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Optimal Differentiation Based on Stochastic
Signal Models
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Abstract—The problem of estimating the time derivative of a signal
from sampled measurements is addressed. The measurements may be
corrupted by colored noise. A key idea is to use stochastic models of
the signal to be differentiated and of the measurement noise. Two ap-
proaches are suggested. The first is based on a continuous-time sto-
chastic process as model of the signal. The second approach uses a
discrete-time ARMA model of the signal and a discrete-time approxi-
mation of the derivative operator. The introduction of this approxi-
mation normally causes a small performance degradation, compared
to the first approach. There exists an optimal (signal dependent) deriv-
ative approximation, for which the performance degradation vanishes.

Digital differentiators are presented in a shift operator polynomial
form. They minimize the mean-square estimation error. In both ap-
proaches, they are calculated from a linear polynomial equation and a
polynomial spectral factorization. (The first approach also requires
sampling of the continuous-time model.) Estimators can be designed
for prediction, filtering, and smoothing problems. Unstable signal and
noise models can be handled. The three obstacles to perfect
differentiation, namely a finite smoothing lag, measurement noise, and
aliasing effects due to ling, are disc d

Plitls.

I. INTRODUCTION

HE need to obtain the time derivative of a measured or ob-

served signal arises frequently. Industrial examples include
the estimation of heating rates from temperature data [16] and
of net flow rates into a tank from measurements of the level. In
radar applications, velocity estimation from position data are of
interest [44], [45]. Many biomechanical investigations require
estimation of second-order derivatives (forces and moments)
from position data [2], [20].

Being an important signal processing problem, numerical dif-
ferentiation has been the subject of extensive investigations, see
the survey papers [1]-[3]. A main complication is that differ-
entiators amplify high-frequency noise. This problem grows
with the order of the derivative to be estimated and with the
required bandwidth of the filter.

For noise-free sampled signals, wide-band or full-band nth
order differentiators can be designed [4]-[9]. The transfer func-
tion (iw)" should then be approximated by a realizable filter in
some frequency band. This band may include all frequencies up
to the Nyquist frequency (full-band differentiation).

If the signal is corrupted by noise, this must be taken into
consideration. Loosely speaking, the filter design must be a
compromise between good differentiation and low noise sensi-
tivity, to achieve a small total error. Some lower bounds on the
noise level of the filter output have been derived in [10]-[12].

Manuscript received June 12, 1989; revised March 5, 1990. This work
was supported by the Swedish Board for Technical Development under
Contract 87-01573.

The authors are with the Automatic Control and Systems Analysis Group,
Department of Technology, Uppsala University, Uppsala, Sweden.

IEEE Log Number 9041158.

Differentiation of noisy data can be based on polynomial trend
models [13}-[16] and on regularization techniques [1], [17]-
[20]. Frequency domain design is also a popular approach. See,
for example, [11, [9], [21]-[23], [46]). In an often considered
situation, the signal is of low-frequency character, while the
measurement noise is white. The filter should then approximate
(iw)" at low frequencies and have low gain at high frequencies.
Kalman filtering techniques have been applied to derivative es-
timation from measurements corrupted by white noise. See [3],
[15], [24]-[26]. The Kalman filter is a frequently used tool for
velocity estimation from radar position data. See, e.g., [44] and
references therein.

This paper addresses the problem of estimating nth order de-
rivatives based on stochastic signal models and noise-corrupted
discrete-time measurements. Our goal will be to develop a de-
sign procedure which is general, yet simple to use. Measure-
ments may be prefiltered and corrupted by colored noise.
Nonstationary signals and noises, generated by unstable linear
systems, will be handled. The estimator may be designed as a
predictor, a filter or a fixed lag smoother. It is designed to min-
imize the mean-square estimation error. The estimator synthesis
is based on a polynomial equations approach to linear quadratic
optimization problems. The calculation of the filter basically
requires the solution of a spectral factorization and a system of
linear equations, corresponding to a linear polynomial equa-
tion. The result is a realizable Wiener filter.

We consider two signal models, corresponding to different
types of a priori information known to the designer.

1) A continuous-time stochastic signal model is first assumed
known. (This knowledge would be valuable since the derivative
is, basically, a continuous-time concept.) After sampling of the
model, the optimal filter can be calculated. An expression for
the minimal estimation error variance is also derived. It is af-
fected by the three basic obstacles to perfect estimation: a limit
on the number of future data used for estimation, the presence
of noise, and aliasing effects due to sampling.

2) If no continuous-time model is available, a discrete-time
ARMA model may be obtained from the measured time series.
Computation of an optimal differentiating filter then also re-
quires a discrete-time approximation of the derivative operator.
It will be proven that there exists an optimal (signal-dependent)
approximation. Using this approximation, the filtering perfor-
mance becomes identical to that based on a continuous-time
model.

Equivalent estimators could be designed by state-space meth-
ods, using Kalman filtering. Adaptive smoothers for related
problems are treated in [27]. We have preferred to use the poly-
nomial equations approach. In contrast to Kalman filtering, it
avoids problems in noise-free (singular) situations. It also leads.
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to simpler design calculations than for Kalman filters, in partic-
ular for smoothing problems with colored noise. The filter coef-
ficients of the optimal differentiator are obtained directly and

classical filter concepts, such as frequency responses, poles, and .

zeros, etc., can be studied directly. For a treatment of related
estimation problems using the polynomial equations approach,
see [28]-[30], [32], and [36]. The relationship between state-
space and transfer function techniques has been thoroughly in-
vestigated by Kucera [36]. )
The paper is organized as follows. The (continuous-time) sig-
nal and (discrete-time) noise models are presented in Section II.
The optimal estimator based on the continuous-time model and
the expression for the minimal estimation error are discussed in
Section III. An optimal filter based on a (discrete-time) ARMA
model of the signal is derived in Section IV. The optimal dis-
crete-time approximation of the derivative operator is presented
in Section V. With it, the filter of Section IV equals the one
derived in Section IIl. An example illustrates the design pro-
cedures in Section VI, and a numerical example is discussed in
Section VII. Conclusions are presented in Section VIII.

