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Use of disturbance measurement feedforward in LQG self-tuners

MIKAEL STERNAD¥

An explicit adaptive regulator with disturbance measurement feedforward is
presented, based on a polynomial LQG design. The addition of an optimized
feedforward filter to a feedback regulator involves the solution of only one
additional linear polynomial equation. The regulator is designed to handle shape-
deterministic disturbances, such as steps, ramps and sinusoids, as well as stochas-
tic disturbances. The properties of the off-line solution in the case of unstable
disturbance models are explained. Computational aspects, the computational
complexity and the robustness against unmodelled dynamics are discussed. It is
argued that the use of feedforward can improve not only the disturbance rejection,
but also the stability robustness of an LQG feedback regulator.

1. Introduction

A feedforward regulator utilizes measurements of important disturbances. The
regulator can react to the disturbance before it begins to affect the controlled
variable. Complete disturbance cancellation may sometimes be achieved. Addition
of feedforward filters to feedback regulators is a simple way to improve the control
performance, at moderate extra computational cost.

LQG optimization is a useful framework for the design of combined feedback
and feedforward regulators. It provides trade-offs between input energy and distur-
bance rejection. Control of discrete-time systems with input delays or non-minimum
phase dynamics becomes straightforward. Several alternative approaches do how-
ever exist, such as generalized minimum variance control (GMV) (see Astrém and
Wittenmark 1973, Clarke and Gawthrop 1979, Allidina et al. 1981, Tahmassebi et
al. 1985). Compared to adaptive algorithms based on infinite horizon LQG criteria,
GMYV often attains inferior asymptotic performance. This is the case in particular
for non-minimum phase systems (compare Modén and Soderstrom 1982 and
Sternad 1987). The quest for improved performance has led to the modification of
GMYV into generalized predictive control (GPC) (Clarke et al. 1987, Perez and
Kershenbaum 1986). As the prediction horizon increases, the performance of GPC
approaches that of infinite horizon LQG control, from below. ‘

LQG optimization can be based on polynomial equations (Kucera 1979). The
polynomial equations approach to the design of combined feedback —feedforward -
regulators has received considerable interest recently (see Peterka 1984, Sebek ef al.
1988, Sternad and Séderstrom 1988, Grimble 1988 b, Hunt 1989). LQG self-tuners
with disturbance-measurement feedforward have been proposed by Sternad
(1986, 1987), Hunt et al. (1987) and Hunt and Sebek (1989 a).

The purpose of this paper is to discuss the following aspects related to off-line
and adaptive feedback—feedforward control, based on LQG design.
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580 M. Sternad

(a) While LQG design is based on a stochastic disturbance description, ran-
dom-step sequences, ramp sequences and sinusoids can also be handled. The
properties of the solution in the case of unstable disturbance models will be
discussed in some detail. (Such problems have also been discussed by Hunt
1989, who utilized an alternative proof technique.) Disturbance-measure-
ment feedforward can be combined with integrating feedback, although
some care must be taken with the regulator calculation and implementation.

(b) Feedforward control may be used to improve the stability robustness of
feedback regulators. Assume that a given amount of disturbance rejection is
desired. The regulator design is based on an uncertain and/or underpara-
metrized model. When most of a disturbance can be eliminated by feedfor-
ward, the high-frequency gain of the feedback can be reduced. The feedback
can be designed to maintain robust stability, rather than high disturbance
rejection. (With an incorrect model, the feedforward control performance
will of course be non-ideal, but this can never destabilize the system.)

The paper is organized as follows. For the control problem, defined in § 2, the
polynomial LQG solution is presented in §3. A self-tuning implementation is
described in § 4. Some user-choices, which affect the robustness of the control law,

‘are discussed in § 5. A previous version of this paper was presented at the IFAC

Symposium on Adaptive Systems in Control and Signal Processing (ACASP-89) in
Glasgow in April 1989.

2. Control problem
Let the plant be described by the following linear discrete-time model

A(g™" () = B(g~"Yu(t — k) + D(g ~Yw(t — d) + Clg = n()) (2.1)

where the output y(f), input u(z), measurable disturbance w(f) and unmeasurable
disturbance n(¢) are all scalar signals. All model polynomials, of degree n,, n, and
so on, are expressed in the backward shift operator ¢ ~'. All, except B(g~') and
D(qg~"), are monic. The delays are k >0 and d > 0.

The disturbances w(f) and n(f) are modelled by

Gig™") . Glg™"
"
1
F(g~")

We assume v(f) and e(¢f) to be mutually uncorrelated and zero mean. They are
stationary white noises or random spike sequences, with variance 4, and 4,
respectively. While C(g "), G(¢ ~") and Hg(g ~") are assumed to be stable, Hy(g~")
and F(g~!') have all their zeros on the unit circle. (Disturbance models with poles
strictly outside the unit circle are not considered. They are of limited interest, since
regulation of exponentially increasing disturbances would be doomed to failure in
practice.) The disturbance models thus include:

AR PR 22

w(t) =

n(t) = e(?)

