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The Structure and Design of Realizable
Decision Feedback Equalizers for IIR
Channels with Colored Noise

MIKAEL STERNAD, MEMBER, IEEE, AND ANDERS AHLEN, MEMBER, IEEE

Abstract —A simple algorithm for optimizing decision feedback equal-
izers (DFE) by minimizing the mean-square error (MSE) is presented. A
complex baseb h 1 and correct past decisions are assumed. The
dispersive channel may have infinite impulse response and the noise
may be colored. We consid ptimal realizable (stable and finite-lag
smoothing) forward and feedback filters in discrete time. They are
parameterized as recursive filters. In the special case of transmission
channels with finite impulse response and autoregressive noise, the
minimum MSE can be attained with transversal feedback and forward
filters. In general, the forward part should include a noise-whitening
filter (the inverse noise model). The finite realizations of the filters are
calculated using a polynomial equation approach to the linear quadratic
optimization problem. The equalizer is optimized essentially by solving a
system of linear equations Ax = B, where A contains transfer function
coefficients from the ch 1 and noise model. No calculation of correla-
tions are required with this method. A simple expression for the mini-
mal MSE is presented. The DFE is compared to MSE-optimal linear
recursive equalizers. Expressions for the equalizer in the limiting case of
infinite smoothing lags are also discussed.

a
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I. INTRODUCTION

hen digital data is sent over a noisy communication
channel, intersymbol interference limits the achiev-
able transmission rate. The intersymbol interference be-
comes severe when the symbol rate exceeds the nominal
bandwidth of the channel. This problem also occurs for
example in digital radio communication with multipath
propagation. Equalizers are placed at the receiver to
reconstruct the transmitted sequence [21]. Linear equaliz-
ers are one alternative. They consist of a linear filter in
front of a nonlinear decision element [15], [17), [18]. The
performance attained by linear equalization is often un-
satisfactory. Signal energy may be placed within strongly
attenuated parts of the transmission spectrum. The linear
filter, being an approximate inverse of the channel, can
then only reconstruct the transmitted signal at the ex-
pense of a large noise amplification.
Much higher performance can be attained by nonlinear
equalizers. The best result is achieved by maximum likeli-
hood estimation (MLSE) of entire data sequences. The
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MLSE Viterbi algorithm [16] however becomes pro-
hibitively complex for channels with long impulse re-
sponses. There has been considerable work on modified
MLSE schemes for channels with long or infinite impulse
responses, see [25]-[28]. The goal has been to reduce the
computational complexity, without too much performance
degradation.

The decision feedback equalizer (DFE) is a very simple
symbol-by-symbol detector. For many channels, it attains
almost the same performance as the Viterbi equalizer
[20]. Robustness against phase jitter has been found to be
better for DFE, compared to MLSE {19].

A DFE consists of two linear filters and a decision
nonlinearity (see Fig. 1). Previous symbol estimates are
fed through a linear “feedback filter.” Its output is sub-
tracted from the present estimate, before it enters the
decision module. The subtraction of all intersymbol inter-
ference caused by past symbols can be achieved, if past
decisions were correct. The result is an equalizer that
attains channel inversion with much less noise enhance-
ment than a linear equalizer.

P2 Ev(ef/Ed(e?

Fig. 1. Equalization problem. Transmitted sequence d(t), propagating
through channel and disturbed by noise, yields received sequence
y(1). Decision feedback equalization is used in order to restore d(t).
Stable IIR-feedforward and feedback filters are considered. R =1 and
P =1 correspond to conventional DFE, and Q = 0 to linear recursive
equalizer.

We will discuss the design of realizable filters in dis-
crete time for a DFE. The mean square error (MSE)
criterion is minimized and correct past decisions are as-
sumed. The equalizer uses fixed-lag smoothing, i.e., esti-
mation of symbol d(t — n) based on measurements up to
time ¢. The optimization of DFEs, using the MSE crite-
rion, has been discussed repeatedly for the past 20 years
[2]-[5]. (The zero forcing criterion [2] has been another
design tool.) These works have treated optimization with-
out the constraint of realizability. The results are non-
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1) Solve for the coefficients of the polynomials S,(g~")

and L(g™") in
N 0 i 1 0 ]
e .
ek T d e m L
B R D A e A Y
) PYi i :

L 0 P 0 -7 |
[ 5, W 0
S,
1,;*_: - %. (3.6)
] Lo

2) With {s;} and {/*} obtained from Step 1, perform
the multiplication

KD 0 i 1 0] r 5o W [ () 1
AR : :
To E 1 Sn—k 0
| * = 1
Tsr : ‘YBy Y1 n—k a,
A IR

L 0 Tsr : 0 Ysy L l(’)k - _aﬁa_

(3.7)

yielding the coefficients of the polynomial alg™").
3) Calculate the polynomial Q(g~") from (3.1)

0(¢7")=a(alg™")=v(¢7")- (3.8)

The equivalent equalized channel (from d(¢) to d(t — n|1))
will then be

— gk BNSI _ n lg_

d AM AM
=q"—q*L(q7") (39)
Proof: See Appendix B. O

Remarks: Note that the matrix blocks in (3.6) are
quadratic. If = or y are of order < n — k, zeros are used
to fill up the rows of the blocks in (3.6). The second step
just represents calculation of « from equation (3.3a), with
known S, and L,: 7S, +vyL,=q "**a. The polynomial
L, ,, which is not needed in the filter, will be defined
uniquely. It could be calculated from (3.3b).