II. PRELIMINARIES

Let a continuous-time scalar signal s.(¢) be characterized as
a linear stochastic process ‘

se(1) = G(p) ec(t) (2.1)

where e.(¢) is zero mean white noise with spectral density
\c/27, and G(p) is a rational function in the derivative oper-
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Fig. 1. The differentiation problem. The nth order derivative d(#) of a
signal s (2) is to be estimated from sampled data. The signal s.(#) may be’
filtered by, for example, an antialiasing filter L( p) before sampling. The
measurements are corrupted by (possibly colored) noise w(k).

measurements

The signal s(¢) is sampled with sampling period T. We seek
the nth order derivative of the unfiltered signal s.(t)

ds.(t "
a() & LD _ pr(p) e, (1)
5-1 -2 4 ... n
- boP a+ blp 5_1+ + b&—n—lp e,(t) (24)
P rapt t o ta

at the time instants ¢t = kT; k = 0,1, -+ . SeeFig. 1.
The stochastic model (2.1)-(2.4) can be represented in state
space form, [31], as .

dx(t) = Ax(t) dt + BdW(t)

s(t) = Hx(1)

d(t) = Hyx(1)

s.(t) = Hax (1) (2.5)

with dW(z) = e (t) dt being Wiener increments, and with

T—al T4 l _, 1
1 :
0 ;
0 1o '
S IR RS raera B -
0 ] n—ll 1 Y
1
0 :
- 0 1] =0 -

atorp £ d/ds. Ithas order 6 = n + 1 and pole excess (relative
degree) = n + 1

b 8-n-1 +b (5—7:—2+ .
G(p) = o P 1P

+ bB—n-—l
PP +ap® + - '

(2.2)

There is no need for s.() to actually be a filtered white noise.
The expression (2.1) just represents a model describing the

spectral properties of the signal. We assume A, and G(p) to be

time invariant. The signal s.(¢) may be filtered
s(#) = L(p) s.(¢)
where
l,p"—'_'i' 12p7*2 4 oo
p'v + hlp"" 4 e

+ 1,
+ h,
of order v, represents an antialiasing filter and/or the dynamics

of a transducer. (If no filtering is used, set y = 0 and L(p) =
Ih=1.)

L(p) =

+1lp, (2.3)

H=0--0 lobo"'loba—n—1|11"'l~y)
“—n—
H2=(b0"'ba—n—| 0...0|0...0)

“n—

Hy=(0-+-0 by-*+ bs_p_y]|0 -+ 0). (2.6)

—n-

Stochastic sampling (see for instance [31]) of (2.5), results
in the discrete-time representation

x(k + 1) = Fx(k) + e,(k)
s(k) = Hx(k) -

d(k) &

d"s (1) 2.7)

d = Hyx(k)

t=kT
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where F = e47, Note that d(k) is exactly the derivative at the
sampling instants. We assume the pair (F, H,) to be detectable.
(Possible unobservable modes must be stable.) The column vec-
tor e, (k) consists of discrete-time stationary white noise ele-
ments with zero mean. The covariance matrix equals
T

Ee,(k) e, (k) 2 \.R, = \. SQ e“BB'e?" dr  (2.8)
where ' denotes transpose. Note that while the continuous-time
noise process e (1) is scalar, e, (k) will be a vector of dimen-
sion 6 + y (= dim A). In general, R, has full rank.

If the filter L( p) has a stable inverse, a continuous-time filter
p"L(p)~" of infinite bandwidth could, in principle, reconstruct
the derivative d(t) perfectly, from noise-free measurements of
s(t). With a discrete-time filter, this is impossible due to alias-
ing effects and the limited bandwidth of s (k). (The signal s.(?)
is not strictly band limited.) The effect of all components of
e,(k)ond(k) = Hyx(k) cannot, in general, be calculated from
their effect on s(k) = Hyx(k), unless the covariance matrix R,
has rank 1. When the sampling frequency increases, R, ap-
proaches a rank 1 matrix. These points are discussed in more
detail in Appendix D.

Measurements of the signal s (k) are assumed to be corrupted
by a discrete-time noise w(k) (it normally represents a sampled
continuous-time disturbance)

¥(K) = s(k) + wik). (29)
The sequence {w(k)} is modeled as an ARMA process
_M@™)
w(k) = s vk) (2.10)

where M(q~"')and N(g~ ") are monic polynomials in the back-
ward shift operator (¢~ 'v (k) = v(k — 1)). They have degrees
nm and nn, respectively. The sequence {v(k)} is a zero mean
and stationary white noise with variance A,. It is assumed that
v (k) is uncorrelated with all components of e, (k).

Kalman filtering [35] may be used to obtain an estimate of
d(k), based on measurements of y(k) and on the model (2.7)-
(2.10). Here, we will present a transfer-function based esti-
mator design. For this reason, introduce the characteristic poly-
nomial D(g~"), of degree nd = & + +, and the polynomial
matrix C(g~") as

D(qg™") & det (I — q"'F) (2.11)
Cg")2adj(I-q 'F)g" (2.12)
Hence, the sampled system can be expressed as
C(q™' /
50 = G ) B k) = MR,
y(k) = Hx(k) + w(k)
d(k) = Hyx(k)
_M@™h 2 _

w(k) = N ) v(k) Ev(k) = A, (2.13)

III. AN ESTIMATOR BASED ON THE CONTINUOUS-TIME
SIGNAL MODEL

Assume the parameters of the continuous-time model (2.1)-
(2.3) and of the noise description (2.10) to be known a priori
or correctly estimated in some way. The discrete-time model
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description

Fig. 2. The differentiation problem, originating from an a priori known
continuous-time model. The nth order derivative d(k) is to be estimated
from the measurements y(k + m).

(2.13) is then obtained by stochastic sampling. From this in-
formation, we seek the stable time-invariant linear estimator of
the nth derivative

_2@)
R(q7")
which minimizes the stationary mean-square estimation error

Ez (k) 2 E(d(k) — d(k|k + m))’. (3.2)

d(k|k + m) y(k + m) (3.1)

See Fig. 2. Depending on m, we obtain a fixed lag smoother (m
> 0), a filter (m = 0) or a predictor (m < 0).

Let us adopt the following polynomial notation. For any
polynomial in the backward shift operator q~', of degree nu

I+ e +u"uq~nu

U(g™") =t + g~
let Ufq) & ug + g + + g™ and U(g™') 2
g " U (q) = uog ™ + w,g™ ™" + -+ + u,, In the fre-
quency domain, the complex argument z is substituted for q.
The polynomial arguments (¢~ ', ¢, z~*, z) will often be omit-
ted. Stable polynominals have all zeros in |z| < 1.
Introduce the following polynomials,1 obtained from the
model (2.13)
Py =plqg™ +

. pl —~nc
ij P =ncq

A HC(g")R.Cq)H,, i,j=12

cpl g
(3.3)

Also, with 5 £ \,/\,, introduce the polynomial spectral fac-
torization

788+ = P NNy + 7DD, MM, . (3.4)

defining a stable and monic spectral factor B(g™)=1+Bq"
4+« + B.sq "™ of degree n = max {nc + nn, nd + nm}
and a scalar 7. Reliable iterative algorithms for solving spectral
factorizations with respect to 7 and 8 exist [30], [40], [48]. For
a stable spectral factor {8 to exist, it is necessary and sufficient
that the two terms on the right-hand side of (3.4) have no com-
mon factors with zeros on the unit circle. (If » = 0, the first
term should have no zeros on the unit circle. )