(a) Stationary stochastic disturbances (F or Hy = 1);
(b) drifting stochastic disturbances. If w(r) has, for example, stationary incre-
ments, it is modelled by H, =1—¢ ' and a white noise v(¢);
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Use of disturbance measurement feedforward in LQG self-tuners 581

(c) shape-deterministic or piecewise deterministic signals, such as random step
sequences, ramp sequences or sinusoids which occasionally change magni-
tude or phase. A stationary random spike sequence, such as a Bernoulli—
gaussian sequence, is then a reasonable model for o(f) or e(?). (A
Bernoulli—gaussian sequence is given by v(f) = r(#)s(¢) where s(¢) is Bernoulli
sequence such that s(f) = 1 with probability A and s(f) = 0 with probability
1 — A. 1(¢) is a zero mean gaussian sequence with variance ¢ independent of
t, see Mendel 1983. It is then straightforward to show that u(f) is a
stationary white sequence with zero mean and variance 4, = 6°4.)

Assume, for now, that all polynomials are known. The goal is to minimize the
infinite horizon criterion

7= lim 3 By + pE(¥(g~)Flg uto)’ 23

The input penalty p >0 and the polynomial W(g~"') are chosen by the designer.
They define a frequency-dependent trade-off between input energy and disturbance
rejection. Note that the choice of input filter is not completely free: the factor
F(g~") must be present whenever n(f) is described by an unstable model. If n(#),
for example, is a drifting stochastic signal, a drifting input u(f) will be needed. To
keep the criterion finite, the input must then be filtered by F(g~') =1 —g~'in
(2.3).

We may consider yet another type of disturbance, as follows.

(d) Deterministic signals. Such measurable disturbances are described by au-
tonomus difference equations H(g ~")w(#) = 0, with non-zero initial values.
Optimal control of the disturbance types (a), (b) and (c) above results in
outputs with finite (and in general non-zero) power. Control of a determin-
istic disturbance would, however, result in only one initial transient, with
finite energy and zero power measured for ¢ € [0, c0). The criterion {2.3)
would then be zero. To include deterministic signals in our framework, they
are treated as shape-deterministic. Their transient phase, which is to be
optimized, is formally considered to be repeated. We use the model
H(g ~Yw(?) = v(f), where v(f) is a random spike sequence.

It can be shown (Sternad 1987) that the optimal linear regulator structure, with
feedback and feedforward, is given by

0@
P(g™")

(see Fig. 1). The external signal m(?) is set to zero in the following. The polynomial
P(g~") is required to be stable. Note that the filter 1/R(g~")F(q~") is present in
both the feedback and feedforward signal paths. The filtering by 1/R(g~")F(q ") is
consistent with the internal model principle (Francis and Wonham 1976). When
F(g—") =1—q~', we have an integrating regulator with a feedforward term.

Complete elimination of the measurable disturbance can be achieved if and only
if d > k and all unstable factors of B(g ~') are also factors of D(g ~'). (The parts of
the system which cause non-minimum phase behaviour are then located beyond the
point where the disturbance meets the control action).

R(g~DF(gu(n) = — w(f) — S(g = "y(0) + m() (2.4)




st

582 M. Sternad

vit) fl(t)
G 1
HsHy F
Q g
P < ’ w(t) ‘ n(t)
—dD C
7 A
m{t) - u(t) ::5
_2 R_lF > q'kg - y(t)
S <

Figure 1. System and regulator structure.

Sternad and Soderstrém (1988) presented a polynomial equation by which the
feedforward filter {P, Q} can be optimized, given any stabilizing feedback {R, S}.
The use of PID-control, optimal feedback or no feedback at all are some examples.
Stable disturbance models (Hy = 1, F = 1) were assumed.

In this paper, we discuss the optimization of the total regulator (2.4), allowing
Hy #1 andfor F+# 1. The design consists of a simple two-step procedure: the
feedback {R, S} is first optimized with respect to the unmeasurable disturbance n(r).
The feedforward filter {P, Q} is then calculated so that w(¢) is rejected in an optimal
way. This separability is made possible by the use of the regulator structure (2.4)
and by the (assumed) non-correlation between w(f) and n(¢). The feedback is a
well-known result (Kucera 1979), slightly generalized to cover F # 1.

3. Optimal regulator
Let us adopt the following polynomial notation. For any polynomial in the

backward shift operator ¢ ~!, of degree n,,
Ulg ") =up+uqg ' +..+u, g™

Let U@ 2u+uqg+..+u, g~ and Ulg~")2q "U,(q) =ugq ™ +
uyq~"*+'+ ..+ u,. In the frequency domain, the complex argument z is substi-
tuted for g. The polynomial arguments (g ', ¢, z ™', z) will often be omitted. Stable
polynomials U(z ") have all zeros in |z| < 1. If U(z~") is stable, U(z ") will be
unstable.

