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Optimal Deconvolution Based on Polynomial
Methods

ANDERS AHLEN anp MIKAEL STERNAD, MEMBER, IEEE

Abstract—The problem of estimating the input to a known linear
system is treated in a shift operator polynomial formulation. The mean
square estimation error is minimized. The input and a colored mea-
surement noise are described by independent ARMA processes. The
filter is calculated by performing a spectral factorization and solving a
polynemial equation. The approach covers input prediction, filtering
and smoothing problems, and the use of prefilters in the quadratic cri-
terion. It also covers nonminimum phase as well as unstable systems.
This is illustrated by two examples. The possible applications range
from seismic signal processing and equalization to numerical
differentiation of noisy signals.

I. INTRODUCTION

HE deconvolution problem is intricate for at least two

reasons: the measurements are usually noise cor-
rupted, and the system is frequency nonminimum phase.
These problems restrict the use of the simplest deconvo-
lution filter, namely, the inverse system. The restrictions
placed on the filter design depend on the application.
There is a wide range of applications, including seismol-
ogy, equalization, and numerical differentiation. See, for
example, [1], [3], [5]-[8], [10], [12], and [14]. The list
can be made much longer for what is the common inter-
est—estimating the input to a linear system.

In this paper, we will approach the deconvolution prob-
lem from a shift operator point of view, seeing it as a
linear quadratic optimization problem. Such problems can
be approached with different methods such as Kalman fil-
tering [18], Wiener filtering [21], or Wiener optimization
of filters with predetermined structure, such as FIR filters
[19]. We do, however, believe that the solution to be pre-
sented here provides important insights not easily ob-
tained with other methods. The proposed algorithm can
be seen as a simple method for constructing realizable dis-
crete time Wiener filters. Compared to Wiener filtering,
we have removed the stability requirements. The results
are equivalent to stationary Kalman filtering. Compared
to a Kalman filtering state-space formulation, the design
calculations are simpler, especially for systems with sig-
nificant time delays and for smoothing problems. Single
channel deconvolution problems in discrete time are con-
sidered.

In Section II, it is assumed that the system and input
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Fig. 1. The input estimation problem. The signal u(¢) is filtered through
a linear system, and corrupted by noise w(r). From a delayed or ad-
vanced measurement y(r — m) of this noisy output, the signal u«(r) is
to be estimated. All models are represented as linear discrete time filters.
Here, e(¢) and »(r) represent either white noise or random spike se-
quences.

models (see Fig. 1) are known a priori, or are correctly
estimated in some way. The input and the measurement
noise are described by independent ARMA processes. The
problem formulation includes both stochastic and deter-
ministic input and disturbance models. Colored measure-
ment noise can be handled as well as nonminimum phase
systems and system time delays. This is important in, e.g.,
seismic applications as well as equalization problems in
telecommunication. In a mean square sense, the optimal
linear input predictor, filter, or smoother is sought. Fitch
and Kurz [23], Deng [7], and Moir [11] have presented
smoothers for the special case of white input, white dis-
turbance, and a stable system. Our solution to the general
problem is presented in Section III. It is calculated by
performing a spectral factorization and solving a polyno-
mial equation. The use of the method for (off-line) filter
design is illustrated in Section IV. Adaptive implemen-
tation is under current investigation.

II. STATEMENT OF THE PROBLEM
Consider a linear stochastic discrete-time system de-
scribed in the backward shift operator form (¢ ~'s(7) =
s(t—1))

B(q™")
= ——u(t — k) + w(r). 2.1
y(1) A(q) (t — k) (1) (2.1)
The unknown input sequence u(t) and the measurement
noise w(t) are assumed to be accurately described by two
ARMA processes

u(t) = % e(t);  w(r) = %T(Zv:'_)) o(1)
No=Ee(t)  No=Eo(1) o =N/

(2.2)
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where e(7) and v(t) are two independent stationary white
and zero mean stochastic sequences.

The polynomials in (2.1) and. (2.2), with degrees na,
nb, etc., are assumed known or correctly estimated.' Ex-
cept for the B(g ") polynomial, which has an arbitrary
but nonzero leading coeflicient, all polynomials are
monic. The system may be unobservable, but it must be
detectable: common factors of the pulse transfer function
from e (1) to y(1), i.e., ¢ *C(q ") B(g")/D(q™ ")
A(q"), must be stable. (Unobservable modes are sta-
ble.)