The polynomials P; and 8 have specific interpretations. Note,
from (2.13), that for stationary signals (stable D and N), the

'The elements of the polynomial matrix C(g~') = adj (I — ¢~ 'F)q~"
are polynomials of degree 8 + v, with leading coefficient zero, of type
nmg~' + + v + nsy,q °77, where & and v are the degrees of G(p) and
L(p) in (2.2) and (2.3). The highest power of g~ ' and g in Py, nc, will
thus be givenby nc =86 + vy — 1 =nd — 1.
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spectral densities of {s(k)} and {d(k)} will be given by

A Py _ N Py

9:(w) = 20 DD’

(3.5)

The cross spectral density between {d(k)} and {s(k)} is

)\c P2|
TR 3.6
Gas (@) 27 DD, (3.6)
where ™7 and " have been substituted for g~ and ¢ in all
polynomials.

If D and N are stable, the spectral density of the measurement
sequence { y(k)} is given by

A P A, MM
b,(w) = dy(w) + ¢,(w) = - D_l')l* + Eﬁvf
- ﬁ 7885
" 27 DD.NN,' (3.7)

The spectral factor 8 thus represents the numerator of the in-
novations model

k) = 2 o).

DN (3.8)

We are now ready to present the following result.

Theorem 1: Consider the sampled signal model described by
(2.13). Assume that a stable spectral factor 8, defined by (3.4),
exists. Possible unstable factors of D are assumed not to be
factors of 3. A stable linear estimator (3.1) of the derivative
then attains the minimum of the estimation error (3.2), if and
only if it has the same coprime factors as

Q¢ iN

R 5 (3.9)
Here Qi(gq™"), together with a polynomial Li(q), is the
unique solution to the linear polynomial equation

q "PyNy = 78407 + gDL§ (3.10)
with polynomial degrees
nQ{ = max {nc + m, nd — 1}
nL® = max {nc+nn—m, nB} - 1. (3.11)
0

Proof: See Appendix A-2.

A. Remarks and Interpretations

1) Equation (3.10) can be written as a system of linear equa-
tions, with equal number of equations and unknowns (nQf§ +
1 + nL® + 1). See (A.15) in Appendix A-3. This system has
full rank, and precisely one solution {Q$, L5 }.? The optimal

*Linear polynomial equations AX + BY = C, also called ‘“diophantine
equations,’” in general have an infinite number of solutions {X, Y}. (f
{Xo, Yo} is a solution, {X, + ZB, Y, — ZA} will also be a solution, for
any polynomial Z.) Because Qf must be a polynomial in q~', and L, a
polynomial in g, there will, however, exist at most one solution to (3.10).
The system of linear equations corresponding to (3.10) has full rank if and
only if the unstable polynomial g"*8_ = B has no factor in common with
D. (In particular, this will always be true if D is stable or has zeros on the
unit- circle. ) Equation (3.10) then has a unique solution with respect to
Q1 and LY, with polynomial degrees (3.11).

filter (3.9) may sometimes contain stable common factors.
Herice, the remark about coprime factors in Theorem 1.

2) It is shown in Appendix A-3 that L° — 0 when m — oo.
Equation (3.10) then reduces to q""PZ,N;,< = 718,07 The
impulse response of Q¢(q~') thus approaches that of
q"'”PZIN*/TB*. If d(k), s (k), and w(k) are stationary, the use
of (3.9), (3.6), and (3.7) gives the limiting frequency domain
expression

_ ¢d:(w)
BB b(w) + b, ()

(3.12)

Qo™ piomT _ PuN«N _
Rc(e—in)

m— o

This is the well-known unrealizable Wiener filter. When L( p)
= 1 and no aliasing occurs ¢4 (w) = (iw)"d,(w), (3.12) then
represents the differentiating Wiener filter [1], [3]. An ‘‘ideal”’
differentiator has transfer function (iw)”, while the function
¢ (w)/(d,(w) + ¢,(w)) provides the optimal tradeoff be-
tween ideal differentiation and suppression of noise.

3) Note that poles of the noise model (the zeros of N) are
canceled by zeros in the estimator. If the noise model has poles
close to the unit circle (resonances), the optimal filter will have
notches at these frequencies. The filter design might be used
also in the presence of nonstationary disturbances (zeros of N
on or outside the unit circle). The filtering is, however, non-
robust in such situations. Imperfect cancellation of N would re-
sult in a nonstationary estimation error z.(k).

Corollary 1: With an optimal differentiating filter calculated
according to Theorem 1, the minimal variance of the estimation
error is finite. It is given by

2 Ae
Ez (k) =—*%
2e (k)i 27 J 2=
. L°L% + MMy Py, | NNy [P, Py — Py,Py]
788 788+ 788+ DDx
—— v
1 1 I
& (3.13)
Z
O

Proof: See Appendix A-1.

If the D-polynomial is not stable (as in the double integrator
model discussed in Section VI), both d(k) and the estimate d (k)
will, in general, be nonstationary sequences. The estimation er-
ror z.(k) = d(k) — d(k) will, however, be a stationary zero
mean sequence, with a finite minimal variance given by (3.13).
(This implies that unstable factors of D in the denominator of
term III in (3.13) are canceled by numerator factors. )

The three terms in (3.13) can be interpreted as follows.

Term I represents the effect of a finite smoothing lag m. As
is shown in Appendix A-3, L° = 0 when m — . Term I then
vanishes.

Term II depends on the noise w (k). It represents the unavoid-
able performance degradation due to noise, which cannot be
eliminated even with an aribitrarily large smoothing lag m. The
term vanishes in the noise-free case (n = 0).

Term III remains even when m — o and 7 = 0. It represents
the performance degradation due to aliasing effects. Asymptot-
ically, when T — 0 and the covariance matrix \.R, (defined by
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(2.8)) approaches a rank 1-matrix, the term vanishes. This can
be shown as follows.

Assume R, to be a rank 1 matrix, so that R, = VV', where V
is a column vector. Using (2.13), define the polynomials T(g™ ")
& HC(g ")V, U(qg™") & H,C(q ")V. Then, it is evident
from (3.3) that

Py =TT Py = UUy Py, = TUy Py = UT,.

Consequently,

PPy, — PPy =TT UU, — TU,UT, = 0

and term III in (3.13) is eliminated. If R, has rank > 1, so that
V is a matrix, T and U will be polynomial row vectors. Then,
TT, UUY — TULUT} # 0 in general, since polynomial vectors,
unlike scalar polynomials, do not generally commute.