With small modifications, the same calculations can be
used for nonwhite data sequences. Let d(¢) be modeled
by d(t)=C(g~"e(t), where e(r) is white and C(g™") is
monic and stable. Such a correlation could be introduced
by channel coding or by the use of controlled intersymbol
interference. The factor p is redefined as E|v(1)|®/
E|e(£)|%. It can then be shown that P = MAC, a = MAC
+ ¢~ 'Q and 7 = NBC, inserted in the previous equations,
give an optimal equalizer. The restriction that C is stable
is important. Note that C would be a factor of the

feedback denominator P.

An important question is if a unique solution to (3.6)
can always be found without any restrictions on, for
example, the coprimeness of 7(g ") and y(g™").

Theorem 3: Let the leading coefficient of B be b, # 0.
Then, (3.6) will always have a unique solution, (S}, L,).

Proof: See Appendix C. m]

Remarks: When both |b,| =|7,| and p are small, the
system (3.6) may be badly conditioned. If 7= BN and
y = AM contain common factors, the optimal feedback
filter, calculated from (3.2) and Theorem 2, will also
contain these (stable) common factors.! Such factors can
be cancelled before implementation. Hence, the remark
about coprime factors in the formulation of Theorem 1.

Summing up, one can conclude that an equalizer can be
calculated using (3.2) and (3.6)-(3.8) (Theorem 2). This
procedure always works (Theorem 3). The resulting
equalizer is MSE-optimal (Theorem 1). The minimal cri-
terion value, assuming correct past decisions, is given by
(3.5).

When considering its possible use as part of an adap-
tive equalizer, a drawback of the algorithm presented in
Theorem 2 is that the order of the linear system, 2(n — k
+1), is unnecessarily large. (There would, however, be no
need to recalculate the equalizer for every sample.) By
combining equation (3.6) with (3.9), it becomes evident
that we actually need to solve a linear system of only half
this size. The required number of multiplications is then
reduced by a factor of 34 for typical values of n.

Let {h,}; be the impulse response of 7(¢~")/y(q™"):

(') Bla")N(a™') _ S g
y(g7') A(gIM(¢7") [Ty
Equation (3.9) provides a relation between S, L, and the

impulse response of the equalized channel

(3.10)

Ceq, hy 0 So 0 Lk
Ceq,, hn -k h() Sn—k (1) l(>)k
(3.11)

Substitution of {{*} from (3.11) into the lower blocks of
(3.6) results in the following linear system of order n —k
+1

P PV T Tk
R b R
0 p 0 T
hy 0 So Tk
e ={ (3.12)
h,_, - hy Sn—k i

!Factors common to 7 and y must also be factors of «, according to
(3.3a). From (3.8) it is evident that they then also are factors of Q. Thus,
they will be common factors in the transfer function Q /P =Q /7.




850

white, zero-mean sequence with equally probable values
{-m+1,---,—1,+1,---,m—1). In other modulation
schemes, such as QAM, the model coefficients and signals
in (2.1) are complex-valued. Define

X2 E(DP,  p2 El(0)/Eld(1)]. (2.2)

The data sequence d(¢) is to be reconstructed from
measurements of y(¢). As an estimator, introduce the
following general IIR decision feedback equalizer
(GDFE):

N S(q~! -1 -
d(t—njt) =R((+_I;y(t) - “'%((Z—l))—d(t—n).

forward filter feedback filter

(2.3)

n is the number of lags (smoothing lag) and d(t — n) is
decisioned data, for example, sign(d(s — n)) when PAM is
used with m =2 (see Fig. 1). The denominator polynomi-
als R(g™") and P(g~"') are assumed to be monic, and
required to be stable. The sampling rate is assumed to
equal the symbol rate. (Fractionally-spaced equalizers are
not considered in this paper.) If d(¢) is complex-valued,
the coefficients of the filters must be complex.

Given a received sequence y(¢), a model (2.1), (2.2) and
a smoothing lag n >k, the problem treated is to find
polynomials (S, R,Q, P) that minimize the mean-square
estimation error (mse):

E\z(t=n)? 2 Eld(t —n)~d(t —njt)]2.  (2.4)

Because of the presence of a nonlinear decision circuit,
it is impossible to get closed-form expressions for an
optimal estimator. As in most previous treatments of the
DFE problem, we will simplify the problem by assuming
correct past decisions. This transforms the problem into a
linear quadratic optimization problem, as shown in Fig. 2.

H G I

[ Q]
Plg) . <
+')~ 2t n)
— - -
&)
Fig. 2. Equalization problem. Provided past decisions are correct,
g q P p

structure in Fig. 1 can be transformed to this equivalent structure,
where the decision nonlinearity is no longer present.

III.  THE OpriMAL IIR-DECIsioN FEEDBACK
EouaLizer

We make the following definitions. Let pj* denote a
complex conjugate of the polynomial coefficient p;
Define, for any polynomial P(g~') = p, + pq!
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+ .- +p5pq‘5l”
Py 2 p§+pia+ - +pha™
P2 P, =pt +pt _1q "+ +piqor.

When appropriate, the complex variable z is substi-
tuted for the forward shift operator g. Polynomials P(q~ ")
are called stable if all zeros of P(z~') are located in
|z| <1. For convenience, the polynomial arguments will
often be omitted. We introduce the following polynomi-
als:

'r(q_')éBN=TO+qu_'+ +‘r§,q_‘§"
(@) EAM =1+ y,g7" + - + 5,47
ar(q_')éy+q_'Q=l+ath‘l + o +agg7% (3.1)

Theorem 1: Assume the received data to be accurately
described by (2.1) and (2.2). The general DFE (2.3) then
attains the global minimum of (2.4) if and only if the
filters S/R and Q /P have the same coprime factors as

s SN
R M
e_9

P AM

where S, and Q, together with polynomials L, and L,,
satisfy the two coupled polynomial equations