Given measurements of the output y(r), the problem is
to find a stable time-invariant linear estimator of the input

(¢

a(t|t — my = —= y(t — m) (2.3)
which minimizes the mean square estimation error
Ez(1) 2 E(u(r) — a(t]t = m))  (2.4)

see Fig. 1.

Depending on the sign of m, the estimator will be a
predictor (m > 0), a filter (m = 0), or a fixed lag
smoother (m < 0). The problem formulation includes
output filtering problems (estimation of s(¢) in Fig. 1) as
the special case 4 = B =1,k = 0.

Minimum phase systems (B stable) with an output un-
corrupted by noise ( p = 0) and the use of smoothing with
—m = k constitute the simplest special case. Perfect re-
construction of the input can then be obtained using the
inverse system

A(g™")
B(q™")

a(t|t —m) = y(t + k) =u(r). (2.5)

In general, a solution is needed which handles measure-
ment noise, nonminimum phase systems, arbitrary lags
m, and nonnegative delays k.

Our solution applies also to nonstationary measure-
ments, which can be described as generated by unstable
linear system, disturbance, or input models. A(q "),
N(qil), and D(q_l) are not required to be stable. Dis-
turbance and input models with poles on the unit circle
allow us to include deterministic disturbances and inputs
(steps, ramps, sinusoids) in our stochastic framework. For
example, if the input u(r) is conjectured to change in
steps, the appropriate input model is a sequence of ran-
domly occurring steps, described by u(¢) = u(r — 1) +
e(1). Here, e(t) is a random spike sequence, for exam-
ple, a Bernoulli-Gaussian sequence. For a discussion of
nonstationary ARMA models, such as ARIMA models,
see, e.g., [20].

In order to obtain a convenient notation, we introduce
conjugate polynomials P, and reciprocal polynomials P

'The question of identifiability, i.e., under what conditions it is possible
to separately estimate the polynomials in (2.2) from output data, is dis-
cussed briefly in Section II-E.

as

P=Pl)=1+pz '+

P + ppz "
P,2P(z)=1+pz+ -

+ pnpznp
PL 7T"P, =72" 4+ p,zf""+I + o+ Py

1 1

The complex argument z ~_, substituted for ¢ ~, will often
be omitted. The zeros of D are the zeros of D, reflected
in the unit circle. The stability domain is located inside
lz| = 1.

III. THE OPTIMAL DECONVOLUTION FILTER

Let us introduce the following nonlinear polynomial
equation defining a polynomial 8(z ') and a scalar

188, = CBNC,B,N, + pMADM,A,D,. (3.1)

Equation (3.1) is called a spectral factorization. The
polynomial § is a stable monic polynomial in z ™' with
degree

nc + nb + nn ifo=20

nB =

max {nc + nb + nn, nm + na + nd }
ifp > 0.

For a stable spectral factor 3 to exist when p > 0, it is
necessary and sufficient to assume that the two terms on
the right-hand side of (3.1) have no common factor with
zeros on the unit circle. (In the noise-free case (p = 0,
N = 1) C and B are not allowed to have zeros on the unit
circle.)

A. The Main Result

Theorem 1: Assume the system (2.1), (2.2) to be de-
tectable and a stable spectral factor 8 in (3.1) to exist. An
input estimation filter (2.3) then attains the global mini-
mum value of the estimation error (2.4), under the con-
straint of filter stability, if and only if the filter has the
same coprime factors as

NA
% - Q‘T. (3.2)
Here, Q,(z '1) is, together with L, (z), the solution of
2" T Cy BN C = 1B, Q, + DL, (3.3)
with polynomial degrees
nQ, = max {nc—m — k, nd — 1};
nL = max {nc + nb + nn
+m+knf}—1. (3.4)

The minimal estimation error is given by

Ee(r). = Ne é‘D LL, +pCMAC*M*A*£
w2 J = B8 4
(3.5)
[ |
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Proof: See Appendix. An alternative proof, re-
stricted to stable A, D, and N polynomials, can be found
in [2].