IV. AN ESTIMATOR BASED ON A DISCRETE-TIME
SIGNAL MODEL

Accurate continuous-time models, based on knowledge of the
signal-generating process, are often hard to obtain. An obvious
alternative is to use the discrete-time data series { y(k) } itself,
to obtain a model optimized through system identification [41],
[42]. An ARMA model of the measured signal y (k) will cor-
respond to the innovations model (3.8)

Ba™)
D(q")N(g™")
where B(g~") is stable. The white innovations sequence {e(k)}

has variance \.. From another data series, where s(k) = 0, the
noise model (2.10) may be obtained

_M@™
N(g™")

y(k) = e(k) L (4.1)

w(k) (k). (4.2)

With (4.1) and (4.2) known, an ARMA model of the signal
s(k) = y(k) — w(k)

s(k) =

Cla™)
D(q™")
may be calculated by means of a spectral decomposition, see
(4.4) below. Here, e(k) is a scalar zero mean white noise with
variance \,, while C and D are monic. Since e (k) will not be
estimated, the phase of s(k), with respect to e(k), will be of
no interest. We may consider minimum phase models only.
Thus, z"C(z™') is assumed to have no zeros in |z| > 1.

When N and D have zeros on or inside the unit circle, the
spectral densities of y(k), w(k) and s(k) are defined, except,
possibly, for isolated frequencies. They are related through
¢y (w) = ¢(w) + ¢, (w), or

A BBx  _ A\ CCy
27 DDyNN, 27 DDy

e(k) (4.3)

)‘v MM*
21 NNy~

This relation defines the polynomial spectral factorization equa-
tion

rBBs« = CC«NNy + pDD, MM, (4.4)
where r = N\, /A, and p = N, /\,. With (4.1) and (4.2) known,
D is easily determined from N and (DN). With only CC_ un-
known, (4.4) represents an overdetermined system of linear
equations in the coefficients of CC_. They can be determined

uniquely [33]. (Knowledge of C will not be required for deter-
mining an estimator. It will be sufficient to know the product
CC,. The stable polynomial C will be of use in Section V anly.
It can be determined uniquely by spectral factorization of CC,.)

Alternatively, if the right-hand side of (4.4) is known, r and
8 may be calculated. Still another variant is the calculation of
both the noise model (4.2) and the signal model (4.3), from
knowledge of the innovations model (4.1) only. This is possi-
ble, under certain restrictive conditions on the polynomial de-
grees. See [33], [43].

If the signals defined by (4.1)-(4.3) have the same spectral
densities as (3.5)-(3.7), it is obvious that 8 and D are the samg
polynomials in the two descriptions, while NPy, = N CC,.
The degree nc in (3.3) equals the degree of C in (4.3). Nor-
mally, nc = nd — 1. The spectral factorizations (3.4) and (4.4)
differ by only a constant scaling factor A, /X, between p, 1, and
n, T

n=wp T=w vEN/\ (4.5)

By means of the models (4.1)-(4.3), a description of the de-
rivative is sought. The derivative d (k) is, however, not related
to the signals described by (4.1)-(4.3) in a simple way. Two
procedures for overcoming this problem are conceivable:

1) Inverse stochastic sampling [37] may be used to obtain
the continuous-time model (2.2) from the discrete-time model
(4.3). An optimal estimator is then calculated by applying
Theorem 1 on the resampled model (2.7), (2.13).

2) A discrete-time approximation of the derivative is intro-
duced

approx
d’s.(1)
ar"

& a0 = ¢ 2D s

A(q™") (4-6)

1=kT

where A4 is stable. The integer [ = 0 is introduced to handle
noncausal approximations. Then, a stable linear estimator

0%q ™)

d(k|k + m) = )

y(k + m) (4.7)

which minimizes the mean-square estimation error with respect
to the approximative derivative d, (k)

Ezg(k) & E(d,(k) — du(k|k + m))’ (4.8)
is calculated. See Fig. 3.

We will discuss the second approach. It is much simpler than
the use of inverse sampling. The introduction of an approxi-
mation (4.6) may degrade the filtering performance. The deg-
radation will, however, be small if the approximation is
reasonable and the sampling period is selected properly. (See
Section VI.)

In the second approach, the approximation (4.6) (in addition
to the smoothing lag m and the sampling period T') is a user
choice. Let us assume that the first-order derivative is to be
estimated (n = 1). Also, assume that s(¢) and s.(¢) have the
same spectral densities up to the Nyquist frequency.® The fre-
quency response of (4.6) should then approximate iw, up to @

3Either the filter (2.3) is L(p) = 1, or it is a good antialiasing filter,
with L(iw) = 1 up to the Nyquist frequency wy, and L(iw) = 0 above
wy. IfL(p) # | in interesting frequency ranges, one alternative is to treat
the problem as a deconvolution, or input estimation problem [32], [47].
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signal
description
e(k) | C g‘l s(k;
D(g~h)
B(g™Y) |da(k)
| e (=

approximation of
a differentiator

Fig. 3. A problem formulation based on a discrete-time signal model and
differentiating approximation. The approximative derivative d, (k) is esti-
mated.

= =« /T. The simplest choice of approximation is the backward
difference: ¢'B/A.= (1 — ¢~")/T. A higher order alternative
is

IB__ 1§ d (—1)”H n—1 —n—1

77=9 22— (@' -¢""). (49
This is a truncation of an unrealizable IIR filter which, for/ —
o, has frequency response iw for |w| < 7 /T. In the noise-free
case, ¢"(Q*/R?) should equal the approximation (4.6), giving
z4(k) = 0. The design of differentiating estimators for noise-
free situations has been discussed in, for example, [4]-[6], [8],
and [9]. When noise is taken into consideration, we obtain the
following result.

Theorem 2: Let the discrete-time- measurements be de-
scribed by y(k) = s(k) + w(k), using (4.2) and (4.3). Let an
approximation (4.6) of the derivative and a smoothing lag m be
given. Assume a stable spectral factor 3 to exist. Unstable fac-

tors of D are assumed not to be factors of B. A stable linear

estimator (4.7) of the derivative approximation (4.6) then at-
tains the minimum of the estimation error (4.8), if and only if
it has the same coprime factors as

Q" _ QN

ol (4.10)

Here, 09(q™"), together with a polynomial L% (g), is the unique
solution to the linear polynomial equation
q'""CCxN«B = rB.Q% + qDAL: (4.11)
with polynomial degrees
nQ{ =max {nb + nc +m -1, na + nd — 1}
nL? = max {nc + nn + I — m, ng} — 1. (4.12)

The minimal value of (4.8) is

B (k). = A (L°LLAA, + BBy CCLMM,) dz
A min = 2 I ia1=1 rBBsAA, z’
(4.13)

Proof: See Appendix B.
Remarks:
® In the noise-free case (p = 0), with m = I, the optimal
estimator (4.10) reduces to ¢'~™B /A. This can be seen by in-
spection of (4.4) and (4.11) or directly from Fig. 3. We thus
obtain z,(k) = Q. Perfect estimation of d,(k) does, however,

not imply perfect estimation of the true derivative. With a filter
design according to Theorem 2, a new source of error appears.
In addition to the three sources discussed after Corollary 1, we
now get errors due to an imperfect differentiator approximation.
In the next section, a (signal dependent) differentiator approx-
imation which avoids such extra errors will be shown to exist.