(32)

a=q"_k1'Sl+‘yL1* (3.3a)
qL2*=—p-y*Sl+q""+k'r*L1* (3-3b)
with polynomial degrees
68,=6L,=n—k
8Q =6L,=max(dy,87)—1. (3.4)
The minimal mean-square estimation error is
Elz(1)%n = —2/\—7;:?2|=1L1L] * T PSS 4 ‘g
n—k
=’\,1( >z Ilj|2+P|Sjlz)- (3.5)
j=0
Proof: See Appendix A. O

Remark: Note that (3.3) represents two polynomial
equations in both g and ¢~ !, containing four unknown
polynomials (S,(¢™"),0(¢™"), L, (q), L, ,(q)). The de-
grees (3.4) are derived from the constraint that the vari-
ables should cover the maximal occurring power of g~!
and ¢ in (3.3). With higher degrees, the superfluous
coefficients will be zero. With lower degrees, no solution
can be found.

An explicit solution to (3.3) is given by the following
result.

Theorem 2: S;, L, and Q calculated in the following
way provide the unique solution to the polynomial equa-
tions (3.3).
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1) Solve for the coefficients of the polynomials S, (¢g~")

and L(g™")in
BN 0 E 1 0
LN ..
Tk o To e L
R S e N Y
PYTF | :
| 0 PO ~ i
[ sy 0
sn.—k 1
|~ o O
1 0

2) With {s;} and {I/}} obtained from Step 1, perform
the multiplication

- =

T 0 1 0 - i
o o 0] [ O]
g : :
To b 1 Sn—k
[ = 1
Tsr | Ysy Y1 ik a,
! S
. o : 8 :
i 0 Tor | 0 Yoy | L I3 1 | @

(3.7)
yielding the coefficients of the polynomial alg™".
3) Calculate the polynomial Q(g~"') from (3.1)

(a7 ") =a(a(a")~v(a7")). (338)
The equivalent equalized channel (from d(r) to dt — n|t))
will then be

BNS Q
. ! o —n—=1_=
Co=a" 7y AM
=g "—q *L,(q7"). (3.9)
Proof: See Appendix B. g

Remarks: Note that the matrix blocks in (3.6) are
quadratic. If 7 or y are of order <n — k, zeros are used
to fill up the rows of the blocks in (3.6). The second step
just represents calculation of a from equation (3.3a), with
known S; and L: 7§, +yL,=q " "*a. The polynomial
L, ,, which is not needed in the filter, will be defined
uniquely. It could be calculated from (3.3b).

With small modifications, the same calculations can be
used for nonwhite data sequences. Let d(¢) be modeled
by d(1) = C(g~"e(t), where e(t) is white and Cg™"is
monic and stable. Such a correlation could be introduced
by channel coding or by the use of controlled intersymbol
interference. The factor p is redefined as E[v(1)*/
Ele(t)]?. 1t can then be shown that P = MAC, a = MAC
+ ¢~ 'Q and 7 = NBC, inserted in the previous equations,
give an optimal equalizer. The restriction that C is stable
is important. Note that C would be a factor of the

feedback denominator P.

An important question is if a unique solution to (3.6)
can always be found without any restrictions on, for
example, the coprimeness of (g~ ") and y(g™").

Theorem 3: Let the leading coefficient of B be l?l’ #0.
Then, (3.6) will always have a unique solution, (S, L ).

Proof: See Appendix C. O

Remarks: When both |b,|=|7,| and p are small, the
system (3.6) may be badly conditioned. If 7= BN and
v = AM contain common factors, the optimal feedback
filter, calculated from (3.2) and Theorem 2, will also
contain these (stable) common factors.! Such factors can
be cancelled before implementation. Hence, the remark
about coprime factors in the formulation of Theorem 1.

Summing up, one can conclude that an equalizer can be
calculated using (3.2) and (3.6)-(3.8) (Theorem 2). This
procedure always works (Theorem 3). The resulting
equalizer is MSE-optimal (Theorem 1). The minimal cri-
terion value, assuming correct past decisions, is given by
(3.5).

When considering its possible use as part of an adap-
tive equalizer, a drawback of the algorithm presented in
Theorem 2 is that the order of the linear system, 2n—k
+1), is unnecessarily large. (There would, however, be no
need to recalculate the equalizer for every sample.) By
combining equation (3.6) with (3.9), it becomes evident
that we actually need to solve a linear system of only half
this size. The required number of multiplications is then
reduced by a factor of 3—4 for typical values of n.

Let {A,}; be the impulse response of 7(g~")/y(g™"):

(e BN &
T A M) S

i=0
Equation (3.9) provides a relation between S,, L, and the
impulse response of the equalized channel

(3.10)

chk hg 0 So 0 L¥
c. h, no\sae) O i
eq, n—k 0 1 0
(3.11)

Substitution of {/*} from (3.11) into the lower blocks of
(3.6) results in the following linear system of order n—k

+1
po ey [ Tk
I b :
0 p 0 TF
hy 0 So Tak
: - = (3.12)
hy_p 0 hy | \Sn—x ¢

!Factors common to 7 and y must also be factors of a, according to
(3.3a). From (3.8) it is evident that they then also are factors of Q. Thus,
they will be common factors in the transfer function Q/P=Q/v.
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TABLE 1
Tue DFE OPTIMIZATION ALGORITHM®

Approximate Number
of Multiplications

1) Compute the Markov parameters {h}} ~*. 2NS8Q
2) Form the matrix in (3.12). NP +IN2
3) Solve (3.12) for S,. N7 4N
4) Using §,, calculate L, from (3.11). IN?

5) The lower part of (3.7) gives a. N&Q

6) Q is obtained from (3.8),
and the filters (3.2) are used.