Introduce the polynomial spectral factorization

rBB, = BB, + pAFWW F A, (3.1)

where r is a positive scalar and f(z ") is a stable monic polynomial with degree ng.
When p > 0, the stability of f is assured if B and AFW have no common factors
with zeros on the unit circle. If p =0, B should have no zeros on the unit circle.

The following assumptions are sufficient for the existence of a unique stabilizing
solution to the optimization problem described above.




w

U

Use of disturbance measurement feedforward in LQG self-tuners 583

(a) Polynomials f, C and G are stable;
(b) Polynomials AF and B have no unstable common factors;
(¢) Hy is a factor of WFD.

Theorem
Under conditions (a)—(c) above, the controlled system (2.1), (2.4) attains the
global minimum of (2.3), under the constraint of stability, if {R, S, P, Q} are

calculated as follows.
Let R(z™"), S(z™") and X,(z) be the unique solution of the coupled linear

polynomial equations

rBR—z*Y'BX, =pWW_F,A4,C (3.2)
B S +zAFX,=2z*B,C (3.3)

Let P =G and let Q(z~") and L,(z) be the unique solution of
z79*'DFGX,=rB,Q +zCHL, (3.4)

Proof
For the proof, see the Appendix.

Remark 1. Optimization of feedback
The variables in (3.2) and (3.3) have degrees (n, £ deg X and so on):

~

ne=ng+k—1
n,=max {n,+n,—1,n, —k} N (3.5)
_ fmax{n,+k—1,n.4+n,} ifp#0 '
" ln, 4+ k—1 if p=0
. J

Linear polynomial equations have an infinite number of solutions, in general.
That (3.2) and (3.3) have a unique solution, with polynomial degrees (3.5),
is a consequence of R and S having to be polynomials only in z~!, while X,
must be a polynomial in z. The degrees are defined by the requirement that
the variables should cover the maximal occurring powers of z~! and z in the
equations.

Remark 2: Interpretation of Conditions (a)—(c)
Multiply (3.2) by AF and (3.3) by z=*B and add them. Optimal feedback is then
seen to imply pole placement in SC:

AFR +z7*BS = fC (3.6)

In addition, the feedforward filter introduces poles in the zeros of P = G. This
explains condition (a@). If AF and B have no common factors, an optimal feedback
can be calculated from the implied pole placement equation (3.6). With common
factors, this will not be possible (Kucera 1984). The equations (3.2) and (3.3) do,
however, give the correct solution, as long as the common factors of AF and B are
stable.
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The absence of unstable common factors of AF and B corresponds to stabiliz-
ability and detectability of an equivalent system, with Fu(f) as input, obtained by
multiplication of (2.1) by F:

(AF)Y(1) = ¢ *B(Fu(t)) + g ~“(DF)w(?) + Ce(1)

The condition that H; divides WFD has a natural explanation. To be more
specific, let w(f) with Hy(g~") =1—¢ ' 2 A(g~") be a drifting stochastic distur-
bance, that is, w(f) =w(t — 1) + (G/Hs)v(f). The controller must then eliminate
drifts from the signals y(f) and WFu(t), which appear in the criterion. Otherwise,
the criterion would be infinite.

(a) If Hy = A is a factor of D, the non-stationarity of w(f) is blocked and does
not result in a drifting p(f). Since A is a factor of D and H in (3.4), it will
also be a factor of Q. Thus, the control signal (Q/P)w(?) is stationary.

(b) If Hy=A is a factor of F, we have an integrating feedback regulator. It
eliminates drifts in y(¢) caused by drifts in w(¢) (or in n(f)), regardless of the
presence of any feedforward filter. The signal Fu(f) (but not u(f)) is then
stationary.

(¢) If Hy;=A is not a factor of DF, the responsibility for eliminating drifts
in y(f) is placed on the feedforward filter. To accomplish this task, it
generates a drifting control signal (Q/P)w(f). Consequently, A must be a
factor of W, so that Wu(f) is stationary and gives a finite contribution to the
criterion.

When the disturbance w(¢) is described by a model with poles on the unit circle,
such effects on y(f) (e.g. static errors, drifts or undamped sinusoids) can be
controlled either by the feedback or by the feedforward action. Use of the feedback,
when Hy, divides F, results in a robust disturbance rejection. The criterion is finite
if modelling errors in 4, B, C or D are present, as long as the closed-loop system is
stable. When feedforward action is used, the magnitude of static errors, drifts or
sinusoids can be reduced, but cannot be eliminated completely in practice. Mod-
elling errors will cause imperfect cancellation.

Consider the case F = A. In the disturbance description (2.2), F = A models the
dynamics of steps and Wiener processes n(f). In the regulator F = A represents
integration. Nothing prevents us from using integration, ie. to set F=A in
(2.4)—(3.4), also when n(f) is stationary. We cannot then attain the minimal
criterion value, because the regulator has incorrect structure, but it may be
advantageous to use integration anyway. When the feedforward filter is imperfectly
designed, static control errors will then be taken care of by the feedback.