* Remarks 1-3 after Theorem 1 apply also to Theorem 2,
with small and obvious modifications. It is evident from (4.4)
and (4.11) that the optimal estimator does not depend on the
phase properties of C or M. Only the factors CC, and MM
appear in these expressions.

* For stable B, the differentiation problem, depicted in Fig.
3, may be interpreted as a deconvolution problem, cf. [32]. The
signal d,(k) is then treated as the input to a known system,
namely the inverse of the derivative operator approximation.
Inversion of (4.6) gives s(k) = q"(A/B ) d, (k). With d,(k)
= (CB/DA)e(k) as an input description, the equations in [32]
are directly applicable.

V. THE OPTIMAL DERIVATIVE APPROXIMATION

For a given derivative approximation (4.6), Theorem 2 pro-
vides the optimal filter with respect to d, (k). In general, it dif-
fers from the optimal filter with respect to the true derivative
d(k), given by Theorem 1. Let the basic assumptions of Theo-
rem 2 hold. We can then prove the following result.

Theorem 3: Assume z"°C(z™") to have no zeros in |z| =
1. Choose

l=m=0
A(g7") =C(g™")

and B(g™"), together with a polynomial K (), as the unique
solution to the linear polynomial equation

(5.1)
(5.2)

4 ™P,, = vCyB + gDK, (5.3)

with polynomial degrees

nb = max {nc + m,nd — 1}  nk=nc—1

where » and P,; are defined in (4.5) and (3.3). Then, the esti- .

mator derived from the discrete-time model in Theorem 2 has

the same coprime factors as the one obtained from the contin-

uous-time model in Theorem 1. O
Proof: See Appendix C.

Thus, there exists an optimal approximation of the derivative
operator. With it, the use of the discrete-time model (4.1)-(4.3)
introduces no extra errors, compared to the use of a sampled
continuous-time model. The error variance will be given by
(3.13).

The optimal approximation obtained from (5.1)-(5.3) de-
pends on the statistics of s(k). Only a finite number of future
values of s(k), equal to the proposed smoothing lag m of the
filter, are used in the approximation. The structure of the opti-
mal approximation does not resemble an antisymmetrical FIR-
filter like (4.9). Instead, it is an IIR filter, with the signal model
numerator C as denominator polynomial. Note that Theorem 3
does not apply when C has zeros on the unit circle.

Theorem 3 is mainly of theoretical interest. It is of limited
help for choosing a suitable approximation in practice. Calcu-
lation of the optimal polynomial B from (5.3) requires knowl-
edge of P,; (the numerator of the cross spectral density (3.6)
between d(k) and s(k)). This polynomial could be obtained
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from (4.1)-(4.3) using inverse sampling. However, with
knowledge of P,,, one might just as well design the estimator
from Theorem 1 directly.

VI. ILLUSTRATIONS OF THE RESULTS

We will in this section illustrate Theorems 1-3, for a simple
example.

A. Design Based on Theorem 1

We wish to estimate a velocity, described as an integrated
white noise, from position data. Thus, consider the double in-
tegrator G(p) = 1/ p?, with L( p) = 1. Representation in state
space form (2.5) and sampling leads to (2.7), where

10 T T?/2
F = R, =
T 1 T2/2 T°/3
H =0 1) H,=(1 0). (6.1)
From (2.11) and (2.12), we obtain
-1 -2
9 —q° 0
D=(-q") C=[ } (6.2)
Tq? g - g2
Thus, the polynomials P; in (3.3) become
T _
Pn=z[q "+4+q]
r’ -1 -1
P21=P12*=‘2“1[1_‘I 1 +4q7"]
Py =T[—-q'+2-gql] (6.3)

White measurement noise is assumed, i.e., M = N = 1. We
calculate Q¢/R¢ for the filter case m = 0. Let the spectral factor
8, of order 2, be denoted

B=1+8q"+Bq”?’ (6.4)
and solve (3.10), with degrees nL® = 1, nQ7 = 1
T _ _
24l —gH(1+q7)
= 1807 + q(1 — 7Y (Lo + Lig).  (6.5)

Since (1 — ¢~ ') is a factor of two terms, it must be a factor of
the third, too. Factor out (1 — g~ '). This gives 0§ = Qy(1 —
g™ ') and

r -1 2

?‘I(l +qg ) =711 +8ig+ B2q")0

+q(1 — g ") (Lo + Lig).

This polynomial equation corresponds to a set of linear equa-
tions in Qq, Lo, and L,. We can find Q, directly, by evaluating
(6.6) for ‘‘q = 1,”” where the second term vanishes. With 1 +
B, + B, = B(1), this gives

TZ
S B(1)  B0) T

_ e _ Q)

9

In the last equality, 78(1)* = T? was used. This relation is
derived from (3.4) for ‘g = 1”’: 718(1)* = P,,(1) + D(1)’
= P, (1) = T, since D(1) = 0. Thus, the optimal differen-

(6.6) |
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tiating filter is found to be

g _ (1)1 — qﬁl) 2 He

R° TB(g™") (67)

B. Hlustration of Theorem 3

Consider the optimal approximation B/4, according to
Theorem 3. Let C = 1 + c.q_'. Observe, from (3.4), (4.4),
and (4.5), that \,CC, = N\ P,,. Thus

3
b1 +ag (1 +ed) = (@ +4tq) (68)

which is satisfied for
=23  v=N/N\=T/6c, = T/(1 +c).
(6.9)

Solution of (5.3) and use of (5.2) leads to the approximation

_0te)d-g)

B
A) T T(l +agh)

See [23] for details. From (4.10) and (4.11), the differentiating

filter is then found to be

Q¢ B +eag H(l q")
B(g™)(1 +ca™)

R T
Apart from a stable common factor C = 4, it coincides with
(6.7), as expected.

