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Wiener Filter Design Using Polynomial Equations

Anders Ahlén, Senior Member, IEEE, and Mikael Sternad, Senior Member, IEEE

Abstract—A simplified way of deriving realizable and explicit
Wiener filters is presented. Discrete time problems are dis-
cussed in a polynomial equation framework. Optimal filters,
predictors, and smoothers are calculated by means of spectral
factorizations and linear polynomial equations. A new tool for
obtaining these equations, for a given problem structure, is de-
scribed. It is based on evaluation of orthogonality in the fre-
quency domain, by means of canceling stable poles with zeros.
Comparisons are made to previously known derivation meth-
odology such as ‘‘completing the squares’’ for the polynomial
systems approach and the classical Wiener solution. The sim-
plicity of the proposed derivation method is particularly evi-
dent in multisignal filtering problems. To illustrate, two ex-
amples are discussed: a filtering and a generalized
deconvolution problem. A new solvability condition for linear
polynomial equations appearing in scalar problems is also pre-
sented.

1. INTRODUCTION

IENER filtering has been a classical tool in signal

processing and communication since the 1950’s.
However, there are still ways to improve the estimator
design technique. One such development is the theme of
the present paper.

The concept of orthogonality will be utilized in a novel
way, within the polynomial equations approach to linear
filtering problems. The process of deriving estimator de-
sign equations, for a given problem structure, is then sim-
plified significantly, compared to the techniques now in
use.

The problem of interest is the optimization of realizable
IIR filters. They are used for prediction, filtering, or
smoothing of signals or signal vectors. The minimization
of mean-square error criteria by linear estimators is con-
sidered. Stochastic models of possibly complex-valued
signals in discrete time are assumed known. Apart from
realizability (internal stability and the use of finite
smoothing lags), no restrictions are placed on the esti-
mator structures and degrees. In the extensive literature
on such problems, three basic methodologies can be dis-
tinguished.

1) In the classical Wiener filtering approach, varia-
tional arguments are utilized. Frequency functions are ob-
tained, whose causal parts are sought. See, for example,
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[1]-[6]. These causal parts are then evaluated in a rather
cumbersome way, using partial fraction expansions and
residue calculus. While this is suitable for solving simple
specific examples, an efficient general technique for de-
termining the filters as rational transfer functions would
be valuable.

2) The problem may be transformed to state-space
form. A (stationary) Kalman filter can then be designed
[28], [33]. In contrast to Wiener estimators, Kalman fil-
ters can be designed also when measurements are nonsta-
tionary. When only a few of the states need to be esti-
mated from stationary data, Kalman filters are, however,
unnecessarily complex. The relationship between Kalman
and Wiener filters has been studied by, e.g., Shaked [32].

3) Within the control systems field, the polynomial ap-
proach to linear quadratic optimization problems has been
developed in a general way by Kucera [9]-[14]. It pro-
vides a systematic way of evaluating the causal factor of
the Wiener-Hopf solution. Transfer functions in the sig-
nal models are represented by polynomial fractions (or by
polynomial matrix fractions in multivariable problems).
Optimal filters are designed by solving spectral factor-
izations and linear polynomial equations. For a given
problem structure, these equations are usually derived
using a method of ‘‘completing the squares’” [10]-[17].

The polynomial systems approach to the design of IIR
filters is well suited to many applications such as adaptive
filtering and control. A drawback with the derivation
technique based on ‘‘completing the squares’ is that it
often leads to rather long and tedious calculations. The
same is true for an alternative approach, based on differ-
entiation of the criterion [23], [24]. A new and simpler
methodology is presented in this paper. It is based on the
evaluation of orthogonality, to obtain the required poly-
nomial equations. The technique can be utilized for solv-
ing estimation and control problems, in discrete time as
well as in continuous time.

Control problems are discussed in [40]. In this paper,
we will focus on discrete time estimation problems with
stationary signals. In the following section, we present
the technique in general. The design of filters, predictors,
and smoothers for scalar signals illustrates the approach
in Section III. For comparison, the solutions derived by
means of ‘‘completing the squares’’ and by using the con-
ventional Wiener approach are discussed in Appendixes
A and B, respectively. It is pointed out that a linear poly-
nomial equation provides a systematic way of calculating
the causal part of the Wiener solution. In Section IV, a
new solvability condition is presented for the type of lin-
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ear polynomial equations that are utilized. Multichannel
filter design is illustrated in Section V by two examples:
an estimation problem, previously discussed by Roberts
and Newmann [15], and a more complicated generalized
deconvolution problem. The latter result, for colored sig-
nals and noises, is believed to be new. It generalizes the
scalar estimator of Ahlén and Sternad [18], and the mul-
tivariable smoothers for white signals and noises of Deng
[21] and Moir [22]. However, the different estimation
problems discussed are not the main point of the paper.
They have been included merely to clarify different as-
pects of the reasoning used in the derivation technique. A
numerical example illustrating a filter calculation can be
found in Section VI.

II. THE OPTIMIZATION PROCEDURE

The derivation technique is outlined in this section,
using a minimum of notations. Specific notations are in-
troduced in Sections III and V, when required.

Consider a linear discrete-time system, which is stable
and time invariant. It is driven by a vector of stationary
white noises, with zero means

e(t) = (e,(®) -+ e, (1)

The system generates a stationary measurement vector se-
quence

yay = (n@ -y’

and a vector sequence of stationary desired responses

fO = H@® - file)"

see Fig. 1.

The system is parametrized by transfer functions and
ARMA models, using the backward shift operator q",
where q_l v(1) e v(t — 1). Signals and transfer function
coefficients are allowed to be complex valued. The su-
perscript * denotes complex conjugate transpose for sig-
nal vectors. Rational functions and matrices are denoted
by calligraphic symbols, like ®.

Our aim is to optimize a linear estimator of f (¢)

Falt +m) = F@ "y + m) @1
where F(¢~") is an /| p matrix, having causal and stable
transfer functions as elements. Depending on m, the es-
timator constitutes a predictor (m < 0), a filter (m = 0)
or a fixed lag smoother (m > 0). Denote the trace of a
matrix P by tr P and introduce the quadratic criterion

!
J = tr Ee()e* () = _21 Ele(n | (2.2)

where
e(®) = (e (0 - - @) £ f@) = fi|t + m).

The criterion (2.2) is to be minimized, under the con-
straint of realizability (stability and causality) of the filter
F(g~"). Since all signals are assumed to be stationary and
stability of F(g ') is required, e(7) is stationary.

(2.3)

Linear

Linear .
Filter

System f(t)

Fig. 1. The estimation problem, where f (@ is the estimate of £ (1), while
n(r) is a variational term.