Remarks and Interpretations:

e The Diophantine equation (3.3) is a polynomial
equation in both z and z~ ! It can be transformed into an
equation in z ~' by multiplying both sides with z Bl U
D(z ') has zeros in |z| < 1, the equation will always
have a unique solution. The reason is that D(z") and
$,(z) cannot have common factors, since 7 "B (2) =
B(z ") will be unstable, because 8(z ~1y is strictly stable
by construction. Diophantine equations in general have an
infinite number of solutions [9]. Equation (3.3) is special
in that it has precisely one solution, namely, with poly-
nomial degrees (3.4). It is the fact that Q) must be a poly-
nomial in z ™', while L, should be a polynomial in z which
determines the degrees (3.4). With higher degrees, the
superfluous coetficients would be zgro.

e Compared to a state-space Kalman filtering formu-
lation, cf. [18], [10], [24], equations (3.1) and (3.3) pro-
vide an equivalent, but simpler, solution. The simplicity
is evident in particular when the solutions to smoothing
problems with large —m are compared. The basic reason
for the simplification is that only one state variable,
namely, u (1), needs to be estimated. Compared to *‘Wie-
ner’” optimization FIR filters. the solution above says
much more: it provides the polynomial degrees of an op-
timal linear IIR filter structure.

o If (3.4) assigns the degree —1, the corresponding
polynomial should be set to zero. The meaning of nQ, =
—1 is that filtering is useless.

e The optimal filter (3.2) sometimes contains stable
common factors, as will be illustrated in Example 1;
hence, the remark about coprime factors in Theorem 1.
Common factors do not affect the stationary estimation
error, but they can impair the transient performance. They
should be cancelled before implementation.

» The optimal filter will have zeros in the pole loca-
tions of the measurement noise and of the system, i.e.,
the zeros of N and A. If the system or the noise model
have poles on the unit circle, the optimal filter will have
notches at these frequencies. For example, if the system
is an integrator, the filter will, not surprisingly, contain a
zero at + 1, i.e., a differentiation, c¢f. Example 2. For nu-
merical sensitivity reasons, it is advisable to implement
the filter as

n(t) = Ay(r);  f(1) = Nn(1);
a(r + mit) = (Q,/B8) f(1).

If Q, /8 has high coefficient sensitivity, it can be decom-
posed further into second-order filters.

o If u(t) is generated by an unstable model C/D, y(t)
will in general be nonstationary. (In some applications,
strictly unstable models are useful for describing a signal
in a limited time interval.) In such cases, 4(7) will be a
nonstationary sequence. The estimation error z(#) = u (1)
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— 4(r) will, however, be a stationary zero mean se-
quence with a finite minimal variance given by (3.5). Note
that 8 is strictly stable by construction.

o The filter (3.2) is not robust in the nonstationary case.
If N and/or 4 have unstable zeros, and these zeros are
slightly misplaced in the filter, the filtering error will be
nonstationary, and the criterion (3.5) becomes infinite.
This may, or may not, be a serious problem in practice.
For example, a pure sinusoid disturbance will affect the
estimate markedly, if the notches of the filter are slightly
misplaced. A more robust design places the filter zeros
slightly inside the unit circle. This results in more shal-
low, but broader and less sensitive, notches. Another case
is filtering of a finite and rather short time series. Here, a
drifting stochastic estimation error z(#) may be quite ac-
ceptable, if the drift is sufficiently small.

e When y(1) is stationary, the spectral factor 8 can be
interpreted as the numerator polynomial of an innovations
representation of y(#). For nf3 < 3, there exist simple
analytic expressions for 8. See [13]. For general spectral
factorization algorithms, see, for example, [9]. If CBN
and MAD have almost common factors close to the unit
circle, numerical difficulties may occur in the calculation.
As has been shown in [17], spectral factorization is closely
related to the Riccati equation used in stationary Kalman
filtering.

e When system and disturbance models are stable, and
the input model is an FIR filter (D = 1), the innovations
representation is given by

_ Bg™Y
N(g~')A(g™")

Then, an optimal estimate of the input signal can be ob-
tained by filtering the prediction errors €(t) of the inno-
vation model (3.6). The use of (3.6) in (3.2) gives an FIR
filter

y(1) e(t). (3.6)

a(tle —m) = Qg ") et = m).

The filters of Deng and Moir [7], [11] have been pre-
sented in this form.