IN*+3IN?+3NsQ

“With an indication of the computational complexity of each step.
The number N £ 51—k +1=6S,+1 can often be chosen rather small
(see e.g., the example in Section VI).

A complete algorithm based on (3.12) is summarized in
Table 1.

The properties of the optimal DFE are emphasized in
some more detail next.

1) Itis efficient to whiten the noise. The forward filter
§/R contains the inverse noise description in cas-
cade with a transversal filter S, of order n—k. A
consequence of this is that any continuous-time
receiver filter that colors the noise will be spec-
trally eliminated by the DFE forward filter. After
noise inversion, we have to equalize a channel
q *r/y=q"*BN/AM, cf. (3.10). Therefore, the
polynomials S,, Q, and P are determined exclu-
sively by the polynomials 7 and v, not by their
separate factors 4, B, M, and N.

2) A conventional DFE-structure (transversal filters
both in the forward and backward links) is optimal
if and only if M=1, A=1. In other words, the
channel must be adequately described by a
transversal filter, and the noise statistics by an
autoregressive process. '

3) The solution given in Theorem 1 provides us with
an optimal filter structure and optimal polynomial
degrees. Hence, unnecessary overparametrization is
avoided. It also gives guidelines on how to choose
filter degrees in a conventional DFE-structure. The
number of smoothing lags # is a user choice. It may
often be chosen rather small (yet n> k), see the
example in Section VI. Usually, n should be chosen
greater than or equal to the channel bulk delay, so
that the major part of the received impulse energy,
caused by d(t —n), can be used by the filter at
time .

4) If the impulse response of the channel decays slowly
(zeros of A close to the unit circle), the use of
P =1y will effectively reduce the number of re-
quired feedback filter parameters, compared to the
use of a transversal filter approximation. In most
situations, this reduces the filter complexity. (An
exception is when binary real data are used: in a
transversal filter, no multiplications are then re-
quired.)
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5) In the noise-free case (p = 0), the structure of an
optimal DFE can be interpreted in the following
way: replacing the decision module with unity, a
filter that is the inverse of the channel is obtained.
This is easily seen from (3.3). With p =0, we have
L= L, =0 that gives « = q" *15,. Regarding the
forward and feedback links as a closed loop system,
we obtain the transfer function (cf. Fig. 1)

sp SNA  S,NA
R(P+q'Q) a« q *nBs, 1

—(n—k)ﬁ

B

As a consequence, E|[z(1))? = 0.

6) In (3.5), the first term L, L,, is caused by residual
intersymbol interference from the first n — k taps
of the equalized channel (A,Z7Zf|1|%). It is also
caused by the deviation of the reference tap (at
time index n — k) from 1 (A,]/,]%), see (3.9). As in
all DFE’s, the equalized channel impulse response
beyond time index n — k is canceled completely by
the feedback filter. The tails of past digits thus do
not affect the present decision. The second term in
(3.5) 5,5, , represents noise transmission.

Instead of the mse criterion (2.4), the zero-forcing
criterion [1], [2), has occasionally been used. Inter-
symbol interference is then eliminated (L, = 0), at
the price of higher noise transmission, compared to
mse optimized forward filters. In our formalism, a
zero-forcing equalizer is obtained by setting L, =0
in (3.3). Just solve (3.3a) with L,=0, ie., v=
q" %S, —q7'Q, with respect to S(g™") and
0(g~"). The most relevant criterion would be mini-
mum probability of error (MPE), which leads to a
nonlinear optimization problem. Monsen [3] has
concluded that consideration of MPE and mse lead
to essentially the same bit error probability.

7) The denominator polynomials R and P are stable
by construction, since 4 and M are stable. (In an
adaptiveAalgorithAm, stability of the estimates 4 and
M, or R and P, would be required. This could
however easily be handled by stability monitoring
in an identification algorithm.)

In decision feedback equalizers, a single incorrect deci-
sion can result in a long burst of errors. For many
channels, the resulting increase in error probability is
small. The effect is severe if feedback filters have long
impulse responses; in our case, if y = AM has zeros close
to the unit circle. Considerable effort has been spent on
deriving bounds on the error probability, including such
error bursts [1], [6], [7]. Tradeoffs that reduce error burst
lengths have been suggested [9], [10)]. Instead of calculat-
ing the statistics of error bursts, one may think of ways to
eliminate them. One way of doing this is by means of an
estimate of the estimation error 2(r — n)2 d(z — n)—
d(t — n), cf. Fig. 1. Assume that a delay between a prelim-
inary soft decision, and a final hard decision is accept-
able. Furthermore, assume PAM binary data (m = 2) and
a low noise level. (Large m and/or high noise levels
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would reduce the effectivity of the scheme.) Normally, |Z|
will then be small, compared to |d|. If |Z| suddenly be-
comes large on several consecutive samples, a burst of
errors has probably started. If so, reset the states of the
filters, change the value of the bit at the beginning of the
suspected error burst and repeat the filtering. Recently,
Dahlman and Gudmundsson [11] tested a simple error
burst supression algorithm by means of simulations. They
found that the error bursts were reduced substantially.

IV. AN OprimAL LINEAR FEEDBACK EQUALIZER

In this section, we will discuss linear recursive equaliz-
ers, also called linear feedback equalizers (LFE). This
means that only the forward filter is used in (2.3). Linear
estimators of d(¢), which minimize the MSE criterion, are
also known as deconvolution filters or Kalman equalizers.
Equalizers for FIR channels with white noise are well
known [8], [17], [18].

In [12] a new linear deconvolution filter was derived for
real-valued signals. It minimizes the MSE criterion with
respect to (S, R) for the general channel structure de-
scribed in (2.1). It can also handle correlated input se-
quences d(¢). For digital data, the output from this filter
could be entered into a decision module.