We will use variational arguments in order to minimize

(2.2). For this purpose, introduce an alternative estimator
dit|t + m) = F(g Hyt + m) + n@) (2.4)

where the stationary signal n(f) represents a modification
of the estimate (2.1). All admissible variations can be rep-
resented by n(r) = 59((]_1 )y(t + m), where 6 is a scalar
and G(g~ ') is an arbitrary, but stable and causal, rational
1| p matrix. The use of (2.4) results in the criterion

J =t E{f) — d(|t + m)} {f*(t) — d*(t|t + m)}
tr {Ee(t)e* (1) — Ee(On*(t) — En(t)e* (1)
+ En(tyn*(1)}.

2.5)

If the mixed terms in (2.5) are zero, then n(r) = 0 evi-
dently minimizes J, since tr En(t)n*(¢) > 0 for n(z) + 0.
Then, the estimator (2.1) is optimal. Orthogonality be-
tween the error e (f) and any admissible linear function of
the measurements n(f) guarantees optimality. (This well-
known condition is also obtained by differentiating with
respect to 6, and requiring 8J/38 | 5o = 0.)

For symmetry reasons, it is sufficient to consider
Ee(H)n* (7). Use Parseval’s formula to convert the re-
quired orthogonality, Ee(1)n* (f) = 0, into the frequency-
domain relation

Ee(n*(r) = i

27 (2.6)

d
d)m* _E = 0
izl =1 Z
The ijth element of the |/ cross-spectral density matrix
¢+ can always be expressed as

Ti@ )

$% @ S
where T7, $%, and §¥ are polynomials. While S% has all
zeros in |z| < 1, §7 has all zeros in |z| > 1. The relation
(2.6) is fulfilled if, in every element of the integrand, all
poles inside the integration path |z| = 1 are canceled by
zeros. The use of this requirement to obtain orthogonality
is the key idea of the derivation technique. Thus, we re-
quire that

Ti(z, z7")
S4e™hH

2.7

1 ..
- =LYy i=1,---1Lj=1,-"1
Z

(2.8)

where LY (z) are polynomials in z.

The relations (2.8) determine the estimator F(g~'). As
will be seen in the sequel, (2.7) can be simplified using a
spectral factorization, derived by expressing y(f) in in-
novations form. Using the polynomial matrix fraction de-
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scription, discussed in Section V, the relations (2.8) can
be evaluated collectively, rather than individually, when
I > 1. They then reduce to one linear polynomial (matrix)
equation. Let us summarize the procedure.

1) Parametrize the system by rational transfer func-
tions, described as polynomial (matrix) fractions. Define
a polynomial spectral factorization from the spectral den-
sity of y(r).

2) Define the estimation error € (r) and introduce a vari-
ation n(¢) of the estimate. Express Ee(f) n* (¢) in the fre-
quency domain by means of Parseval’s formula and sim-
plify it, using the spectral factorization.

3) Fulfill the orthogonality requirement Ee(r)n*(r) =
0 by canceling all poles in |z| < 1, in every element of
the integrand, by zeros. This leads to a linear polynomial
equation, which determines the estimator.

It can be shown that the introduction of a weighting
matrix ¥ > 0 with constant elements into the criterion, J
= tr E(e (t) ¥e * (1)), does not affect the optimal solution
in any way. The use of frequency shaped weighting is
more interesting We could for example, use J = tr
E(e,. (D €e3(1)) where €,(1) £ 3C(q™")e(r), with 3C(g™"
being a diagonal matrix with stable transfer functions as
diagonal elements. Weighted signals e,,(r) and n,, (1) are
then substituted for € (¢) and n(r) in (2.5).

The reasoning above describes a systematic and con-
structive derivation technique. In a previously known
methodology, (2.4) and (2.6) were sometimes used to
demonstrate optimality by contradiction, for estimators or
regulators derived by other means. Examples of such non-
constructive proofs can be found in [27] and in [18]-[20],
[41].

III. ESTIMATION OF A SCALAR SIGNAL

The methodology introduced above is best clarified by
applying it to a simple scalar example. For comparison,
the ‘“‘completing the squares’” approach is discussed in
Appendix A. An extension of the conventional Wiener
formulation, using rational transfer functions, is pre-
sented in Appendix B. First, some notations are intro-
duced. For any polynomial

PG Y =py+pg + - +p,qg"”

define the conjugate polynomial

* np

P*(Q)=P3<+PTQ+ +pnpq

where g is the forward shift operator (qu(r) 2+ 1))
and pj* is the conjugate of the (possibly complex) coeffi-
cient p;. In the frequency domain, the complex variable z
is substituted for ¢. Polynomials with positive powers of
q or z as arguments are always denoted by a * subscript.
For convenience, the polynomlal arguments are often
omitted. We call P(g™") stable (or strictly Schur) if all
zeros of P(z™') are in |z| < 1. Note that whenever P is
stable, all zeros of P are in |z] > 1.

Now assume that the signal s(r) = [C(q~ )/
D(q~ "e() is to be estimated from noisy measurements
-1

)
¥y = s(r) + Ng D) v(t) 3.1)
up to time ¢t + m, using a stable and causal estimator
Fq~') = 0(q"')/R(g™"). See Fig. 2.

Here, e(?) and v(r) are mutually independent and white
stationary sequences. They have zero means and vari-
ances A, > 0 and A\, = 0, respectively. The ARMA
models C/D and M/N are stable, causal, and have no
common zeros on the unit circle. All model polynomials,
with degree nc, nd, etc., are monic. The measurements
{ ()} can also be described by the innovations model

Bg
Y0 = 5o N( = (PN1@) (3.2)
where the innovations sequence \/— A, (?) has variance A,.
The monic and stable polynomial B(q =1+ 8,q” i
+ - + B,q ™ is the (polynomial) spectral factor. Let
us optimize ¥ = Q/R, following the procedure intro-
duced in Section II. »

1) Set the spectral densities ¥, (e/*) equal in (3.1) and

(3.2). This gives the spectral factorization equation
rBB* = CC:«NN* + pMM*DD*

where r = \,/\,, p £ \,/\, and B(z") is stable.
2) Use the error signal

C M
e() = <1 - q" %) D e(t) — q’"%ﬁ v()

and the estimator variation n(f) = G(g~ ") y(t + m), where
G(g™") is any stable and causal transfer function. The first
mixed term in (2.5) is then

Ee(ryn*(1)
R—-4q"QC C *
=E <# e(t)> <9q” D eu)>

(3.3)

RD

M M *
—E <q %\/ v(t)> <9q'" N v(t)>

@ (R — 2"Q)z2""CC«NN. — pQMM..DD.

27rj RDD:NN.
dz
. 9* -
Z
Ae 2 "RCC.NN. — Qrf88:) _ dz
2xj RDD.NN. z

where Parseval’s formula (see Appendix C) and (3.3) were
utilized.

