by zeros. Denote the zeros of D by {z,}. Note
that when (3.1) and (3.4) are evaluated in {z,}, their most right-
hand terms vanish. Using (3.3), (3.4), and (3.1), the transfer func-
tion from u(k) to ﬁ(k]k + m), evaluated in {z,}, becomes

mr QNB o W SCC,B,N,NB | §
2o =Zp 2o =20 e
BT 88, T T

It equals the transfer function from u(k) to d(k). Thus, the transfer
function from u(k) to z(k) has zeros at all poles of C/D. Hence,
z(k) will be stationary. . | ]
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A Fast Finite-State Algorithm for Vector Quantizer
Design

Ruey-Feng Chang, Wen-Tsuen Chen, and Jia-Shung Wang

Abstract—The Linde-Buzo-Gray (LBG) algorithm is usually used to
design a codebook for encoding images in the vector quantization. In
each iteration of this algorithm, we must search the full codebook in
order to assign the training vectors to their corresponding codewords.
Therefore, the LBG algorithm needs a large computation effort to ob-
tain a good codebook from the training set. In this correspondence, we
propose a finite-state LBG (FSLBG) algorithm for reducing the com-
putation time. Instead of searching the entire codebook, we search only
those codewords that are close to the codeword for a training vector in
the previous iteration. In general, the number of these possible code-
words can be very small without sacrificing performance. Because of
searching only a small part of the codebook, the comp ion time is
reduced. In our experiment, the performance of the FSLBG algorithm
in terms of the signal-to-noise ratio is very close to that of the LBG
algorithm. However, the computation time of the FSLBG algorithm is
only about 10% of the time required by the LBG algorithm.

I. INTRODUCTION

In recent years, vector quantization (VQ) has been found to be
an efficient technique for image compression [1], [2]. One major
advantage of VQ is that the hardware structure of the encoder, and
especially the decoder, is very simple. The images to be encoded
are first processed to yield a set of vectors. Then a codebook is
generated using, for example, the iterative clustering algorithm
proposed by Linde, Buzo, and Gray [3]. The input vectors are then
individually quantized to the closest codewords in the codebook.
Compression is achieved by using the indices of codewords for
transmission or storage. Reconstruction of the images can be im-
plemented by the table lookup techniques; the indices are simply
used as addresses to the corresponding codewords in the codebook.

The key step in vector quantization is to generate a good code-
book from the training image. The K-means [4] and the closely
related generalized Lloyd clustering algorithm proposed by Linde,
Buzo, and Gray [3], (LBG algorithm), are typically used to gen-
erate the codebook. These algorithms are basically iterative pro-
cesses to minimize the distortions between the training vectors and
their corresponding codewords. A major disadvantage of the LBG
algorithm is that a large effort is required for searching the entire
codebook in each iteration to find the closest codeword for a train-
ing vector. In this correspondence, we propose a finite-state LBG
(FSLBG) algorithm to reduce the execution time of designing a
codebook. This algorithm searches only a part of the codebook,
not the whole codebook, to find the corresponding codeword for a
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