(6.10)

(6.11)

C. Use of a Simple Derivative Operator Approximation

Let us use the approximation

B _ 1-¢

A T

(6.12)

instead of the optimal approximation (6.10) in (4.1 1). The dif-
ferentiating filter is then found to be

QY (1- g ") (0 + 09" A ya
Q@ _ Ny 6.13
R Bla) (6.13)
where
1 1
0 = }<B(1) - %) and 0, =7

D. Performance Analysis

We will now investigate the estimator performance degrada-
tion due to noise, sampling, and the use of the simple approx-
imation (6.12) of the derivative operator. At low frequencies,
the estimator (6.13) approximates H¢ from (6.7). This is evi-
dent from a Taylor expansion of @ + 0,9 " in (6.13). Substi-
tute =7 for g~

Qo + Qe ™" = Qg + 0i(1 — iwT)

1 —
A ) )TC'/r+C—1T/—r(1 - iwT)
z&Tl) for wT << 1.
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Fig. 5. Phase of TH* (dotted line) and TH (solid line) as a function of ©
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Fig. 6. Magnitude of TH* (dotted line) and TH? (solid line) as a function
of @ £ wT, for @ = 0. (Noise-free case.)
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Fig. 7. Phase of TH¢ (dotted line) and TH (solid line) as a function of
£ oT, for & = 0. (Noise-free case.)

The estimators (6.7) and (6.13) depend on the sampling interval
T and on the noise ratio 5 = A, /\., which affect the spectral
factor 3. From the relations 4 = »p and (6.9), we get p =
6c1(N,/A.T?). For a given C and D, it is evident from (6.8),
(3.4) and (4.4) that 8, and thus the filters TH and TH (with
normalized gains), are determined uniquely by the factor o £
No/(A.T?). The ratio « may be large for two reasons: T small,
or A, large, compared to \.. Hence, fast sampling and a low
measurement noise may give the same filter as when slow sam-
pling is used and the measurement noise is high. In the latter
case, the differentiating filter performance will certainly be
worse. See Table I and compare cases 1 and 2.

In the cases 1-3 in Table I, the estimation error is dominated
by noise. The performance difference between the filters H®
from (6.7) and H¢ from (6.13) is negligible. Hence, a simple
approximation of the derivative operator will behave as well as
a sophisticated one. The filters (6.7) and (6.13) differ signifi-
cantly in the noise-free cases (see Fig. 6). Despite this, their
performance differs only slightly. The reason is that the signal
power at high frequencies, where the transfer functions differ,
is insignificant compared to that at low frequencies.

TABLE I
DIFFERENTIATING FILTER PERFORMANCE FOR DIFFERENT SAMPLING
INTERVALS T AND NOISE VARIANCES \,. V¢ 2 E(d(k) — H(k))?,
Ve 2 E(d(k) — H%(k))?. THE RaTio a = N,/ (A.T?) UNIQUELY
SPECIFIES BOTH TH® AND TH*

Frequency
Case T AN o« Ve ve Response
1 0.44 1 1 10 094 0.94 Figures 4 and 5
2 1 1 10 10 2.10 2.10 Figures 4 and 5
3 1 1 1 1 1.02 1.03
4 0.1 1 0 0 0.029 0.033  Figures 6 and 7
5 10 1 0 0 2.9 3.3 Figures 6 and 7

Comparing cases 2 and 5 with the others, we see that if the
measurement noise and/or the sampling period T is large, the
estimation error is large. Case 4 shows that the estimation error
is small if the sampling period and the measurement noise is
small. The performance degradation due to sampling decreases
rapidly with 7. (In (3.13), P, Py, — P;; Py, = O(T*) = 0 as
T — 0, in this example. )

From this investigation, we may conclude that the use of a
simple approximation of the derivative operator is reasonable,
if the sampling frequency is chosen sufficiently high, compared
to the frequency content in the signal. When the sampling fre-
quency is increased, the number of samples must, of course, be
increased in order to cover a prespecified time interval.

VII. A NUMERICAL EXAMPLE

In this section, we will illustrate Theorem 2 for designing
digital differentiating filters. The following signal and noise de-
scription will be used (7 = 1):

Clg™") _ 1 —0.180¢"" — 0.263¢ 2
D(g7") 1 -0.285¢"" + 0.036472 — 0.638¢"°

M(g™') 1 - 1.141g7" + 1.082¢72 — 0.941g°
N(g™") 1 - 1.081¢g7" + 0.96472

A, = 0.5.

(Compare with Fig. 3.) The spectral densities of the signal s (k
and of the noise w(k) are shown in Fig. 8. )

The spectral density of the noise has a resonance at w; = 1.0
rad /s, with magnitude M} = 23.8 dB. The spectral density of
the signal has a resonance at w; = 2.0 rad /s, with magnitude
M; = 14.1 dB. '

The following approximation of the derivative operator is
chosen (see [5])

B(g™') _1.150 — 0.378¢™" — 0.771¢q >
A(g™h 1 + 0.860g™" + 0.102¢472

The transfer function magnitudes of the filter (7.1) and of the
optimal filter, calculated from Theorem 2 with m = 0, are shown
in Fig. 9.

We see from Fig. 9 that the optimal filter is close to B/A at
frequencies where the signal spectral density dominates over
the noise spectral density. The optimal filter has a notch at w =
1 (the resonance frequency of the noise).

Since the signal and/or the noise spectral densities may be
incompletely known or time varying, the robustness properties
of the filter are of interest. The result of an investigation of
some nonideal design cases is presented in Table II.

A =1

e

(7.1)
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Fig. 8. Spectral densities of signal (solid line) and noise (dashed line).
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Fig. 9. Magnitude of the derivative approximation (7.1) (solid line). Mag-
nitude of the optimal filter calculated from Theorem 2 (dashed line).

TABLE II
THE VARIANCE OF THE ESTIMATION ERROR FOR SOME ERRONEOUS
DESIGN ASSUMPTIONS. THE VARIANCE OF THE ESTIMATED SIGNAL
d, (k)15 19.6

Case Filter Designed from Theorem 2 Using: Ezy(k)*
1 perfect signal and noise model 2.2
2 " = 1.3 rad/s, instead of w} = 1.0 rad /s 5.4
3 M} =16dB, -’- M7} =23.8dB 54
4 @' =123rad/s, -7- o} =2.0rad/s 2.4
5 M:=05dB, -’- M;=14.1dB 4.4
6 A =10, -- N\, =05 2.4
7 A, = 0 (giving Q/R = B/A) 8.7

Most of the noise energy in this example is concentrated in a
narrow peak. It is therefore natural that mismodeling of this
peak degrades the performance more than errors in the signal
model. None of the cases 1-6 considered in Table II leads to a
worse performance than not using any stochastic noise model
at all (case 7).