3) The stable polynomials R, D, and N have zeros in
|z| < 1, while the poles of G. and the zeros of D.N. are
in [z] > 1. Thus, all poles inside |z| = 1 of the integrand
of (3.4) are eliminated if (and only if)

Z "RCC.NN. — QrB3. = zRDNL.
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Signal

Description Filter

e(t) | cig™h) [s(t
D(¢~1)

Fig. 2. The scalar output filtering, prediction, or smoothing problem. The
signal { (1)} = {s(1)} is to be estimated from { y(+ + m)}.

for some polynomial L.(z), cf. (2.8). Now, N must be a
factor of QrBB. Set Q = O, N.! Cancel N and substitute
q for z:

R(g "CC.N. — gDL.) = Q,rB3B-. 3.5)

Evidently, R must be a factor of Q, r38+. Since B« is un-
stable, while Q, is part of the estimator numerator, set R
= 3. Now @, (q_' ), together with L. (g), can be found as
the unique solution to the linear polynomial equation

¢ "CC.N. = rB.Q, + gDL.. 3.6)

The solvability and solution of equations like (3.6) is dis-
cussed in the next section. With 0 = Q,Nand R = 83,
the optimal estimator is

Qg NG ™)

@™

The estimator is obtaind by solving (3.3) for 8 (and r) and
(3.6) for Q,(and L.). If the innovations model (3.2) is
known in addition to (3.1), there is no need to solve (3.3).
The IIR filter is internally stable, since 3 is stable. It may
contain stable common factors. For a detailed solved ex-
ample of an equation similar to (3.6), see [18, example
1].

Note that the arbitrary rational function G does not af-
fect the result in any way. We could have derived (3.6)
with n(1) = y(t + m), i.e., by just requiring orthogonality
to the last measurement. This is the case in general, if the
measurements are stationary.

For a derivation of (3.7) by the ‘‘completing the
squares’” method, sec Appendix A. That derivation re-
quires significantly more calculations.

Comparison with the Wiener solution, reformulated as
in Appendix B, provides the following insights: 1) The
solution of the spectral factorization equation (3.3) cor-
reponds to the design of a whitening filter (the inverse of
the innovations model (3.2)). 2) The linear equation (3.6)
represents a calculation of the causal part {-}, of the
Wiener filter. (Readers who are used to, and prefer, the
classical Wiener formulation could utilize this relation,
by deriving their filters in the usual way and then evaluate
the causal bracket by solving a polynomial equation.)

The optimality requirement (2.8) determines the struc-

S¢tlt + m) = yt + m). 3.7

"The polynomial 3. is unstable, and N and 8 have no common factors,
in general. If they have, 08 = Q, 8N must hold. This implies R = §,.
Equation (3.6) remains unaffected, and the filler O /R = Q,8,N /BB, is
still given by (3.7).

ture and degree of the estimator. The methodology cannot
be utilized for optimizing filters with a prespecified re-
stricted complexity and degree. In such problems, all
poles inside |z| = 1 of ¢,,« cannot be eliminated. Instead,
the orthogonality (2.6) is fulfilled at an optimum because
the residues corresponding to all poles in |z| < I cancel.
While a well-known closed-form expression exists for op-
timal FIR filters [8], no corresponding expression exists
for IIR filters of fixed degree.

The scalar variant of the derivation technique may be
applied when the desired response is scalar (! = 1) but
the measurements are multiple ( p > 1), if the number of
signal and noise sources n equals p. Optimization of de-
cision feedback equalizers [19] is such a case. Multiple
scalar variations, n;(t) = G;y;(t + m), i =1, - -+ , p,
are then utilized in (2.4) and orthogonality with respect
to each, Ee()nf@) = 0,i =1, -+, p, is required.
When n > p > 1, multivariable spectral factorizations
become an integral part of the solution. Such problems
can be handled by the multivariable polynomial formal-
ism, to be discussed in Section V.

IV. REMARKS ON THE SOLVABILITY

With stable transfer functions without common zeros
on |z| = 1, the right-hand side of the polynomial spectral
factorization (3.3) is positive on |z] = 1. A stable B "
and a scale factor r, which satisfy this equation, thus ex-
ist. Efficient algorithms for polynomial spectral factor-
ization can be found in, e.g., [10], [37], or [46].

A diophantine equation like (3.6) can easily be written
as a linear systems of equations, AX = B, where A is a
Sylvester matrix containing polynomial coefficients [18].
It can be solved directly. An alternative, more computa-
tionally efficient solution procedure is based on the Eu-
clidean algorithm [36]. The most critical numerical prop-
erty is the occurrence of almost common factors of 4 and
B, which are not factors of C, in a polynomial equation
AX + BY = C.

While diophantine equations in general have an infinite
number of solutions, equations arising from linear quad-
ratic design problems mostly have one unique solution.
This is a consequence of two requirements:

1) Filter causality requires Q, to be a polynomial only
ing™".

2) Optimality restricts L« to be a polynomial only in g.
If powers of ¢~ ' were allowed in L« in (3.6), the integrand
of (3.4) would have poles at the origin, resulting in a non-
vanishing integral.

For polynomial equations with these properties, the fol-
lowing result can be established.

Lemma 1: The linear polynomial equation

Alg. ¢ )X(@™") + Blg, gY@ = Clg. ¢ (4.1
where

A(qa q_]) = analqm’l + oo aAnan_naz * 0
B(g,q") & bugd™ + -+ bowng " # 0
Cq, a7 & cud + -+ cpag "
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has a unique solution X(¢g~ ") = xy + x,q” ' + - +

g " V(@ =yo + vig + - + y,q" if and only if

common factors of A and B are also factors of C and
nbl + na2 —d =1 4.2)

where d is the number of linearly dependent equations in
the corresponding system of linear equations AX = B.
U
Proof: Let g, and g, denote the highest powers of ¢
and g, respectively, present anywhere in (4.1). The de-
gree of Y(q) must be selected such that the highest power
of gin B(q, ¢') Y(g) equals the highest power of ¢ in any
of the two other terms. (To increase ny above this value
would be useless; with no matching terms, the superflu-
ous coefficients would become zero.) Thus,

4.3)

For similar reasons, the degree of X(g™'), nx, must sat-
isfy

g = nbl + ny = max {nal, ncl}.

g = na2 + nx = max {nb2, nc2}. 4.4)

Equation (4.1) corresponds to g, + g, + 1 linear simul-
taneous equations. A solution exists only if factors of A
and B are also factors of C. (Write A = TA, and B = TB,,
where T is the greatest common factor of A and Bin (4.1).
Since T is a factor of the left-hand side of (4.1), T(4, X
+ B,Y), it must also be a factor of C.) A unique solution
then exists if and only if the number of linearly indepen-
dent equations equals the number of unknowns (coeffi-
cients of X and Y):

Sitet+tl—d=nm+1+n+1 45

The use of (4.3) and (4.4) in (4.5) gives (4.2). If the left-
hand side of (4.2) is <1, the solution is nonunique. If it
is > 1, no solution exists. ad

Jezek [42] has studied the special case nbl = na2 = 0
of (4.1). Note that, regardless of the solvability, we are
forced to choose the degrees nx, ny according to (4.4),
(4.3). The structure of the equation determines the de-
grees uniquely. Nonsolvability of (4.1) could occur for
two different reasons: 1) The existence of common factors
of A and B, which are nor factors of C. This would lead
to algebraic equations which contradict each other. 2) The
number of unknowns might be insufficient. High nbl or
na2 in (4.3), (4.4) lead to correspondingly small ny, nx.