Remark 3: Feedforward controller calculation

Note that the solution of only one additional diophantine equation, namely
(3.4), is needed for optimizing a feedforward filter. Since f (stable) and
z"C 2" H , = CH (unstable) cannot have common factors, (3.4) is always solvable.
The degrees of Q(z ') and L (z) are defined uniquely by the requirement that they
should cover the maximal occurring powers of z ! and z, respectively, in (3.4):

ng =max {ng+n,+n, +dyn.+n,} —1
n,=max {0,k —d}+n; —1

(3.7)
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The polynomial L, is not used in the controller.

The delay d affects the achievable control quality significantly. It can be shown
that application of feedforward can always improve the control performance when
d >0, compared to feedback from y(f) only. The improvement is a non-decreasing
function of d. It is advantageous to place the auxiliary w(r)-sensor so that the
disturbance is captured as early as possible, i.e. d is large.

If the measurement w(f) is influenced by the input u(t —m), m >0, this effect
could be subtracted internally, inside the regulator (see Sternad 1986, 1987). It is
straightforward to generalize the solution to multiple measurable disturbances. One
additional scalar diophantine equation (3.4) is then obtained for each disturbance.
Feedforward control of multi-input systems using the matrix fraction descriptions,
has been discussed by Hunt and Sebek (1989 a, b).

Remark 4. Numerical aspects

A common special case is when the measurable disturbance is drifting or of
random step type, and an integrating regulator is used. Then, Hy = F = A. Since A
becomes a factor of both the left-hand side and rightmost term in (3.4), it must also
be a factor of Q. With Q = Q,A, (3.4) is reduced to

z74*'DGX, =rf 0 +2zCHSL, (3.8)

In this case, the controller (2.4) must be modified slightly. It can be implemented in
differential form, using an explicit differentiation of the measurable disturbance:

R(Au(0) = 22 (Aw(0) — 5900

u(®) =u(t — 1) + Au(?)

(3.9)

Alternatively, one can use a structure with the feedforward filter separated from the
integration:

Ru() = = L)) =3 500 (3.10)
If (3.4) were used, small numerical errors and finite word-length effects would cause
0 # O, A. This could lead to large errors in the low-frequency gain of the feedfor-
ward filter —Q/RAP in (2.4). Design from (3.8), with n, =nQ — 1, and realization
according to (3.9) or (3.10), avoids such problems. Equation (3.4) must, however,
be used in the general case, when Hy # F. The regulator should be realized
minimally, as a single dynamical system having two inputs and one output.

A reliable algorithm for polynomial spectral factorization can be found in the
work of Kulera (1979). It is iterative, requiring typically 310 iterations, when
starting from f = 1. In adaptive control, § from the previous controller calculation
can be used as the initial value. Then, normally only -2 iterations are required.

The coupled equations (3.2), (3.3) represent an over-determined set of simulta-
neous equations in the coefficients of R, S and X. The system will, however, have a
unique solution. (Some equations are linear combinations of the others.) This
(exact) solution can be found by computing the least-squares solution to the
overdetermined system. Equation (3.4), with polynomial degrees (3.7), corresponds
to a square system of linear equations, with full rank.
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Example 1
Consider the system

(1 =09g~Yp(t) = (0-1+0-08¢ ~Nu(t —2) + (02 + 0-4g~Hw(t —2) +e(D)

with w(f) = w(t — 1) +v(t), i.e. H=1—¢"". Unit step disturbances w(f) cause
output deviations with amplitude 6 in this system. We design a regulator (2.4), such
that the criterion (2.3), with differential input penalty p =01 and W =1— g !, is
minimized.

The spectral factorization (3.1) becomes

r(1+ Biz7 + Boz ™1 + Bz + Boz?) = (0-1 4 0-082 ~1)(01 + 0-08z)
+0-1(1=09z )1 —z")(1—2)(1—092)

with solution r = 0-2670, B, = —0-9887 and B, = 0-3370.
The feedback part of the regulator is calculated from (3.2) and (3.3):

'r(l + Biz + Boz)R(z™Y) — z71(0-1 + 0-08z 7 )X, (2) =0-1(1 — z7 D (1=2z)(1-092)

H(1+ Bz + Boz)Sz Y +2(1— 092X, (2) = z°(0-1 + 0082)

The variables have degree n, =3, n, =0 and n, =2, given by (3.5). Multiply the
first equation by z =" =z~ and the second by z ="~ =2z"" —k=z=% We then
obtain equations in powers of z~' only.

KByt Bz +2 )RE ") — (0140082~ ) X(z =) =0-1(1 =z~ )z~ = 1)z "' =09)
rBy+ Bz +27)z2728E ) + (1 - 09z )X (z ™) =z"Y01z7'+0-08)

By considering terms in equal powers of z~!, a system of simultaneous equations,
with block-Toepliz structure and with 10 equations and 8 unknowns, is obtained.