¢ An interpretation of (3.5) is to view the minimal es-
timation error z(1)mi, as generated by an ARMA model
with two noise sources

(3.7)

£(1) = = )
Clqg " YyM(g™")A(¢™")
v p LMD A () ()

where €, and e, are mutually independent white noises,
both with variance A, /r. The first part, (L/B)¢;, can be
called the ‘‘avoidable part.’” It is increased by delays k,
unstable B-polynomials, and measurement noise causing
3 to have zeros close to the unit circle. It can, however,
be shown that it vanishes (L — 0) as the smoothing lag
—m goes to infinity. The filter then approaches the non-
causal Wiener filter. The corresponding ‘‘unavoidable’’
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error is described by the last part of (3.8). It vanishes only
for vanishing measurement noise (p — 0). From this
term, it is easy to derive the asymptotic results for white
inputs and disturbances presented by Chi [15].

B. The Use of Frequency Shaping Filters

In cases when certain frequency bands of the input are
of special interest, the criterion (2.4) could be modified.
One possibility is the minimization of

E(u(r) — u(t|t - m))z, Sta_

where #(t) = — =% u(r)

T(q™")
(3.9)

with T(g ') and S(q¢ ") being stable polynomials. (This
is required to preserve detectability.) A low-pass filter
can, for example, be used in (3.9) to smooth the input
estimate by emphasizing its low-frequency components.
Another use of filters is to concentrate the estimation
accuracy into a certain frequency band. The criterion

E<i§3_1; z(z)>2 = E<;EZ:1; (u(r) = a(e]r - m)))z,

(3.10)
with T(g ") stable, can be used for this purpose. Filters
affect the estimator somewhat differently when used in
(3.9) and (3.10). A low-pass filter in (3.10) will, in con-
trast to (3.9), result in an estimate corrupted by much
high-frequency noise, since such noise has little effect on
the filtered signal in (3.10).

Solutions to the problems of minimizing (3.9) and
(3.10) can be derived by straightforward transformations.
The artificial signal % (¢) can be included in the problem
formulation of Fig. 1 as described by Fig. 2. Thus, the
result in Theorem 1 can be applied, with obvious substi-
tutions in (3.1)-(3.4): C(q ') S(g ") is used instead of
C(g™"), T(g™") B(q ") instead of B(q "), etc.

Similarly, the problem (3.10) can be reduced to the one
solved by Theorem 1. See Fig. 3. Corresponding substi-
tutions are to be made in Theorem 1: M(q~') S(g~") is
used instead of M(g "), etc.

Note that the input model also affects the estimation
accuracy. Consider, for example, inputs described by in-
tegrating models, with D(1) = 0. It is then simple to
show from (3.1), (3.2), and (3.3) that static input values
are estimated without error. The static gain from u (1) to
a(t) wilkbe B(1) Q(1) N(1)/B8(1) = 1, for any noise
ratio p.

C. The Noise-Free Case

When no measurement noise is present, the filter de-
nominator polynomial 8 is simple to calculate. Without
loss of generality, we can assume C(z™') to be stable.
Let B = ¢B,B,, where c is a constant and B, is stable and
monic. B, is unstable and in general nonmonic, but B,
must be stable and monic. No zeros are assumed to be
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Fig. 2. Equivalent problem formulation used when a filtered input u =
(S/T)u is to be estimated optimally.
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Fig. 3. Equivalent problem formulation used when the variance of a fil-

tered estimation error (§/7)z is to be minimized.

present on the unit circle. In the noise-free case (p = 0,
M = N = 1), the stable spectral factor is then given by

B=CBB, (r=c?). (3.11)
The optimal filter (3.2) is
) Qg™ ) 4(g™")
= = e Bt ) B ™
(3.12)

Thus, the filter has poles at the stable zeros of the system
and input model. If the system contains nonminimum
phase zeros, the filter will also have poles in their inverse
points with respect to the unit circle. That this should be
the case is a natural consequence of a least squares Wiener
filtering formulation. The polynomial @, is calculated
from (3.3) with N = 1 and 8 = CB,B,:

Zm+kC*CBS*BlI*C = CzC*Bs*Eu*QI + DL,

Since ¢C, B, is a factor of two terms, it must also be a
factor of the third, i.e., of zDL,. Set L = ¢CB,L,. Equa-
tion (3.3) then reduces to

zm+kBu*(Z) C(Z _l)

= B,(2) Qi(z7') + D(z

N Liz) (3.13)

which is to be solved with respect to @, and L,, with
degrees

nQ, = max {nc ~m — k, nd - l}

il

nLy = nL — nc — nb; = nb, — 1 + max {m + k, 0}.