A reduction of the number of linearly independent
equations, i.e., d > 0, may occur because of common
factors of A and B, of degree k, which are factors of C.
They reduce the number of linearly independent equations
by k. (Factors g ** do not count; multiplication of (4.1)
by g** leaves the linear simultaneous equations unaf-
fected.) Another possibility is that some equations may
be zero.’

*Consider (29 + ¢ )X(¢"") + (—=¢ — ¢"*)Y(@) = gq. No common
factors, except ¢’, occur. From (4.3) and (4.4), nx = ny = 0. The algebraic
equations consist of g, + g, + 1 = k + 2 equations. with only two un-
knowns. Of the equations, k are identically zero. Thus, d = k. With nbl
= 1 and na2 = k, the requirement (4.2) is fulfilled. A unique solution (X
=1, Y = 1) exists. (This example was suggested by V. Kucera.)

When the number of equations equals the number of
unknowns (g, + g, + 1 = nx + ny + 2) and no common
polynomial factors occur, the Sylvester matrix A has full
rank [31], which implies d = 0.

This is precisely the situation in a typical estimation
problem, in particular, in the estimator design equation
(3.6). With degrees derived from (4.3) and (4.4), the
number of unknowns and number of equations will coin-
cide. Furthermore, D (with zeros in |z| < 1, since D is
stable) and 8. (with zeros in |z] > 1, since 8 is stable)
cannot have common factors. Thus, d = 0. With nbl =
1 because of the free g-factor and na2 = 0, the condition
(4.2) is satisfied. Consequently, a unique solution to (3.6)
always exists.” The solution has polynomial degrees, ob-
tained from (4.4) and (4.3)

nQ, = max (nc + m, nd — 1)
(4.6)

The highest degree coefficients of Q, and/or L. may be-
come zero when specific problems are solved. The de-
grees are then less than (4.6). Note that in smoothers (m
> 0), the required degree of Q, grows with the smoothing
lag m.

The choice R = § in (3.5) is unique: any other choice,
B8 = B,83, R = B35, deg B3 > 0, would result in a poly-
nomial equation ¢ " CC«N« = Q,rB338+ + gDL+«, which
would be unsolvable in general. (In (4.2), nbl = 1 and
na2 = deg 83.)

In contrast to the classical Wiener formulation, ap-
proaches based on polynomial equations can be used when
signal and/or noise-generating processes are unstable.
This includes, for example, models of random walk sig-
nals (ARIMA processes) and models of deterministic sig-
nals and disturbances such as sinusoids. In the derivation
technique, the stationarity of n(f) and e(f) must then be
ascertained. See [44] for a detailed example.

Solvability problems would occur only in very unreal-
istic situations, of little practical interest: when D con-
tains strictly unstable factors (with zeros in [z| > 1),
which are also factors of C:Nx, and consequently also of
B+«. With common factors, the solution of (3.6), with de-
grees (4.6), becomes nonunique. The requirement that e (¢)
must be stationary defines a second diophantine equation.
In these rare cases, this equation would have to be used
in combination with (3.6) to determine the filter uniquely.
See [13] and [43].

nlL = max (nc + nn — m, nf3) — 1.

V. MULTIVARIABLE ESTIMATION

In this section, multivariable systems will be described
by means of fractions of polynomial matrices (MFD’s).

*We prefer to use polynomial equations with both ¢ and ¢~ ' as argu-

ments, since they are related to the optimization in a direct way. Equation
(3.6) could be transformed into an equation with argument ¢ ' only, by
multiplication by ¢”*~ '. The polynomial degrees (4.6) then correspond
to the least degree solution with respect to L(g ') = ¢~ "* L.(g) of such an
equation. (It can be shown that the reason for this is that the free g-factor
is positioned in the term gDL.. If the relation (4.2) had instead been sat-
isfied by a frec ¢~ '-factor in 8. Q,, the solution would have corresponded
to the least degree solution with respect to Q, (¢ ").)
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The methodology presented in Section II is exemplified
by two estimation problems. In subsection B, a predic-
tion, filtering, or smoothing problem is discussed. The
signal and noise models are expressed in ‘‘common de-
nominator’’ form. This problem is considered for peda-
gogical reasons, because of its simplicity. The filter case
(m = 0) has been derived previously, e.g., by Roberts
and Newmann [15], using the method of *‘completing the
squares.’’ In subsection C, a more difficult problem is
solved: the derivation of design equations for a general
deconvolution estimator. This is a multivariable general-
ization of a problem discussed in [18].

Some definitions and some concepts from the theory of
multivariable linear systems will be needed. We begin by
introducing these prerequisites below.

A. Preliminaries

A polynomial matrix P(q™") is a matrix with all ele-
ments being polynomials in the backward shift operator.
Alternatively, it can be expressed as a matrix polynomial

P(q*]) é PO + qukl + - +Pnpq_"p

where P; are constant matrices. Let Px(q) denote the com-
plex conjugate transpose of P(¢™"). The i, jth polynomial
element of P. is then simply the conjugate (defined in Sec-
tion III) of the j, ith element of P. With the degree of
P(q™"), denoted deg P or np, we mean the highest degree
occurring in any element of P. (In other words, P,, # 0).
With rankP(z"') = r, we mean the normal rank;
rank P(z~') = r for almost all z. If P(q_') is square and
has full rank, it is nonsingular, and the inverse P(g~")™"
exists. In general, the inverse will be a rational matrix.
All elements of P(¢g”') ! are causal if and only if Py is
nonsingular. P(qg~")"" is then said to be causal or proper.

A square polynomial matrix P(z™') is called stable (or
strictly Schur) if its determinant polynomial, denoted det
P(z™"), has all zeros in |z| < 1. A rational matrix Rz™H
is stable if all its elements have stable denominator poly-
nomials.* Note that if P is stable, elements of P.' = Adj
P./det P« have poles only in |z| > 1.