.~

- 3 - N
B, 0 0 —01 0 0 0 0-09
B, rB, O —008 —01 0 0 o —0-28
v 5l 0 0 —008 —01 0 r, 0-29
0 r B 0 0  —008 —01 r2 —0-10
0 0 r 0 0 0 —0-08 So 0
ol 1 0 0 0 % 0
0l —09 1 0 0 X, 0-08
0 B, 0 —09 1 0 % 0-1
8| 0 0 —09 1 Xo 0
rlo0 0 0 —09 0
J -~ J

The solution is
R(z=")=1-0-08871z~"'+0:1210z 2
S(z=") =so=13617
X, (2) = 0:4040 + 0-04945z + 0-082% + 0z3

In specific examples, the polynomial degrees may be lower than the values indicated
by (3.5) and (3.7). This is evident here, where X, actually only has degree two.
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Note that, in general, the R(z ') obtained will be non-monic, ie. ro# 1. In this

specific example, R is monic.
The feedforward polynomial Q(z ') is obtained from (3.4):

2702+ 04z VX, (2) =r(1+ Bz + Bz9Q(z ") +2(1 —z7 )L, (2)
with X, (z) from above, and with degress nyp =2,n, =1 from (3.7). The solution is
0@z ") = 1-8609 4 09750z ~! + 0-6052z ~*
L,(z) =0-2521 - 0-1675z
Thus, the optimal regulator (2.4) is
u(f) = 0-08871u(t — 1) — 0-1210u(t — 2) — 1:3617y()
—1-8609w() — 0:9750w(t — 1) —0-6052w(t — 2)

This regulator eliminates a unit-step disturbances w(?), after a small initial transient
with peak value 0-16, without excessive input variations.

4. LQG self-tuner
For systems with unknown or time-varying dynamics, an explicit LQG self-
tuner has been developed by the author (Sternad 1987). It is based on recursive
system identification using the recursive prediction error method (RPEM) (see
Ljung and Soderstrém 1983). The controller is redesigned periodically, according to
the Theorem. A similar algorithm has been suggested by Hunt et al. (1987) and
(1989 a). Upper bounds on all polynomial degrees are assumed known, together
with the unstable disturbance model factor F(g~"). The regulator, complemented
with a servo filter, is summarized below.
Step 1. Read new samples of y(z), w(¢) and a set-point r(?).
Step 2. Update models of y(f) and w(f) with the structure
Ay() = Bu(t) + Dw(t) + Ce, (1) (4.1)
Aw(t) = Ge,(0) (4.2)
using two RPEM routines for single output systems.
Step 3. Computer r and B(g~") from the spectral factorization (3.1).
Step 4. Determine R(g "), S(¢~"') and X (g) from (3.2), (3.3).
Step 5. Calculate Q(¢ ") (and L,(q)) from (3.4).
Step 6. 1f needed, design a servo filter T(g~")/E(g ~").

Step 7. Compute the control action:
0 T
RFu(t) = 7 w(t) — Sy(t) +—E—r(t) (4.3)

Step 8. Shift all data vectors, and go to Step 1.
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Remark 5
In Step 2, the regressors of the model (4.1) are filtered by
F(g™"
- (4.4)
N(g™")

where N(g~!) is a stable polynomial. Filtering by F(g~!') is necessary to avoid
biased estimates. With N(g "), the filter can be modified to improve the estimation
accuracy in important frequency regions. The estimates of G and C must be
projected into stable regions. The usual precautions of a control error dead-zone
and covariance monitoring have been implemented. They guard against estimator
wind-up and identification based on insufficient information. Time-varying systems
and disturbances are tracked using forgetting factors.

Remark 6

In Step 6, the servo filter T/E can be designed by cancelling poles and stable
zeros, so that the controlled system approximates a response model
Ym (D) =(q~*B,, |A,,)r(f). This works well, but results in a rather high-order filter.
Other approaches, such as including the servo design in the optimization, have been
discussed by the authors elsewhere (Sternad 1987).

Remark 7
In Step 7, when appropriate, the regulator (3.9) or (3.10), based on (3.8), should
be used instead of (4.3).

Global convergence of explicit LQG self-tuners can be demonstrated, under
idealized conditions (see, for example, Chen and Gou 1986 or Grimble 1988 a). In
general, a linear model structure (4.1), (4.2) cannot be expected to describe the true
system exactly. Mismodelling is inevitable, to some extent. A good estimate of
g~ “B/A, in the frequency ranges where the input has significant energy, is needed
to assure stability. Errors in the estimates of the transfer functions ¢ ~“D/A, C/A or
G/H will affect the control performance, but they cannot cause instability. (Since
the stability of C is monitored, pole placement in BC results in a stable system, if
A and B are estimated correctly.)

Step 2. Identification 37n? +36n
Step 3. Spectral factorization (per iteration) 3n? +3n
Step 4. Feedback optimization 36n3 +87n? +135n
Step 5. Feedforward optimization 9n3 + 14n2

Step 7. Control - 8n

Approximate number of multi~add operations required per sample, assuming all model
~ polynomials to have equal degree n. A least-squares solution is computed in Step 4.