VIII. CONCLUSIONS

The design of digital differentiating filters has been addressed
in a stochastic perspective. Signals to be differentiated and mea-
surement noises were described by stochastic models. First, an
approach based on a continuous-time signal model was consid-
ered. The model was sampled and an estimate of the derivative
at the sampling instants was sought. The solution, minimizing
the mean-square estimation error, involved a spectral factor-
ization and a linear polynomial equation. The estimation error
revealed, in a clear way, three contributing error sources: a fi-
nite smoothing lag, measurement noise, and aliasing effects.
Even with an infinite smoothing lag and no noise, perfect dif-
ferentiation is impossible since band-limited signals do not ex-
ist. A high sampling rate will, however, alleviate this effect.

A continuous-time model is not usually known a priori. Two
alternatives are then available: inverse sampling of a discrete-
time model or the use of a discrete-time approximation of the
derivative operator. The second alternative has been investi-
gated. The best estimator, in a mean-square sense, was found
from the solution to a linear polynomial equation. This ap-

proach introduced an additional performance degradation due
to an imperfect discrete-time approximation of the derivative.
The existence of an approximation which eliminates this error
was proven. It was found to consist of an IIR filter, having the
numerator of the discrete-time signal model as denominator.

Using the optimal approximation of the derivative operator,
the discrete-time approach gave a differentiating filter identical
to that based on the continuous-time model. A practical prob-
lem is the signal dependence of the optimal approximation.
However, an example stressed that a simple suboptimal ap-
proximation may be sufficient, if the measurement noise is sig-
nificant and/or the sampling period is small enough.

An advantage with the suggested approaches is that predic-
tion, filtering, and fixed-lag smoothing problems are treated in
a unified way. In all three cases, the same design equation is
used. The estimators are provided in transfer function form.
Some of their frequency-domain properties are immediately ob-
vious. The low gain of the estimators at noise resonances is
evident from the numerator polynomials.

A limitation with the discussed differentiators is their time
invariance. When derivatives have infrequent but large changes,
time-varying estimators, combined with detection of changes,
may provide much better performance [23]. A higher gain is
then used for a short period of time after a change has been
detected. The estimators could be retuned on line in such im-
plementations. The noise ratios 7 in (3.4) or p in (4.4) may then
be used as a time-varying tuning parameters.

While the estimator design is based on known and time-in-
variant models, it could form the basis of adaptive algorithms,
as has been demonstrated for a related problem [43].

APPENDIX A
PrOOFs OF RESULTS IN SECTION III

) Using (2.13) and (3.1), the estimation error z.(k) = d(k) —
d(k|k + m) can be expressed as

() = (w)ev(k) _ M

R°D RN
(A.1)

First, we assume that the estimator is calculated according to
Theorem 1. We show that z.(k) is then stationary even if D
and/or N are unstable and that its variance is given by (3.13)
(Corollary 1). Then, in subsection 2 below, it is shown that this
is the minimal variance. In subsection 3, it is shown that L —
Oasm — oo,

1. Proof of Stationarity and of Corollary 1

If D and N are stable, it is obvious that the estimation error
is stationary, since R° = f is stable by construction. Cases
where D and/or N contain unstable factors are now investigated.
With (3.9), the estimation error (A.1) then becomes

(k).

H,C — q"QNH,C . QNM
w(k) = <3—2-—g’,%—>ev(k) -G

(A2)

The second term is stationary, since N in the denominator is
cancelled exactly by the corresponding filter numerator factor.
It remains to show that the numerator of the first term has D as
a factor. Multiply the denominator and numerator in the first
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term of (A.2) by 78 «- Consider

_ 8B« H,C — q"Q178+NH,C

w
7883+ D

(A.3)

We shall show that the numerator of (A.3) has D as a factor.
This will then also hold for the first term of (A.2), since B and
D are assumed to be coprime.
The use of (3.4) for TBB* and (3.10) for 0178, gives
_ NNu(PyuH, — PyH,)C
788D

+ D(T’D*MM*HZ + qm+]L;NH1)C
8BxD '

w

(A4)

It now remains to show that D is a factor in (P,,H, — P,H,)C.
The use of (3.3) gives

(PuH, — PyH,)C = H\CR,CLHH,C — H,CR,CLHTH,C

= H]C*ReCT(HTHZ - HZTHI)C (A.S)
Now note that (H{H, — H}H,) is skew-symmetric. Applying
Lemma 3.1 in [23] on the factor C"(H|H, — H]H,)Cin (A.5)
gives

C"(H'H, - H'H,)C = 9D (A.6)

where 9 is a polynomial matrix.

Hence, the numerator of (A.3) has D as a factor. Possible
unstable factors of D are cancelled in W. As a consequence,
{z.(k)} is stationary. Parseval’s formula may therefore be used
in order to express its variance. Noting that e, (k) and v (k) are
zero mean and mutually uncorrelated, the use of (A.2) and (3.3)
gives

where Q°/R¢ is the estimator calculated according to Theorem
1 and where n(k) is an arbitrary additional signal, generated
from linear combinations of measurements y (k) up to time k +
m. It will be shown that n(k) = 0 is the optimal choice. (This
proof technique has been used by Astrdm and Wittenmark [34].)
The estimation error variance, when using (A.10), is given by

E(d(k) - d(k|k + m))’

= Ez.(k)’ — 2Ez.(k) n(k) + En(k)’ (A.11)
where z.(k) is the estimation error resulting from the use of
(3.9). Stationarity of z.(k) was established in Appendix A-1.
The signal n (k) can be expressed as
G(g™h
H(q™")
where H is restricted to be stable. If N or D contain unstable
factors, the criterion (A.11) is indefinite unless G cancels pos-
sible unstable factors of N and D. Hence, G is restricted to can-
cel these factors. Using (A.1), (A.12), and (2.13), the mixed
term in (A.11) can be expressed as

2Ez.(k) n(k)

n(k) = (A.12)

y(k + m)

RD RN
G ,.(HC M
79 < D e, (k) + Nv(k)>
_ A £ [RH,C — 2"Q°H,C] Rz CiHiGy dz
"o RD e DyH, z

N\ £ QMM,Gy dz
mi J RNNyHy z

Ez (k)2 - (§ (BB+Py — 2""BPyQ1xNs — 2"QNP 1,8 + P,,QQ5+«NNs + 1Q1Q1+DDxMM,) dz
¢ 2wi

_ N & (BB+Py — 27"BPyQ5x Ny — 2"QNP,, B4 + Q101+78Bx) dz

BB+ DDy Z

27

where the integration path is counterclockwise around the unit
circle. Completing the square gives for the numerator

1
Bﬁ*Pzz - ; P12P2|NN*

1
+ ; (2"PN — 78Q7x) (27 "Py Ny — 8+07) (A.8)

which, by using (3.4), (3.10) and noting that P, = Py, be-
comes

1 1 1
~ (PuNNy + 7DD MM,) P, ~ 7 PaPuNN, + - DDLLL;.