Two polynomial matrices are said to be left (right) co-
prime if every common left (right) divisor is a unimodular
matrix U (det U = constant). Any rational matrix ®(g™"),
of dimension p|r, can be represented as a matrix fraction
description (MFD), either left or right: ®R(g™') =
AT'(@ )Bi(q™") = By(¢"")A5'(g"). The polynomial
matrices (4,, B,) and (B, 4,) can be chosen left and right
coprime, respectively. The MFD’s are then called irre-
ducible. If A4, is square and stable, all elements of the
rational matrix ® = A4;'B, = (Adj 4,) B, /det A, will, of
course, be stable. For a more extensive discussion of
MFD’s see, for example, [30], [31].

B. Estimation of Signals in Colored Noise
Assume a signal {s(z)} and noisy measurement { y(1)},
both with p elements, to be stationary stochastic vector

*The concepts of poles and zeros of rational matrices. defined via the
Smith-McMillan form, will not be utilized.

Signal
Description

Fig. 3. A multivariable estimation problem. The vector sequence { f(n)}
= {s(n)} is to be estimated from measurements { v(1)}}, up to time
t+ m.

sequences described by
s(f) = A~ ' Be(t)
W) = s@t) + A7 Co@). ;5.1

Here, (A, B, C) are polynomial matrices in the backward
shift operator ¢~', of dimensions p| p, p|k, and p|r, re-
spectively. The matrix A is a common left denominator
(not necessarily the least one) of the signal and noise
models; A and [B, C] need not be left coprime. The white
noises {e(r)} and {v(r)} are zero mean and mutually in-
dependent vector sequences. They have covariance ma-
trices » = 0 and ¥ = O of dimensions k|k and r|r, re-
spectively. Let the matrices (4, B, C, ¢, ¥) be known.
Given data up to time ¢ + m, we seek the optimal esti-
mator

$(lt + m) = F(g~Hye + m) (5.2)

of the signal s(¢), such that the criterion (2.2) is mini-
mized. See Fig. 3. Note that we include singular filtering
problems, which are difficult to handle with Kalman fil-
tering algorithms: the noise covariance matrix ¥ need not
be strictly positive definite. We make the following as-
sumptions.

Assumption 1: The polynomial matrix A(g™') is sta-
ble, with A, nonsingular. _

Assumption 2: The spectral density matrix, ®,(e/*), is
nonsingular for all .’ _

The spectral density matrix is given by &,(¢/”) =
A™'(B¢B. + CYC) A"

Following the scheme in Section II, we define the left
spectral factorization

A pl p polynomial spectral factor D, with det D(z™') #
0in |z| = 1 and D, nonsingular,® can always be found
under Assumption 2 [10], [11], [28], [39]. This means
that D' is stable and causal. We continue with the or-
thogonality requirement (2.6).

*Two conditions on the polynomial matrices appearing in (5.1) are. to-
gether, sufficient for this. 1) The matrix [B¢ Cy] has full (normal) row
rank p and 2) the greatest common left divisor of B¢ and C¢ has nonzero
determinant on |z| = 1. While 1) is a condition for existence of a spectral
factor, 2) provides a spectral factor D such that det D # O on |z| = 1.

®The spectral factor D is unique. up to a right orthogonal matrix. (If V'V.
= [, DD. = (DV) (V.D.).) It is important to choose a (stable) spectral
factor D such that D, is nonsingular. Otherwise, the resulting filter § would
be noncausal. Algorithms providing this exist [38], {39].
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Let e(t) = s(t) — §(z|t + m) and n(t) = Qg ")y +
m), where G(¢™') is an arbitrary, stable, causal, and ra-
tional p| p matrix. The first mixed term in (2.5) becomes

Ee(t)n* (1)
= E[(I — q"F)A"'Be(r) — ¢"FA™' Co(r)]
* [Gq" (A7 ' Be(t) + A~ Co(n)]*

1
= <§ [~ 2"F)A ' B¢B.A: ' 27"
27j

- iFA“Cx//C*AI‘]Q*g
Z

1

d.
=— (§> "4 'BéB. — FA~'DD.1AT' Q. &
27!'] z

(5.4)

In the last equality, the spectral factorization (5.3) was
inserted. In order to fulfil the orthogonality requirement
(2.6), F should be chosen such that, in every element of
the integrand in (5.4), all poles inside the unit circle are
canceled by zeros. The elements of the rational matrix
A" have poles only inside the unit circle, since 4 is sta-
ble. Elements of D contribute with poles in the origin,
since they are polynomials in z~'. The factor A~ ' D in the
second term of (5.4) can be eliminated directly by &,
while A~ in the first term has to be factored out to the
left, to be canceled later. Thus, set

F=A4""'YD'A (5.5)

where Y(z™"), of dimension pl p, is undetermined. Insert
(5.5) into (5.4), to obtain

1
Ee(hn*(1) = P <§> A" (z""B¢B. — YD.)A:'G. %z_

(5.6)

Since the polynomial matrix A is stable and the rational
matrix G is causal and stable, all elements of A:'G. have
poles in |z| > 1. The requirements (2.8) will be fulfilled,
collectively, if (and only if) there exists a polynomial ma-
trix L« (z), such that

A ' (T"B¢B: — YD.) = zL..

Rearranging and exchanging g for z, we obtain the equa-
tion

YD. + gqAL. = q " B¢B. 5.7
The unknowns Y(¢~ ') and L. (g) have degrees
nY < max (na — 1, nb + m)
nL < max (nd, nb — m) — 1. (5.8)

In the estimator (5.5), we recognize the whitening filter
D' A of the Wiener solution. Since 4 and D are stable,
all elements of & will be stable transfer functions. Since
A, and D, are nonsingular, F will be causal.

The derivation above is simpler than the one for the
filter (m = 0) presented by Roberts and Newmann in [15],
but the result is the same. To compare the results, intro-
duce the number

g £ max (nd, nb — m) 5.9

and denote D £ ¢¥D., B2 ¢g"" ¥B,andZ £ g ¢ *'L..
Multiply (5.7) by ¢~ ¢ to obtain

YD + AZ = B¢B (5.10)

which, with m = 0, is equivalent to (27) in [15]. Hence,
(5.5) is (26) in [15].

Equation (5.10) is a bilateral polynomial matrix equa-
tion. (The unknowns Y and Z in (5.10) appear on opposite
sides of the two left-hand side terms.) Note that A and D
are stable. Thus, det A and det D have no common fac-
tors. This implies that the invariant polynomials of 4 are
coprime with all those of D and a solution always exists.
(See [15, lemma 1]). In particular, there exists a least de-
gree solution with respect to Z, with deg Z = deg D-1
= g — 1. This corresponds to a solution (Y”(q" ),
Li(g)) of (5.7) with degrees (5.8). Every solution to (5.7)
can be expressed as (Y, L.) = (Y’ — gAX, L + XD.),
where the polynomial matrix X is undetermined, cf. [10].
Since Y is required to be a polynomial matrix in ¢~ while
L. is required to be a polynomial matrix in g, X = 0 is
the only choice. We conclude that the solution to (5.7) is
unique.