For a white data sequence, the optimal filter is given by

d(tlt+n) = %,—;yu +n)
~ L Sa™")N(g ) A(q™")
=q Bla ) y(t) (4.1)

where B(g~!) is the stable monic solution to a spectral

factorization equation
BBy =TT+ +pYYs (r is a scalar) (4.2)

and S,(g7"), together with a polynomial L,(q), is the
solution of the linear polynomial equation
CI—"+kT*=rB*Sl+qL* (4.3)

with polynomial degrees

88, =n—k, SL=max(6r—n+k,88)—1. (4.4)
The minimal estimation error is given by
Ay LL,+pyy, dz
Elz(Dln =5 ———. (45)
2aj 221 BB«

Readers interested in the derivations of these results are
referred to [12], [13].

The linear equalizer may be compared to the DFE
from the previous section.

¢ Linear equalizers are a special case of the general
DFE-structure (Q = 0). Thus, a correctly tuned gen-
eral DFE is never inferior to a linear equalizer, if
correct past decisions can be assumed. In the limit
n — o, it can be shown that their MSE is equal only if
there is no intersymbol interference {4].

853

e The LFE consists of a signal whitening filter AN /f3
(the inverse of an innovations model of y(z)) in
cascade with a FIR-filter S,. As forward part of the
DFE, we have a noise whitening filter N/M in cas-
cade with a FIR-filter. Computation of a spectral
factor 8 is not needed for designing the DFE.

« If the channel is low-pass, the LFE will be a high-pass
filter. Note, in particular, that A(g ") is a numerator
factor in (4.1). For channels with deep in-band nulls,
the LFE-transfer function has strong resonances, if p
is small. Consequently, noise is amplified. This ex-
plains the well-known unsatisfactory performance of
linear equalizers in many applications [15]. With deci-
sion feedback, the forward filter needs not to be an
inverse filter. Instead, the inverse effect is handled by
the feedback loop. This results in a lower noise
amplification. A small reduction of the mse means a
large reduction of the bit error rate for Gaussian
distributed noise. The consequence is often a drasti-
cally reduced error probability in DFE’s, compared to
LFE’s.

V. THE ASYMPTOTIC STRUCTURE OF EQUALIZERS
wITH LARGE SMOOTHING LAGS

Some asymptotic expressions, valid when the smoothing
lag n—, will be derived. Such nonrealizable filters
correspond to noncausal Wiener filters. The expressions
are of interest when comparing our solution to the non-
causal filters derived in, for example, [2]-[5].

_ Theorem 4: When n —c, the linear equalizer “4.1),
d(1)=(S /R)y(t + n), approaches the following filter

x

S\ s S
(R)LFE’n'i"xq R

B.N,NA
=q* (5.1a)
BB, NN, + pAA, MM,
B 1
— gk *
-0t B | (5.1b)
a4,  PNN,

Proof: The expressions constitute a noncausal Wiener
filter. They can be derived easily from the standard Wiener
filter formula ®,, /&, , where ®,, is the cross spectral
density between d and y, and &, is the spectral density
of y.

As an alternative proof, it can be noted, in the same
way as in Appendix D, that L,(g)— 0 as n —«. Equa-
tion (4.3) then reduces to g7, =rB,(q"S)), .. The
impulse response of q"S,(q”"') thus approaches that of
q*7.,.(q)/rB (q) as n — . Substitution of this expression
into (4.1) and the use of (4.2) gives (5.1a). ]

Theorem 5: When n — oo, the forward part of the gen-
eral decision feedback equalizer approaches the following
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filter

S\~ A S
(—) £ lim ¢"—
RJpre n-=" R

.
(7). [rE) e
N kN Txd kN Ty sob
“wos, T, O

where Q /P = Q /AM is the feedback filter, « is defined
by (3.1), rBB, by (4.2) and (S/R), . is the asymptotic
linear equalizer discussed in Theorem 4.

Proof: See Appendix D. m]

The connection (5.2a) between the asymptotic expres-
sions for the DFE forward filter and the linear equalizer
has been derived previously for continuous time channel
models (2], [S]. Note that this connection is an approxi-
mate one for realizable filters. It does not hold exactly for
n<e, In the limit n—o, a(g~')=p(g~"). Thus, the
limiting expression of the DFE feedback polynomial
Qg™ is, cf. 3.8), 0(g™ ) =q(Blg™")— y(g~ ).

The expression g*B,(q)/A,(g) in (5.1b) is called a
matched filter. It represents a noncausal impulse response,
time reversed with respect to that of a received isolated
single pulse (g “B(g™")/A(g=")d(1), 1t is, of course,
nonrealizable when A(g~")#1.

Many workers, who have discussed optimization of
equalizers, have used structures that contain continuous-
time filters matched to the received pulse [2]-[S], [15].
The expressions (5.1b) and (5.2a) confirm that optimal
linear equalizers and DFE forward filters can be ex-
pressed in this way, in the limit n —», These formulas
contain the product of a filter matched to an equivalent
discrete-time channel model and an additional filter.
There do, however, exist alternative expressions, which do
not contain any matched filter, as is indicated by (5.1a)
and (5.2b).

The structure with a matched filter in cascade with
another filter is optimal only in the limit n —. The
expressions (3.2)—(3.3) and (4.1)-(4.3) for the calculation
of realizable DFE’s and LFE’s do not contain any
“matched filters.” This is not surprising, since the con-
straint of realizability (stability and a finite smoothing lag
n) excludes such expressions from the filter structure.

VI. A NuMmEericaL EXAMPLE

Consider the following channel and noise description,
with real coefficients:

B(q™')=0.407+0.815¢ "' +0.407¢ 2,
M{qg')=1-08g""
A(g™)=N(g")=1, Ed(1)’=1, Ev(t)*=p.