The computational burden of this algorithm is significantly higher than for
GMV (see the Table). With modern microcomputers and signal processors, this
should be no significant restriction in most control applications. There is no need to
recalculate the regulator at each sample. Steps 3—6 can be placed in a background
process, which provides a new regulator every mth sample. For m =5-10, this




4)
yid
be

ne
.or

Use of disturbance measurement feedforward in LQG self-tuners 589

results in only a small degradation of the adaptation transient when the system
dynamics changes. (It has recently been shown by Shimkin and Feuer 1988 that it
may be advantageous to update the regulator infrequently.)

The behaviour of the algorithm is illustrated by some examples.

Example 2
Let [1/(1 — ¢~ YH]o(f) be a square-wave disturbance, with unit amplitude and
period 60. It disturbs the system

(1 =05¢ = Yp(t) = (by+ bsg ™ Du(t —2) + (1 +2¢ Yw(z — 1)

1—03¢-'/ 1
W) = 1—-09g~" (1 —q! U(Z)>

The polynomial b,+ b;q~' changes from 1+0-1g7"' to 0-5+005¢~" at time
300. The LQG self-tuner, with correctly parametrized models, is applied. An
input penalty p =0:5 and W =1—¢ !, with F=1 is used, that is the feedback
uses no integration. The forgetting factor is 0-98 in both RPEM algorithms. After
an initial open-loop identification period of 20 samples, the regulator quickly
converges.

Example 3
Consider the unstable and non-minimum phase system

(1=2¢7 "+ 1:5¢72)p() = (1 +2¢ " + 2 Hu(t — 1) + (1 +0-5¢ " Hw(z — 2)

where w(t) is white noise with standard deviation 0-1. As reference for the

6
0 W

-6 . . . .
0 300 500

Figure 2. Controlled output y(¢) in Example 2. The disturbance w(f) is cancelled almost
completely, although the delay difference &k — d = 1 prevents perfect cancellation. At
t = 300, the system gain is halved. At ¢ = 400, the control performance has recovered
to the off-line optimal one.

10 4«
o M\/
0 ' 30

Figure 3. Input u(f) in Example 2. When the system gain is halved at time 300, the regulator
modifies itself, so that its gain is doubled.

0 ) 500




590 M. Sternad

controlled output,
0-7
="Kt
Ym(2) [ 03g"" r(?)

was used, with r(¢) being a square wave. Adaptation, with a correctly parametrized
model, and with p =0, started at £ =1. The regulator had essentially converged to
off-line optimal control after 30 samples. Because the system is non-minimum
phase, and the unstable part of B is not a factor of D, complete cancellation of the
disturbance cannot be achieved (see Fig. 4). (Of course, it would not be advisable
to start an adaptive regulator from scratch on such a system in practice; there is no
guarantee that the signals behave acceptably in the transient phase.)

5. User choices affecting the robustness

The robustness against unmodelled dynamics of a self-tuner is affected by
properties of both the estimator and the control law. Simple considerations
regarding the LQG control strategy, which in general improve the robustness of
both off-line and self-tuning designs, are illustrated by the following example.

Example 4
The system

(1 —12¢7'+0:52¢ 2)p() = g~ 2(1+0-8g ~"u(?)
+¢ 31 —02¢ Hw(®) +(1— 0-2g ~"n(?)
is affected by measurable and unmeasurable drifting stochastic disturbances
w(t) = w(t — 1) +0(1)
n(t) =n(t — 1) +e(?)

The white noises v(f) and e(f) have standard deviations 0-3 and 0-1, respectively.
Thus, the largest disturbance is measurable, and Hy = F = A.

The control error standard deviation was measured (after convergence) in
simulation runs with four self-tuners. Integrating regulators with the structure (3.9),
with r(f) =0 and W =1, were used. The results are shown in Fig. 5, as functions of
the input penalty p. Curve (1) represents the performance of LQG feedback and
feedforward. When p —0, the disturbance w(f) is cancelled completely by the
feedforward control action. When only feedback is used, curve (2) is obtained. The
disturbances w(f) and n(r) are then treated as one unmeasurable noise. The
performance is obviously degraded without disturbance measurement. Correctly
parametrized models were used in these experiments. The performance in each case
was indistinguishable from the off-line optimum.

Y

o] 100 200 300 koo

Figure 4. Unstable non-minimum phase system in Example 3, controlled by the LQG
self-tuner.
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20'y

0.1 1 10 100

Figure 5. Output standard deviation o, in Example 4, as a function of the input penalty p:
(1) feedback and feedforward, B of correct order three; (2) feedback only, B of
correct order three; (3) feedback and feedforward, B of order two; (4) feedback only,
B of order two.