(A.9)
Replacing the numerator in (A.7) with (A.9) gives (3.13). O

2. Proof of Theorem 1

Let an arbitrary derivative estimator be written as

d(k|k + m) = g—:y(k +m) +nk)  (A.10)

BB+ DD

(A7)
z

A

i

. [7"BP, NNy ~ Q{NNNxPy, — 7Q{NMMy DD, ]Gy d

BDDNNyH, z
_ A & [27"BPuNy — Q17BBx] Gy dz
i BDDy Ny Hy z’

In the second last equality, (3.3) and (3.9) were used and in the
last one (3.4). Finally, by using (3.10), the mixed term reduces
to

2Ez (k) n(k) = % (§> ik(;—*ciz =0.

A.13
DyN,H, ( )

The expression (A.13) is zero because H is stable and G is as-
sumed to cancel all unstable factors in D and N. Thus, the in-
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tegrand has no poles inside the unit circle. Since the mixed term
in (A.11) is zero, the criterion is obviously minimized by
choosing n(k) = 0. Any estimator transfer function with co-
prime factors different from those of (3.9) would, by definition,
correspond to n (k) # 0. No such estimator attains the minimal
error variance.

The degrees of Qf and L% in (3.10) are determined by the
requirement that the maximal occurring powers in q ' and g,
respectively, in the polynomial equation must be covered. [

3. The Polynomial Equation, in the Limit m — o

Multiply (3.10) by ¢7" "', to obtain an equation in powers
of g7 ' only

8Q¢ + DL = 7" "' ""P, N, (A.14)
Write the right-hand side of (A.14) as
q_"LrﬂimPZIN* & q*f(so + Slq"' + o 8,q ).

Since the highest powers in g of P,; and N are nc and nn,
respectively, we have f = nL° + 1 + m — nc — nn, which
increases with m. By equating equal powers of ¢~ ' on the right-
and left-hand side of (A.14), the following set of simultaneous
equations is obtained:

Bos 0. Ollg, 1 [o]
B B U] Qo o

T © dy d, Lc So

76, N
o
(A.15)

O T O d,
Asm — o, nQf grows, while nL° = n — 1. With an increas-
ing smoothing lag, less and less information about d (k) will be
present in the measurement y(k + m) [35]. Thus, the leading
coefficients of Q¢ tend to zero as m increases. This will be true,
in particular, for the first nL® coefficients.

Consider the first nL° equations of (A.15). Since {Q,,
<o+, Quc} = 0asm — oo, it follows that {L,., - -, Lo}
— 0 as m — oo, since the right-hand side of the equations are
zero.

[ s

L

APPENDIX B
PROOF OF THEOREM 2

This proof follows the proof of Theorem 1, in Appendix A.
We therefore present it as an outline. Using (4.6) and (4.10),
the estimation error can be expressed as

(Cq'BB — q™CQIN . QM
2a(k) = 2 q 1 )e p Qi

BAD (k) B4 v(k).

(B.1)

It is simple to show that it is stationary, even for unstable signal
models C/D. Using Parseval’s formula, (4.4), (4.10), and
(4.11), it is straightforward to derive the expression (4.13) for
the minimal estimation error variance. Proceeding as in Appen-
dix A-2, we propose the use of an arbitrary estimator

d,(k|k + m) = %—:y(k + m) + n(k) (B.2)

where n(k) = (G/H)y(k + m) is stationary and Q%/R" is
given by (4.10). :

Evaluation of the filtering error, using (B.2) and (4.4), gives
the mixed term

I'mCC*N*BB - rﬁB*Q’f) 9_* _d_z

2Bz (b nii) = 22 §

BADD Ny Hy z
which, by using (4.11), is found to be
Ne DALL Gy dz
2Ez,(k) n(k) = e e X (B.3)

7 J ADD.Ny z

Since G, is required to cancel possible unstable factors of D
and N, (B.3) will have no poles inside the unit circle. The in-
tegral will thus be zero. As in Appendix A-2, the optimal choice
must be n(k) = 0.

APPENDIX C
PROOF OF THEOREM 3

With a given model (2.1), (2.2), the estimator Q°/R° is cal-
culated from Theorem 1. We seek {{, A, and B }, such that
Q“/R* from Theorem 2 equals Q°/R°. Introduce K,(q) and
L4 (q) such that

L5 — vL4 & NyKe. (c.1)
Here LS is determined, while L% and K Lare undetermined.

By solving (5.3), we get B and K. Once K is determined,
L% is also determined from (C.1). It is easily verified that the
degrees of L% obtained from (C.1) and (4.12) are consistent.
Multiply both sides of (4.11) with ». Use (5.1) and the expres-
sions (C.1) and (5.3) for VLi and gDK, . This gives

»rBxQ? = vCCy N B — qDA(L% — N«Ky)

yCCxNxB — gDAL; + ANy(q Py — vCxB)

i

vCCy«N«B — vCx AN+ B — qDALS + ANyq™"Py,

8+ Q14.

I

In the last equality, we used (5.2) and (3.10). Since »r = 7 (cf.
4.5)), we get Q¢ = QSA. Canceling the stable factor A, the
filter (4.10) becomes
Q' _QiAN _ o o
R? BA R

APPENDIX D

Exact ESTIMATION OF d(k) AND THE RANK OF R,

Assume that R,, defined by (2.8), has rank 1. Then the vector
e, (k) in (2.7) can be expressed by a column vector M and a
scalar noise source e (k) with variance \, as e, (k) = Me(k),
with R, = MM'.

In transfer function form, with ¢~ 'e(k) £ e(k — 1) and
D(q™") & det (I — Fq™"), (2.7) then gives

Cl(q_l)

s(k) = H(I = Fg™')"'q"'Me(k) & [0y

e(k)

d(k) = Hy(I — Fq™")"'q"'Me(k) & % e(k).
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If the polynomial C, is stable, the filter d(k) = (Cy/C)s(k)
is stable, and provides a perfect estimate of the derivative d (k),
from noise-free measurements of the signal s(k). This is a sim-
ple example of an ‘‘unknown-input observer’’ [38], [39]. Such
observers are generically impossible to construct if the number
of unknown inputs (rank R, in our case) is larger than the num-
ber of measured signals (one in our case, since s (k) is scalar).
However, if the sampling frequency is large, the matrix R, be-
comes (approximately) a rank 1-matrix. This can be seen by
using a series expansion of " in (2.8)

T 7'2
S <I+AT+A2—'+"'>
0 2

2
-BB’<1+A’T+A’2%+ --->d7

R, =

T T
-'SOBB’dT=< O) as T — 0.

The performance degradation due to sampling then becomes
negligible.
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