C. A Generalized Deconvolution Problem

We will now consider a more complicated problem. In
many areas, it is of interest to estimate the input to a linear
system, or a filtered version of it. See, for example, [18],
[21], [22], [34], [35] and the references therein. Let the
noise-corrupted measurement y(r) and the input u(7) be de-
scribed by

¥(©) = A7 'Bu(®) + N~ ' Mu@)

u(t) = D' Ce(r). (5.11)
Here, (4, B, N, M, D, C) are polynomial matrices in the
backward shift operator ¢ ™', of dimensions p| p, pls, p| p,
plr, s|s, and s|k, respectively. The matrix B need not be
stably invertible. It may not even be square. The noises
{e(n} and {v(n} are stationary. They have zero means
and covariance matrices ¢ = 0 and y > 0, of dimensions
k|k and r|r, respectively. From data y(¢) up to time ¢ +
m, an estimator

Falt + my = @@ "y + m) (5.12)

of a filtered version of the input u(7)
f©O =T Su

is sought. See Fig. 4. The quadratic estimation error (2.2)
is to be minimized. In this generalized deconvolution
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Fig. 4. The generalized deconvolution problem. The vector sequence
{f(n}. is to be estimated from the measurements { y()}. up to time
t+ m.

problem, the filter 7~'S, with T and S of dimensions /|/
and /s, represents additional dynamics in the problem de-
scription (cf. [41], [44]), or a frequency shaping weight-
ing filter (cf. [18]).

Assumption I: The polynomial matrices A(g™'),
N(qfl), D(q" ), and T(qfl) are all stable, with nonsin-
gular leading matrices A,, N,,, D,, and T,.

Assumption 2: The spectral density matrix, &, (e’”), is
nonsingular for all w.

Compared to Section V-B, it is here slightly more dif-
ficult to express the spectral density matrix ®, using poly-
nomial matrix spectral factorization.” Coprime factoriza-
tions, which represent a kind of commutation operation
for MFD’s, have to be introduced. Define the following
coprime factorizations:

D™'B =BD™'

N~'P = DAN™' (5.13)
with polynomial matrices D, N, and P of dimension pj p,
while B has dimension p|s. The factorizations constitute
the calculation of irreducible left MFD’s from right
MFD’s. Thus, no unstable common factors are intro-
duced. Since D and N are stable, D and N will be stable.
Using (5.13), inverse matrices in the expression for @,
can be factored out to the left and right, leaving a poly-
nomial matrix in the middle. We obtain

®, = A"'BD”'C¢C.D'B. A + N™'MyM.N;'

=o' fB.ar’ (5.14)
where
88. & HoH. + PMyM.P. (5.15)
and
a £ NDA; H £ NBC.

From assumption 2, a stable p| p spectral factor 3, with -

det 3(z™') # 0in |z] = 1 and B, nonsingular, can always
be found.

Now, the optimal estimate can be derived as in the pre-
vious subsection. Let e(r) = f(r) — f(t|t + m) and n(r)

"It is preferable to avoid the numerically difficult task of performing
spectral factorization of rational matrices, and instead use factorization of
polynomial matrices. For this, there exist efficient numerical algorithms
[391.
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= Q(q_l)y(t + m). We obtain
Ee(tyn* (1)
= E(T'S - ¢"FA 'B)D™' Ce(r) — q"FN "' Muv(1))
- [Qg™(A™'BD™ " Ce(t) + N™' Mu(1)}*

1

=— §> {z7"T7'SD™'CHC.D:'B. A
27j

— F[A7'BD™ ' CoC. Dy ' B. AL
-1 ~1 dz
+ N 'MYM.N: "1} G —. (5.16)
Z

The use of (5.13) and (5.14) in (5.16) gives

Ee(tyn*(1)
- L <§> {z7"T~'SD™' C¢C.B.N. — Fo™'BB:}
27
“al'G %. (5.17)

Since 4, D, and N are stable, all elements of o~ ' =
A™'D™'N~" have poles only in [z] < 1. Elements of 8
contribute poles at the origin, since they are polynomials
in z7'. These factors can be canceled directly by F. More-
over, introduce the additional coprime factorization

D7'§=sD"! (5.18)

with a stable D of dimension /|/ and § of dimension {|s.
Use it in the integrangi of (5.17). If F contains 7~'D™!
as a left factor, T~ 'D~! can be factored out to the left.

We thus set
F=T"'"D'0,8 (5.19)

where O, (z™", of dimension 1|E, is undetermined. With
(5.19) inserted, and using C.B«N: = H., (5.17) becomes

Ee(t)n*(z)
= L. T_lﬁ_l {Z_m§C¢H* - Q]B*}
2mj
d
* a:] g* _Z‘
Z

All poles of every element of ax ' G- are located outside
|z] = 1, since « is stable and G is causal and stable. In
order to fulfill (2.8) collectively, we require

7 "SCoH. = Q0,8+ + zDTL.. (5.20)

Here, Q,(z”") and L. (z) are polynomial matrices, of di-
mension /| p, with degrees

nQISmax(nc+n§+m,naA’+nt—l)

IA

nL < max (nh — m, n8) — 1. 5.21)

With 8 and DT stable, det 8. and det DT will have no
common factors. With the same reasoning as in Section
V-B, (5.20) is found to have a unique solution, with de-
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grees fulfilling (5.21). The derived result is formalized
below.

Theorem 1: Let the system and input models be de-
scribed by (5.11). Introduce the coprime factorizations
(5.13), (5.18) and the spectral factorization (5.15). Under
Assumptions 1 and 2, a H,-optimal deconvolution esti-
mator, of dimension /| p, is given by

falt + my = T7'D7'Q,87'NDay¢t + m) (5.22)
where Q,(¢™") together with L.(g), of dimensions | p,
is given by the unique solution to the bilateral polynomial
matrix equation

g "SCOC.B.N.« = 0,8« + gDTL..  (5.23)
The minimial criterion value is, with H = NBC,
1 ~14-1 ~lop-!
~ . tr {L*B* 6 L+ T 'SD
27j
1 -1 ~1 _1y 42
- Cl¢ — oHBy '™ Ho)C.Dy 'S T} —  (5.24)
z
O

Proof: The proof follows directly from the discus-
sion above. Choosing F according to (5.19), Ee () n* (1)
= (1/27) § Leas ' Gudz = 0, for admissible variations
n(r). (No poles are present in |z| < 1, in any element.)
Consequently, the determined estimator minimizes tr
Ee()e* (). The minimal criterion value is obtained by
inserting (5.22), (5.14), (5.18), and (5.23) (in this order)
into J = tr Ee(¢) e*(1). .