(3.14)

We can conven (3.13) into an equation with polynomial
argument ¢ ~ by multiplying all terms with z "*'~' and
exchanging g ' for z7'. Note that ;™"™B, (z) =
B,(z"). Two cases can be discerned.
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1) m + k > 0 (“‘prediction’’)

B,(g"")C(g™")
=g " *B,(q7")0(qg™") + D(qg" ) Li(qg").
(3.15)
2) m + k < 0 (““smoothing’’)
q"**B.(q7") C(¢™")
=cB(q7") Qi(q™") + D(g"") Li(g™"). (3.16)

In both cases, with corresponding L;, the minimal filter-
ing error (3.5) reduces to

Liq™") o t)}
B,(q7")

e If m + k > 0 and the system is minimum phase (B,
= 1), there is an alternative way of deriving the input
prediction filter (3.12), (3.15). An m + k-step predictor
i(t + m + k|r) could be calculated, assuming u(t) =
(C/D) e(t) to be measurable. Prediction of this ARMA
process involves solving (3.15) with B, = 1. (See, for
example, [16].) The required previous input u(t) is then
replaced by ¢“(A/B) y(t), and we have the filter (3.12).

e If m + k =< 0 and the system is minimum phase, it
is evident from (3.14) and (3.17) that L, = O solves (3.16)
and that z(¢) = 0. Equation (3.16) gives Q,(¢ ') =
g""*C(g™")/c and the filter (3.12) then reduces to the
inverse system (2.5):

q""*Clg™") A(g™")

Ex(1)},, = E[ (3.17)

ﬁ(t|t_m) = cC(q_l)Bs(q_]) y(t_m)
Alg”!
= 25+ k) = ulo).

In this very special case, when neither measurement noise,
unstable inverse systems, nor too large time delays give
any problems, a perfect input reconstruction is attained.

D. Treatment of Some Special Input Sequences

In some applications, the input is somewhat peculiar.
For example, in seismic signal processing, an unfiltered
Bernoulli-Gaussian sequence is found to be a useful model
of the input [10]. This requires some further considera-
tion.

Let a seismic reflectivity sequence be accurately mod-
eled by the random spike sequence

u(t) = r(r) q(r) (3.18)
where ¢(t) is a Bernoulli sequence such that
B {1 w.p. A (3.19)
t) = .
1 0 wp.1—-A

and r(t) is a zero mean Gaussian sequence with variance
¢? independent of g(t). It is then straightforward to show
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{10} that u(r) is a white sequence with zero mean and
variance

Eu(r)’ = o\ (3.20)

Even though the input is not pure Gaussian, we could ap-
ply our formulation as if it was. This would be reasonable
if A were close to 1. Thus, we put C(gq ™~ "Y=D(g"~ =
1 and N> = o2\, and Theorem 1 will at least give us the
best (in a mean square sense) linear time-invariant esti-
mator. Note that if A\ = 1, we will have a white Gaussian
input and p = \./¢”. If, on the other hand, \ is small,
then p will be large. (If A = 0 then p = o.) Even though
this would give an ‘‘optimal’’ linear filter, it would be
completely useless since a large p forces the filter gain to
zero (the Q,-coefficients will be very small). Such a filter
would be unable to detect infrequently occurring spikes.
Instead, p should be used as a design parameter to achieve
a more suitable filter gain. In combination with a thresh-
old device, it is then more likely to detect seldomly oc-
curring spikes. If g (1) is known a priori or accurately
estimated, the input estimate could be improved by forc-
ing the estimate to zero where g () or (1) is zero.

One way to approach spherical divergence may be to
tune p by a priori information or by adaptation. Other
effects due to sensors, cables, filters, and instruments can
be accounted for since the structure allows colored noise.

In digital communication, the input is a sequence of
pulses with a limited number of discrete values. A com-
mon situation is the transmission of a random sequence
of +1 and —1. When transmitting such data over a com-
munication channel, intersymbol interference may occur.
In order to restore the transmitted signal, the channel must
be equalized.