The disturbance v(¢) is zero-mean and Gaussian. The
data sequence consists of real antipodal binary pulses
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(m=2). B(qg™") is a well-known channel model given, for
example, in [15]. We also assume a moderately colored
noise described by M(q~"). In Fig. 3, we compare the
probability of error for the linear feedback equalizer
(LFE), the general decision feedback equalizer (GDFE)
introduced in Section II1 and a conventional decision
feedback equalizer (DFE). For the DFE, the transversal
filters have degrees determined from the condition (3.4)
as if the noise were white. For comparison, the result
when using the DFE’s on the channel with white noise is
also shown.?

probability ot error

signal-to-noise ratio (dB)

Fig. 3. Bit-error rates as function of signal-to-noise ratio for different
equalizers. SNR is defined as Es(t)’/Ef(1)*. (w) GDFE and DFE
when the additive noise is white. (1) LFE, n = 10 (12 forward parame-
ters), (2) DFE, n =10 (11 forward, 2 feedback taps), (3) GDFE, n =10
(12 forward, 3 feedback parameters), (4) GDFE, n =2 (4 forward, 3
feedback parameters).

From Fig. 3, it is apparent that if a colored noise is
present, it is advantageous to take this information into
account. The general DFE does this in a superior way,
compared to the conventional DFE. By increasing the
number of taps, the impulse responses of the transversal
filters in the DFE could be made to approach those of the
recursive filters in the GDFE. The price to be paid for
this would, of course, be a higher number of parameters.

The optimal LFE will, in this case, not be able to
compete at all. This is often the case, as has been noted
in, for example, [2], [15], [23]. Since the zeros are close to
the unit circle, the LFE performs poorly even if large
smoothing lags n > 10 are used. For the GDFE however,
comparison of (3), n =10, with (4), n = 2, indicates that a
good performance can be achieved with a very small
number of filter parameters. Choosing n of the same
order as the channel bulk delay seems appropriate. (If the

*The bit error for DFE’s in Fig. 3 was calculated under the assump-
tion of correct past decisions, i.e., no error bursts. For a given bias, due
to intersymbol interference in the imperfectly equalized channel, the
probability of error due to the Gaussian noise was calculated. Summa-
tion over all possible bit patterns in the equivalent equalized channel
transfer function (3.9) gave the bit-error rate. (The curve corresponding
to (w) in [15, p. 386], obtained by simulation, gives a somewhat lower
error rate than ours, which is obtained by direct calculation.)
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channel impulse response has a long significant tail, n
should be chosen larger.)

Let us finally illustrate the calculations in Theorem 2 in
the case of n =1 (one lag smoothing) and p = 0.061. With
7= B and y = M, (3.6) becomes

0.407 0o 1 0 S0 0
0815 0407 | -08 1 5, 1
0.061  —0.04887 —0.407 —o0815||7, |~ |0

0 0061 ( 0 —0.407 | | 4, 0
I
giving

S,(q7")=0.5322+0.7056q '
L(g™")=0.1058-0.2166q .

(Alternatively, (3.12) and (3.11) could have been used.)
The multiplication (3.7) results in a(g~")=1+0.7071g "
+0.2872¢ % and (3.8) gives

(g ) =q(alg™")—M(g")) =1.5071+0.2872q".
Thus, with N =1 and A4 =1, the optimal general DFE is
given by
(0.5322+0.7056q ")

t

(1.5071+0.2872q-‘)d~ )
1-0.8g"" (£=2).

d(t—1)t) =

The minimal mse becomes 0.106. The equalized channel
(from d(¢) to d(t —1|t)) is, cf. (3.9):

g '-L,(qg7")=0.2166+0.8942q .

VII. CoNcLUSIONS

An explicit solution to the problem of optimizing deci-
sion feedback equalizers has been discussed. An approach
based on polynomial equations has been introduced. For
a channel with infinite impulse response and colored
measurement noise, mse-optimal realizable (stable and
finite smoothing lag) filters were presented. Correct past
decisions were assumed. The structure and degree of the
optimal forward and feedback filters are evident from the
solution. In general, the filters are of recursive (IIR)-type.
For transmission channels with finite impulse response
and autoregressive noise, the minimum mean square er-
ror can, however, be attained with transversal feedback
and forward filters. When the noise is nonwhite, it is
optimal to include a noise-whitening filter (the inverse
noise model) in cascade with a transversal filter as the
forward part.

Optimal filters can be calculated in a very simple way,
essentially by solving a system of linear equations Ax = B,
where A contains transfer function coefficients from the
channel and noise models. A simple expression for the
minimal mse has also been presented. The DFE has been
compared to the optimal linear recursive equalizer dis-
cussed more extensively in [12].

The optimal DFE does not contain any nonrealizable
“matched filter.” Optimization under the constraint of
realizability excludes the presence of matched filters for
finite smoothing lags n. We have discussed the filter
design exclusively in discrete time. The combined opti-
mization of continuous-time receiver filters (before
sampling) and the discrete-time parts of the DFE is a
problem for further research. (We do not believe that
continuous-time matched filters will be part of such de-
signs, if realizability is required.)