Remarks: By making appropriate substitutions, it is
easy to see that the problems and solutions presented in
Section III and Section V-B are special cases of the result
presented above. When § is square and S, D are both di-
agonal, § = Sand D = D. The coprime factorization
(5.18) is then superfluous.

Whenp =5 =land 4, B, D, S, and N are all diagonal,
(5.15), (5.22), and (5.23) become direct generalizations
of results obtained for scalar problems in Ahlén and Ster-
nad [18]. In this rather special case, without any need for
coprime factorizations, D = D = D, B =B, N =N, P
=DAand § = S. Then, (5.15) gives B8+ = NBC¢C: B: N
+ DAMYM. A« D« while (5.23) becomes g~ SCyC. B. N,
= Q0,8+ + gDTL.. See [18] for a comparison.

An alternative to introducing frequency weighting 7-'§
as in Fig. 4, is to use f (r) = u(z) and a weighted criterion
Jy = tr E(T ™' Se(t)) (T ™' Se (r))*. In such problems, the
polynomial matrix § must be square (s = /) and stable,
with S, nonsingular. By simple loop transformations, it is
easily verified that all design equations then remain un-
changed, except the filter expression (5.19), which be-
comes § = S"lﬁ_lQlB‘la. This estimator equals the H,
estimator of [45], where it was presented as applicable
only for square systems with stably invertible B. In fact,
B can be arbitrary. Weighted H, problems can be used as
tools in H,, filter design, see [45].

VI. A NuMERICAL EXAMPLE

The numerical feasibility of the polynomial equations
approach will now be illustrated. Consider the estimation
problem discussed in Section V-B, in the filtering case m
= 0, with p = 2 measurements, r = 2 disturbance sources
and one signal source (k = 1). Let

B { 1 —0.9q" o}
- -0s5¢h 2

1 [ 1 0
#=ly) | }
0 -1 1 +07g7"

15 ¢ {1 0} (6.1)
¢ = = . .
0 2
Thus, the measurements (5.1) are given by
_
{)’1(‘):! 1-09g7"
= -1 e(t)
A210] 1 — 059
2(1 = 0.9¢g7"
L
1 - 0.9g" 0 {vl(t)}
- 1 .
0.497" (1 + 07" | Lnd
2(1 — 0.9¢g7"
6.2)

By inspecting (6.1), we conclude that assumptions 1 and
2 in Section V-B are fufilled. Calculating the right-hand
side of (5.3), we obtain

16 -1
DD. =

. J (6.3)
-1 14q7" +3.98 + 1.4q

A stable left spectral factor, with D, nonsingular, is

4 0
D= [ 1 _J. (6.4)
—1 1.82447 + 0.76735¢

This is easily verified, by computing DD.. In order to de-
termine the optimal filter (5.5), the polynomial matrix
equation (5.7) has to be solved. From (5.8), we get nY =
nL = 0. Writing the polynomial matrices as matrix poly-
nomials, we have to solve

Yo(D§ + D{q) + q(dy + A1q"")Ly = By¢Bl (6.5

where M denotes transpose. Evaluation for equal powers
of g gives

ql: Y()D{‘}'A()LO 0

% YoD{ + ALy = By¢BI
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or, with numerical values inserted,

+
y; vs) \O 0.76735 -1 2\, 1,
<0 0
~\o o

(6.6a)
<yl y2> <4 —-0.25 > <—0.9 0 <1l L
+
<15 0>
6 o/ (6.6b)

The matrix equations (6.6a) and (6.6b) constitute a sys-
tem of eight scalar equations in eight unknowns. Solving
(6.6a) and (6.6b) for element (1, 1) and (2, 1) gives [, =
0,5 =0, y, = 3.75, y; = 0, while the elements (1, 2)
and (2, 2) can be written as

0.76735y, — by + 2, = 0
~0.25y, + 1.82447y, — 0.9, = 0

—0.25y, + 1.82447y, + 0.5,

0. 6.7)

From (6.7), we obtain y, = 0.37275, y,= 0.07839, [, =
—0.28603, I, = —0.17309. Thus, the solution of (6.5)

becomes
3.75 0.37275 0 —0.28603
YO = LO = .
0 0.07839 0 —-0.17309

Having calculated Y, the optimal filter is found to be
1

Spectral factorization of polynomial matrices is discussed
in [39] and [10], where efficient algorithms are given. See
also [38] and the survey [47]. Algorithms for coprime fac-
torizations, required in Section V-C, are included in [10}.
See also [31, appendix G-6]. (Some of the algorithms have
to be modified slightly, if the polynomial coeflicients are
allowed to be complex valued.)

VII. CONCLUSIONS

We have presented a simple methodology for obtaining
design equations for predictors, filters, and fixed lag
smoothers. The minimal estimation error should be or-
thogonal to any admissible variation of the estimate.
Evaluation of the orthogonality in the frequency domain,
by canceling stable poles by zeros, is the main idea behind
the method. In contrast to the classical Wiener formula-
tion, the estimators are explicitly parametrized in terms
of rational transfer functions.

In scalar estimation problems, the design equations
consist of a polynomial spectral factorization and one lin-
ear diophantine equation. The spectral factorization rep-
resents the calculation of a whitening filter. The diophan-
tine equation constitutes a linear system of simultaneous
equations. It can be seen as a convenient way to perform
a partial fraction expansion, to calculate the causal part
of a realizable Wiener filter.

In multisignal estimation problems, signal and noise-
models are expressed by polynomial matrix fractions. The
orthogonality requirement is fulfilled by elementwise can-
cellation of stable poles by zeros. The collective fulfill-
ment of these relations define polynomial matrix equa-
tions. Only a few lines of calculation will usually be
needed to obtain these equations, a major advantage with
the suggested methodology. The difficult task of perform-

F=A4"'Y,D'A =

1 —0.479¢" — 0.378¢*
{0.746 ~ 0.359¢™" — 0.355¢ >

0.409 ]

0.353 — 0.338¢"' — 0.0963¢% + 0.0887¢ * 0.247 — 0.141q""

Obviously, the estimator is stable and causal. It is inter-
esting to note that both of the measurements are utilized
in the estimation of each signal.

A. Remarks on Numerical Algorithms

In the process of calculating the optimal estimator,
polynomial matrix spectral factorization and solution of a
bilateral diophantine equation were performed, as well as
polynomial matrix inversions and multiplications. From a
computational point of view, it is attractive to diagonalize
(6.5) by means of transformation to the Smith form [10],
[15]. This would result in a system ofp2 = 4 scalar de-
coupled equations. The solution can be obtained by solv-
ing these equations, followed by back-transformation. Ef-
ficient algorithms for calculating the Smith form and
inverses of polynomial matrices are given in [10, ch. 7].

ing spectral factorization of rational matrices is avoided,
in the polynomial equations approach. Instead, spectral
factorization of polynomial matrices are utilized, some-
times in combination with coprime factorizations. Fur-
thermore, a bilateral diophantine equation has to be
solved. Efficient numerical procedures exist for these op-
erations.