Neglecting modulation and demodulation, an appropri-
ate sampled channel description will fit into our decon-
volution structure, with C(g ") = D(g~') = 1. The in-
put sequence is thus a white zero mean sequence with unit
variance. This description is adequate if the signal is sam-
pled infrequently, compared to the bit rate (one or two
samples per bit), as is mostly the case.

The output from the filter (3.2) could be fed into a de-
cision module, which decides if a +1 or a —1 has been
transmitted. The result would be an optimal linear recur-
sive equalizer. It corresponds to previously studied equal-
izers when A(g ') = 1 and the noise is white [23], [24].
It should, however, be emphasized that the performance
of linear equalizers is inferior to that of ‘*decision feed-
back equalizers’’ [22].

E. Identifiability

The requirement that the polynomials in (2.1) and (2.2)
should be known raises the question: is it possible to es-
timate all the different polynomial coefficients correctly
from output measurements only? This is impossible, since
we have a serial connection between the input model and
the system. With additional a priori information, param-
eter estimation may be possible.
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It has been shown [3], [4] that if the system
B(q ")/A(q™")is known a priori, it is, under mild con-
ditions on the degrees and common factors of the poly-
nomials, possible to estimate the parameters of C, D, M,
and N correctly from output measurements only. This will
also be true if the input model C/D is known instead of
the system B/A.

It is reasonable to assume that one of these blocks is
known in advance.

¢ In seismic applications, the ‘*wavelet’’ (B/A) can
be determined separately.

® In digital communication, the statistics of the
transmitted sequence (C/D) is usually known.

® In numerical differentiation, an approximation of
an nth-order continuous time integrator is used as the
known system B/A.

A limitation of the results in [3] and [4], which depend
on the use of second-order statistics only, is that it is im-
possible to detect nonminimum phase properties of a block
in Fig. 1. In particular, nonminimum phase zeros of
B(z ') cannot be estimated. For this, higher order statis-
tics have to be considered. Otherwise, occurrence of non-
minimum phase behavior must be known a priori.

IV. EXAMPLES

Example 1: A three lag smoothing estimator of the in-
put u(¢) to the following nonminimum phase system:

(1) = ((lljgﬁégqi?)u(t — 1)+ v(r) (4.1)
u(t) = (i+:33:,)e(t) (4.2)

is to be designed. The noise variance ratio is p = A, /\,
= 0.1. The filter denominator is calculated from the spec-
tral factorization (3.1). With M = N = 1, it reduces to

mB(z7") Bu(z) = C(z7") B(z7") Cy(z) By(2)
+ pA(z7") D(z7") 4,(2) Du(2).
The stable solution of
B(z7") By(z) = (1 = 0.527 ) (1 + 2z7")(1 - 0.52)

(1 4+22) +0.1(1 —0.5z7")

(1 =0.927") (1 — 0.52)(1 — 0.92)
is given by
r=4341;  B(z7') = (1 +044z7")(1 - 0.527").

(4.3)

Note that factors common to CB and DA will also be fac-
tors of the filter denominator (3.

The smoothing filter numerator is calculated from the
polynomial equation (3.3)

2 'CyB,C = rB,Q, + DL,

with degrees nQ, = 3 and nL = 1. The use of (4.1), (4.2),
and (4.3) gives

2731 = 0.52)(1 + 22)(1 — 0.5z71)
=4.341(1 + 0.44z)(1 — 0.52)(Qy + Q12"
+ 0277+ 0527+ 2(1 = 0.927") L(2).

Since 1 — 0.5z is a factor of the first two terms, it must
also be a factor of L (z). We can (but are not required
to) factor it out. Let

Ly(z) = L(1 - 0.52).