The presented solution is, by itself, a tool for theoreti-
cal investigation. Research is currently under way to in-
vestigate if it can also be used as the central part of an
adaptive equalizer. Such an algorithm would require the
estimation of A, B, M, and N from output data {y(s)}
and known training sequences {d(¢)}. Between the train-
ing periods, the channel parameters may need to be
tracked. A successful adaptive deconvolution algorithm
has been developed along these lines [29]. The identifia-
bility properties of channel and noise models from output
data only have been investigated [30]. The need to use
higher-order statistics to track nonminimum phase chan-
nels is another issue. (Interestingly, for typical mobile
radio channels, it may be possible to track the channel
variations without using higher-order statistics. This is
under current investigation.) An indirect, channel-model
based, adaptation would eliminate the problem of estima-
tor divergence due to catastrophic error propagation. This
is a risk, when decision directed adaption is used in
DFE’s. It would also reduce the number of parameters
that need to be adapted; the number of filter parameters
is mostly larger than the number of channel and noise
model parameters.

APPENDIX
A. Proof of Theorem 1

The expressions (3.2) and (3.3) were originally derived by
differentiating the criterion (2.4) with respect to the coefficients
of S, R, Q, and P. Here, it will just be verified that (3.2) and
(3.3) must be satisfied by an optimal solution. First, we show
that (3.2) and (3.3) imply an estimation error given by (3.5).
Secondly, it is shown that (3.5) is the minimal value, and that it
is attained only when (3.2) and (3.3) are satisfied.

Using (2.1), (2.3), and (2.4), the estimation error becomes (cf.
Fig. 2)

(ARPN - ¢" ¥BPSN+ ¢~ 'QARN)d(1) - ¢"SMAu(t)
ARPN ’

z(t) =
(A1)

With the filters (3.2), possible unstable factors of N will be
canceled by $=S,N. Since A, R, and P are stable, z(¢) will
thus be stationary and Parseval’s formula can be used to express
its variance.

Consider two complex-valued signals x(2)=G(g ™ "e(r) and
w(t)= H(q "e(t) = Xjh,e(t — j), where e(t) is white noise. If
we write Parscvals relation for complex signals [31] in the




856

stochastic case, a cross correlation can, in our notation, be
expressed as

Ex(t)w(t)"

A, dz
= G(z YH*(z*)—
zm-9.52.:1 (27 H*(27)

=— G(z ") (hy+hz*+h z*2+~~~)"‘E
2w P oty 2 2
A dz

- € =1 * * 2, ...
277']?4:16(2 )(ho thiz+hiz*+ )Z

A, G(z"YH.( )dz
_27j?z|=l (z ()

This is why the conjugate polynomials P, defined in the begin-
ning of Section 111, are of use.

We now use this relation, and the assumption that d(s) and
v(t) are zero-mean and mutually independent. With (2.2) and
§=8/N.R=M,P =AM from (3.2), we get
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the aid of (3.2), (3.3), (A.1), and (A.4), it can be expressed as
7§, Qo
2Ez2()w(t)*=2E|{1—g" F— 441 = d(t)—q"S,e(t)
Y Y .

,G( B M F I«
o g [ Gaw s ew] - 40|

=2E[Ll* d(t){(q"*"%g—q“;)d(t)}*

- qnsly(t){qn/x—gu(t)}*}

In the first equality, a slightly rewritten (A.1) was used, and in
the last equality equation (3.3a) was applied. There, L, ,(g)d(t)
represents g~ "*¥L,,q" *d(t)=L(q ") d(t + n — k). Parse-

Elz(1)]? = -~

A
2_77'].?21:]

The use of (3.3a) transforms this expression into (3.5). Next, it
will be shown that (3.5) is the minimal value.

Let an arbitrary estimate of d(t), assuming correct past deci-
sions, be written

. N o
d(t|t+n)=Ey(t+n)fq"Fd(t)+w(t) (A2)

where (S, R, Q, P) are determined as in Theorem 1 and w(r) is
an arbitrary additional signal. It is allowed to be a sum of linear
combinations of received signals y up to time ¢ + n and correct
past decisions d =d up to time ¢ —1. It will be demonstrated
that w(¢) =0 is the optimal choice.

Let z(¢) be the estimation error when Theorem 1 is satisfied
(w(£)=0). Using (A.2), the estimation error variance is then
given by

1N
lim — Y E|d(¢)—d()t + n)]?
Jm N T B = d(e+ )]

1 N
= lim — ¥ Elz(1)? - Ez(t)w(1)*

t=1

—Ew(6)2t* + Ejw(t)?. (A3)

If w(t) is nonstationary, the ensemble means would change with
time, and the criterion could be undefined. Assume w(¢) to be
stationary. It can then be expressed as

G =1 -1
w(t)= q”ﬁ_,;y(t)— q“%d(t) (A4)

where H and T are restricted to be stable and G cancels
possible unstable factors of N, so that the transfer function from
v(r) to w(t) is stable.

We now demonstrate that the mixed terms in (A.3) vanish,
Due to symmetry, it is sufficient to consider Ez(1)w*(¢). With

(‘y-Z"ikTsl + Z‘IQ)('Y* - z"’""r*S]* +ZQ*) dz
YV«

Ay dz
+—QpS S, —-
> 2‘“’,'¢p P

vals formula, with z exchanged for g, gives

Ez(t)w(t)*
A ", G F v.Gy \dz
e D b o
7] )z1=1 AN H, T, ANH, | z
=2£¢ (Z_"+k7*L1*—PY*Sl) G, _, E‘_ dz
mj Jz1=1 AN, H, I T, | z
A L G F
=2 L, dz=0. (A5)
7j 2= 1\ ANy H, T,

In the third equality, equation (3.3b) was used. The polynomi-
als A(z™"), H(z™") and T(z~") are assumed stable. They have
all zeros inside the unit circle. Thus, A ,(z), H,(z) and T,(z)
have all zeros outside the unit circle. The same is true for the
poles of G,.(z)/N,(z2), since G is required to cancel all unsta-
ble factors of N. Consequently, the integrand in (A.5) has no
poles inside the unit circle, so the integral will vanish.