Curves (3) and (4) result when an under-parametrized B is used. (Degree two
instead of three, including the delay.) For input penalties p <1, the closed-loop
system then becomes unstable. The reason for this behaviour is explained by Figs
6 and 7. Figure 6 shows Bode magnitude plots of some under-parametrized models,
obtained at the end of the simulation runs. Compare these with the true system.
The high-frequency properties of the system are badly estimated. For low p, the
regulators have large feedback gains at high frequencies (compare with Fig. 7).
(This is often the case for minimum-variance regulators.) The combination of large
feedback gain and an incorrect model at high frequencies leads to instability.

One way of reducing the high-frequency feedback gain is to modify the
polynomial C(g~"), used in (3.2)—(3.4). Instead of the estimate C, a fixed polyno-
mial Cy = (1 — 0-5¢~!)? was used. This decreased the feedback high-frequency gain
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Figure 6. (1) Transfer function magnitudes for some under-parametrized models; (2) true

system.
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Figure 7. Transfer function magnitudes of feedback filters: (1) p =0, (2) p =05, (3)
p =10, (4) p =05, with pole placement in C,.
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(see (4) in Fig. 7). The performance for high p deteriorated, but the robustness for
low p improved (Fig. 8). The regulator now remained stable for p > 0-2.

5.1. Summary
Let us summarize three robustness-enhancing user choices as follows.

(d) By increasing p from zero, the control signal variations and the high-fre-
quency gains of both feedback and feedforward filters are reduced. Large reductions
can often be achieved, with only a minor deterioration of the disturbance rejection.
This increases the robustness against unmodelled high-frequency dynamics. Prob-
lems with hidden inter-sample output oscillations are also avoided. (Such oscillations
are caused by pole placement on the negative real axis, which is often a consequence
of minimum variance control.)

(b) Use of feedforward can increase the stability robustness. This is possible
when high disturbance rejection is required, and the main system disturbance is
measurable. For example, consider Fig. 5. If o, <1 is required, this could be
attained, in the ideal case (2), by a high gain (low p) feedback. Instability would,
however, result in the under-parametrized case (4). With both feedback and
feedforward, a low gain regulator (p = 10-300) can be used. It easily attains the
required performance, also in the under-parametrized case.

(c) With LQG control, poles are placed in the zeros of BC (compare (3.6)). The
polynomial C could be interpreted as the observer dynamics in a state space
formulation. Use of a fixed prespecified observer polynomial C,, with 1 /C, being
low-pass, has several advantages. While the zeros of f§ can be modified via p, we do
not have any control over the zero locations of C in the true system. (The admissible
sero locations of discrete-time models of continuous-time stochastic processes have
been investigated by Soderstrém 1989.) Furthermore, the coefficients of C are the
hardest ones to estimate. Estimated C-polynomials sometimes tend to contain a
factor 1 — ¢!, which gives bad pole placement. (This happens when regressors are
differentiated, but the disturbance n(f) is not generated by a system with F =
1 — ¢~'.) With a suboptimal pole placement fC,, the feedback disturbance rejection
may deteriorate. This matters less if feedforward can be applied. Compare the
difference between curves (1) and (3) to that between curves (2) and (4) in Fig. 8.

Y

@
®
(1)

?

0

0.1 1 10 100
Figure 8. o, versus the input penalty p, when estimated polynomials C and the fixed
prespecified Co=(1—0-5¢~')* are used for pole placement. (1) Feedback and
feedforward, C used, B of order three; (2) feedback only, ¢ used, B of order three;
(3) feedback and feedforward, C, used, B of order two; (4) feedback only, C, used,

B of order two.
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6. Conclusions

An explicit adaptive controller with disturbance measurement feedforward has
been presented. It is based on polynomial LQG design and is capable of handling
non-stationary and deterministic disturbances. The properties of the off-line solu-
tion when disturbance models are unstable have been studied. The roles played by
the input penalty, the observer polynomial and feedforward control in determining
a compromise between ideal-case performance and robustness have been exem-
plified.

In simulation studies, the adaptive algorithm has been found to behave very well
in general. Compared to the explicit criterion minimization approach (Trulsson and
Ljung 1985), the convergence rate of LQG self-tuners is much faster (see Sternad
1987). One (seldomly occurring) remaining problem is that over-parametrized
models may contain unstable common factors of 4 and B. The testing of schemes
(such as that of De Laminat 1984) to avoid this is a problem for further research.
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Appendix
Proof of the Theorem

It will be verified that if (3.2),(3.3) and (3.4) are satisfied, the solution is
admissible and optimal. First, the stability of the closed-loop system (excluding the
disturbance models) is verified; then it is shown that the cost is finite. Finally, it is
demonstrated that the attained cost is minimal. In that step, a technique previously
used by Astrém and Wittenmark (1984) when discussing feedback regulators with
stationary disturbances is utilized.