APPENDIX A
THEe ‘‘COMPLETING THE SQUARES’’ APPROACH

The “‘completing the squares’’ method in the frequency
domain has been used, for example, in [15] and [17]. A
time-domain variant is used in [10]. In the example of
Section III, the use of (3.1) in the criterion (2.2) gives,
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with a rational filter ¥,
J = E|s() — Fyt + m)|?
2 2

=FE ‘(1 - q"%) g e + E|qg"F AN/I v()

_ N
2xj

CCs
DD,

((1 - "5 A - z7"F.)

+ pffff*

MM, @
NN./ z

¥£§> CC. . CC._cC
24V \oD. ~ * 7 DD. ~ DD.

rﬁﬁ* %
DD NN. Z )

77 "%

+ gg*

In the third equality, Parseval’s formula was used and in
the last, the spectral factorization (3.3) was inserted. By
completing the square, we obtain

)\e 6 Z_mCC*N*
J =2 LAY BT
2w 3 <DN >

rB«D
m
‘<B* g, _ % C*CN>d_zz

D.N. " B8D. | z
A CC:  CC.CC.NN.\ d
27j DD. BB+« DD. z

(A1)

The first term in (A.1), J,, depends on F while the second
term, J,, does not. If & were not restricted to be realizable
(stable and causal), the problem could have been solved
by choosing F such that J, = 0.

A realizable & can only eliminate the causal parts of
the integrand of J,. Since (3/DN) is causal, it remains
to partition (z~" CC«N.) /(rB«D). Let

2 "CC.N. 0 -

= + A2

rB:«D D 3. (A.2)

for some polynomials @, and L.. The term
0,z YHY/DiE™Y represents the causal part and

(2L+(2) / (rB+(2)) the noncausal part. Equivalently, (A.2)
can be written

ZﬁmCC*N* = r,G*Ql + zDL. (A3)

which is (3.6), with z exchanged for g. Using (A.2), J,
may be expressed as

J_)\e <£EF~Q'~ZL*>

1‘2_7(]. D D B
(B 0L i
D D B/ 7

Expanding the integrand, J, becomes a sum of four terms

)\e 6 Q] 6* Ql* dz
v, = 2 L g & §, - L) &
T <DNiF D> <D*N* D*> z

NGB o)L
V= 27rj(§<DN§ D> B z
Ao Q<B* 5 Q,*>g

T S BN T D) 2
LL. dz

A (5‘)
Vv, = .
* T om J s 2

For any causal and stable choice of the rational filter &,
all poles of the integrand of V; will be located outside the
unit circle, since 3, D, and N are stable. Hence, V; = 0.
(Note that it is crucial that zL. /B« is strictly noncausal,
starting with a free z. This z cancels the pole at the origin
of V3.) For symmetry reasons, ¥, = 0. The term V, does
not depend on F. Thus, the criterion J; is minimized by
eliminating V;:

Il

Vs

B 0
—F-—=—=0
DN D
which gives
oN
F=——
B

where Q,, together with L., is the solution to (A.3) and 8
is the stable polynomial spectral factor. The minimal cri-
terion value is J,;, = J, + V.

This derivation should be compared to steps 2 and 3 in
the derivation in Section III.

APPENDIX B
THE CLASSICAL WIENER SOLUTION, IN A POLYNOMIAL
SyYsTEMS FRAMEWORK

Wiener filters are designed by first whitening the mea-
surements and then using the cross spectral density ¢y,
between desired response and whitened measurement.
See, for example, [2]-[6]. For the problem depicted in
Fig. 1, the causal Wiener filter isf = {¢s }+w, where w
= W(z ")y is the whitened measurement. Thus,

F) = {op ) W@ = {8 W (D}, W),
(B.1)

The whitening filter is denoted W(z™') and “W.(z) is its
conjugate transpose, while ¢y, is the desired signal-mea-
surement cross-spectral density. The bracket {-}, rep-
resents the use of only the causal part of the weighting
function.

The expression (B.1) is simple. While explicit in terms
of factored components of o, it is, however, not explicit
in terms of polynomial coefficients of rational transfer
functions of the signal and noise models. It is not, as it
stands, parametrized by a finite number of parameters.
The polynomial systems framework is of help here.
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In the scalar example discussed in Section III, the whit-
ening filter is the inverse of the innovations model (3.2).
Since v() and e(?) are mutually independent and the mea-
surement is y(t + m), we obtain, with f (1) = s(1),

_ _C .G
¢fy = ¢s(l)s(!+m) - B Z E* )\e'

Thus, (B.1) becomes, with r £ )\,,/)\e and g exchanged
for z,

_{g nCoy D*N*} DN
D" D. " I\B), YN8

B { o CC*N*} DN
T D, 8

F(qg™)

B.2)

Extraction of the causal part {-}, of the double-sided
weighting function corresponds to a partial fraction ex-
pansion of the rational function. Let

L@ HC@N@ 26 L@
D(g™")rB-(q) Dig™") B9

(B.3)

for some polynomials Q, (¢”"')and L. (¢). Terms without
delay are included in the causal part, so the noncausal part
starts with a free g-term. Thus, let L. (q) A qL+(g). (This
avoids the occurrence of an error pointed out by Chen
[7].) Multiplication of both sides of (B.3) by DrB. then
gives

q_mCC*N* = rB*Ql + qDL*

This is precisely the linear polynomial equation (3.6).
Thus, the causal Wiener estimator is

0, 4) DB _ QDN
D .y, 8 DB

which is (3.7), if the stable common factor D is canceled.
(Of course, unstable systems are not allowed in the clas-
sical Wiener formulation.) Grimble [17], Grimble and
Johnsson [26], and Soderstrom [25] have noted the link
between partial fraction expansions, such as (B.3), and
diophantine equations. This link is also a key part of the
‘‘completing the squares’’ reasoning. (See (A.2) in Ap-
pendix A.)

Faq ') = { (B.4)

AprpenDIX C
PARSEvAL'S FORMULA

Consider Parseval’s formula for the covariance be-
tween two complex-valued signals x(1) = G(g~")e(r) and
w(t) = 3(q~"Ye(r) = (EF H;qg™/)e(t). When e(t) is white
noise with covariance matrix Ee(f)e*(f) = A, we have,
cf. [29],

1 1\ d
Eow( = 5 <§>H:1 G(z) AFC* <Z—*> f

which in our notation, with g & z and the definition of
:}C*, is

1 dz
— G HAICH(*) =
2wj J 2 =1 Z
1 d
S SG)AH, + Hyzt + -+ )x =
27 J =1 z
1 d
- oz YA L. 0
27) J =1 z
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