With z(¢) and w(¢) stationary and Ez(t)w(t)* = 0, the estima-
tion error (A.3) becomes

Eld(t)—d(elt + n)? = E|lz(t)? + Ew(0)]%. (A.6)

Evidently, it is minimized by choosing w(¢) = 0, since E|w(t)}? is
nonnegative. Any DFE that does not satisfy (3.2) and (3.3)
would, by definition, correspond to w(¢)# 0 in (A.2). No such
equalizer attains the minimal mse. ]

B. Proof of Theorem 2

Multiply (3.3a) by ¢™"** and (3.3b) by —gq %21 =
— g~ ™*¥7, 10 obtain equations in powers of g~ only. This
give

q " a=78+yL,

(B.1)

r, = max {87, 8y} — é+.

—Ly=q "p¥S,—q 7L,

where r, = max {87, 8y} — 8y, and
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Rewrite (B.1) in matrix form

Ty 0 : 0 So 0 ]
. . I .
: : Y1 .
Tor To : 1 Sn—k 1 B2
i Vs, Y1 | a, (B.2)
5 :
0 0 Ts i 5a
L ! 7
[02r, L 0%r, T
2% 0 i - 0 So
Cx % ! w || Sn—k
PY1 PYs, 1 ~Ts, *
o n—k
p oo :
* ! .
pri 1%
0 p 1 0 —To
- likﬁLJ
=| (B.3)
0

A problem with (B.2) and (B.3) is that their right-hand sides
contain unknowns. The vector (sg," ", s,_4, 0¥ 4, -, 1) can,
however, be calculated from a subset of equations with known
right-hand side. The combination of the first n — k + 1 equations
from (B.2) with the last n— k +1 equations from (B.3) is ade-
quate for this purpose. Hence, we get (3.6). The solution to (3.6)
is used in (B.2) to compute a(g~"). (It could also be inserted
into (B.3) to determine L,(¢~").) Using a(q~ ') and the known
Y@ )= A(g""YM(q~"),Q(q™ ") is determined from (3.1). Note
that the leading coefficients of the monic polynomials a(g~!)
and y(g~"') cancel. Thus, Q(g~") is causal.

To prove (3.9), recall Fig. 2. Using (3.1), (3.2), and (3.3a), the
transfer function C,,, from d(z) to dt — n|t), is found to be

a7 0(a7!)
T @ y(a™")

=q7"(1-L,x(a))

=a"-q*L(q7"). O

-n

(O]

C. Proof of Theorem 3
Proceeding from (3.6), define

1 0
Ty 0
ra Ge Y1
Tn—k To :
Yn—k v 1
b2(0,---,0,1)7
02 (595" PR P .J(:)«)T_

857

Thus, (3.6) may be written

T G 0= (b
pG"  —TH 0 )
A
where H denotes the Hermitian transpose. We obtain

detA=det(—T" - pGHT"'G) detT
= —det(T"T + pG"T 'GT)
= —det(THT + pG"G).

In the last equality, we have used the fact that the Toeplitz
matrices T and G commute. Since GYG is always positive
definite, and THT is positive definite whenever b,=r7,+
0,pG"G + THT will be positive definite since p > 0. Thus, it
follows that pG”G + THT is nonsingular. Consequently, det 4
# 0 and (3.6) will always have a unique solution. ]

D. Proof of Theorem 5

First, note that as n —x, less and less information about
d(t — n) is contained in the present measurement y(r) [24].
Thus, the leading coefficients of S(g~') tend to zero as n
increases. This will be true in particular for the first 6L, +1
coefficients. (Note that 8L, +1 = max(8vy,57) does not increase
as n increases.)

Consider the first 8L, +1 equations of (B.2). Since
{s50,"* 85,1 = 0 as n >, it follows that {I¥ -, , 5 }—
0, since the right-hand sides of the equations are zero. Thus, the
leading coefficients of L,(¢g7") (which are the leading coeffi-
cients of the equalized channel impulse response according to
(3.9)) vanish as n — .

Now, consider the polynomial L, in (B.1). According to the
first 8L, +1 equations of (B.3), the coefficients of L, are a
linear combination of (s, s, " *,s5..) and of ([} ., 1% .-,
1%, _s..). Thus, L(g~"') goes to zero as n — . Consequently,
an asymptotic expression for the DFE feedforward filter can be
derived by letting L, — 0 in (B.1).

Multiplying (3.3b) by vy yields

gL,y =—pyy«Si+q "1yl .. (D.1)
Next, multiply (3.3a) by ¢ "**r, to get
g " e =17, q "Ryl . (D.2)

By subtracting (D.1) from (D.2), and considering the limit
n — o, which implies that L, vanishes, the following asymp-
totic expression for the impulse response of g"S(g~"') is ob-
tained

-1
nlipxq”sn(q") = qk%- (D3)
The use of (D.3) in (3.2) gives
(i)" £ lim q"—=q"'ﬁ T+ . (D4)
R/pre n-= R M BB,

On the other hand, by using (5.1a), (4.2) and the definition
a=AM + q~'Q, it is found that

S\” Q S\* (AM+47'Q)

(&)l 3 )= (),

R JLre s Rire AM
(TxNA « N Taa

= —=q"—

BBy AM M BB,

. (D.5)
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The equalities (D.4) and (D.5) together constitute the first
two equations in (5.2). Finally, write (D.3) as

G
B(qa ")’

rB+(q) lim q”fksl(q*')

74(q) n—ox (D-6)

Since the left-hand side of (D.6) is anticausal (it contains only
positive powers of ¢), while the right-hand side is a causal
transfer function, the equality can hold only if a(g™!) = B(g~").
Hence, we have the last equality in (5.2b). ]
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