Stability
Use of (2.1) and (2.4) gives the closed-loop system
y(t) = é <A?{ w(f) + FRCn(f) + q“"Bm(t)) (A1)
1 U
u(t) = . <_F w(t) — SCn(f) + Am(t)) (A2)

where
a2 AFR +q~*BS
M £ g=DFPR — q~*BQ
U2 q=9DSP + AQ

Since P =G and (3.6) gives o = BC, the closed-loop system is stable.

Finite cost

Signals appearing in the criterion must have finite variance, even though w(s)
and n(f) may be non-stationary. Let J, denote the cost (2.3) when the regulator
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(2.4) —(3.4), with m(r) = 0, is applied. With (2.2), P =G, (A 1) and (A 2), it can be
expressed as

Jy= lim 1{7 IZVZO E(p,() + y.(0)* + pE(z,()) + z.(1)* (A3)

N—o oo
where

Z,() + z.(£) & WFu(1)

M G FRC 1
= R — t
yo()=—= T Ho v(1), ye(t) =——ge)
WFU G WFSC 1
) =~ ), 20 = —PC L)

Both y () and z,(r) are stationary and have finite variance, since the cancellation of
the unstable factor F is assumed to be exact.

The signal y,(¢) has finite variance if (and only if) the unstable denominator
factor Hy divides M. Consider the polynomial r8, M. By using first (3.4) and then
(3.2), it can be expressed as

rBM =q~“DFGrf R —q~*Brf,Q
= ¢~“DFGrf, R — q~“DFGq~**1BX, +q~**'BCHL,
— ¢~ DFGpWW F,A,C +q~**+'BCHH, L,

Since Hy is assumed to be a factor of DFW, it will be a factor of « M. However,
B, has no zeros on the unit circle, so Hy, which has all its zeros on the unit circle,
must be a factor of M. Consequently, y,(#) has finite variance.

Factors of Hy which are factors of WF are cancelled in the expression for z, (7).
Common factors of Hy; and D must, according to (3.4), also be factors of Q. (They
cannot be factors of ., since 8, is assumed to have no zeros on the unit circle.)
Thus, such factors are factors of U = ¢ ~“DSG + AQ. Consequently, z,(f) is station-
ary, with finite variance, if Hy, is a factor of WFD.

Optimality

Let an arbitrary (but not destabilizing) control action be expressed as (2.4),
where R, S, P and Q are calculated according to the Theorem, and m(f) is an
arbitrary stationary additional control signal, generated from a linear combination
of measurements up to time ¢. Any such signal can be expressed as

m(t) = G,u(t) + G.e(t)

where G, and G, are stable rational functions. (In practice, m(f) would be gener-
ated by utilizing the measurable signals w(f) and y(f). The rational functions G,
and G, would then include expressions describing the suitably modified, but
still stable, closed-loop system. This does not alter the reasoning.) It will be
demonstrated that m(f) =0 is the optimal choice. Use (2.4) on the system. The
cost function is then
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where J|, the cost with m(t) =0, is given by (A 3). Since v(¢) and e(f) are mutually
uncorrelated and all signals involved are stationary,

B WFA
J2 = Eyv(t)q -k ; va(t) + pEzv(t) —T va(t)

B WFA
+ Ey, (g p G.e(t) + pEz(¢) e G,e(t)

Jy=E <£ m(?) )2 + pE <Efi m(t) )2
o o

It it can be shown that J,=0, it follows that m(f) =0 is optimal, since J, is

unaffected by m(r) and J; is non-negative.
Using Parseval’s formula together with (A 3), the term J, can be expressed as

Ay Mz"B*—pWFUW*F*A*} dz
J2= N Gv-o:"—
27 Ji-4 aHo z

2, RCz*B,  WSCW,F,A,7 . d

27 Jyoa Lo oy o o <z

Use of the expressions for M and U and of the spectral factorization (3.1) gives

7= 4, [(z“**DFGRB, — pz *DFGWW F,A,S —rBB.0) G. dz
2 2mi Hae, "z
A_e‘ﬂgC(szB*—pWW*F*A*S) Ge‘ﬁ (A 5)
2mi 0oL 4
Multiplication of (3.2) by S and of (3.3) by R followed by subtraction gives
70X, =C(z*RB, — pWW F,A,S) (A 6)

Multiply (3.4) by p and express zfX, with (A 6), using « = fC. This gives
27T 'DFGPX, =rPp,.Q +zBCHL,
z"“DFG(z*RB, — pWW F, A, S) —rpp,Q =zaHL, (A7)
The use of (A 7) in the first term of (A 5) and of (A 6) in the second term gives
Ay [zaHL,  dz 2, f#zoc)(,k G dz

J2='_v' *
2ni | Hoet, %z 2mi

e‘

o, z
This expression is zero since, after cancelling zoH, the integrands have no poles
inside the integration path; stability of a(z ~") implies that a,(z) has zeros outside
lz] =1 only. (We see that L (z) and X, (z) must have only non-negative powers of
z as arguments. Negative powers of z would introduce poles at the origin, and J,
would not vanish.) Thus, with J =J, + J;, the choice m(f) =0 is optimal. O
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