After removing the factor 1 — 0.5z and multiplying with
z ' to get polynomials in z ! only, we equate for differ-
ent powers of z~'. This results in the following set of
simultaneous equations:

1: F1.91 0 0 0 I B
z ] 4341 191 0 0 -0.9 0,
Fars ) 4341 191 0 0 0,
2710 0 4341 1.91 0 0,
7 Lo 0 0 4341 o _| L.r, _|

- 0 -
0
= 2
0
| -0.5_]
The solution is Q)(z™') = —0.1382 + 0.43867 ' +

0.0507z 7> — 0.1152z *and L, = 0.264.
Thus, the optimal 3-lag smoothing filter

a(r 31 = U );V((:_‘]))A(q’ )y(t)

is, after cancellation of the common factor 1 — 0.5¢ "' in
A and B, given by

a(r — 3|1) = —0.44i(r — 4|t — 1) — 0.1382y(1)
+0.4386y(r — 1) + 0.0507y(r — 2)
= 0.1152y(r — 3). (4.4)

The estimation error standard deviation is 0.26X,.

For nonwhite input signals, the use of a good input
model improves the filtering performance. For example,
if a white input model C/D = 1 were used in the calcu-
lations (because of lack of knowledge about the input sta-
tistics) and the resulting filter were applied to the true sys-
tem (4.1), (4.2), the 3-lag smoothing estimation error
would have a standard deviation of 0.73 \K( compared to
0.26\/); above.

Increasing the smoothing length improves the filtering
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performance. In many problems, performance close to
those of noncausal Wiener filters will, however, be
achieved for rather small smoothing lags. This will be the
case when the zeros of 8 are not close to the unit circle,
as is illustrated for the system (4.1), (4.2) in Table I.

Example 2: In this case, we have the following, rather
difficult, filtering problem:

»(1) T;I_l u(r) + 1

- T =194 % 00aasg2 21"
s(t) + w(t); T, =1 (4.5)

Note that 4 has a pole on the unit circle. The unknown
input is defined by

40=Tj%@jdo p = Ev(1)*/Ee(1)’ = 0.1.

(4.6)

Thus, we are interested in estimating the increments of a
signal s(¢) which is corrupted by a low-frequency dis-
turbance w(t). The disturbance model has poles in 0.95
+ 0.2i. (When u(t) contains mainly low frequencies
compared to the Nyquist frequency, as it does in this case,
u(t) is a reasonable approximation to the derivative of an
underlying continuous time signal, sampled with fre-
quency 1/T;.)

Fig. 4 describes a typical realization. Fig. 5 displays
the input and disturbance spectral densities.

The use of Theorem 1 for the filtering case (m = 0)
gives

B=1-1.8226g""+ 0.8620g7%, @, = 0.7906.

The optimal filter (3.2) is thus given by
a(tlt)

~0.7906(1 — 1.9 " + 0.9425¢ *)(1 — ¢ ")
B 1 — 1.8226¢ " + 0.8620¢ 2

y(1).
(4.7)

It has poles in 0.911 + 0.177i and a static gain from u (¢)
toda(t|r)yof O)N(1)/8(1) = 0.853.

The transfer function magnitude of the filter (4.7) is
given in Fig. 6. Note how the transfer function deviates
from that of a differentiator 1 — ¢ ~' around the frequency
0.2, where the disturbance is concentrated.

The filter (4.7) has poles close to the unit circle which,
together with the zeros from N(g~'), shape the notch
around w = 0.2. It takes about 50 samples for the effect
of initial conditions to decay. The stationary performance
of the filter, after this transient, is exemplified by Fig. 7.

The performance of the filter (4.7) is compared to that
of some other strategies in Table II.

Comparing (1) and (2) in Table II, it is evident that not
much is gained by using smoothing in this example. It is,
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TABLE I
THE FILTERING ERROR STANDARD DEVIATION 6z () FOR
THE PROBLEM (4.1), (4.2), AS A FUNCTION OF THE
PREDICTION LENGTH m

m oz(1)/ve (1)

1 prediction 1.11

0 filtering 0.99
-1 one lag smoother 0.75
-3 3-lag smoother (4.4) 0.26

_5 0.219

—oo  noncausal Wiener filter 0.216
[L =0in (3.5)]
50
25

Al S
OU[\\/\/ \a'\/

0 100 200

t

Fig. 4. 1: The disturbance-corrupted measurement y(r) in Example 2. 2:
The undisturbed signal s(7), whose increments are sought. 3: The dis-
turbance w(t).

0 1 2 3 wl
s

Fig. 5. Spectrum of the input u(7) and the disturbance w(r). The fre-
quency and amplitude scales are linear. The relative vertical scale is not
correct: w(t) has variance 4.55 while the variance of u(r) is 1.56.

C
L

0.1 /

0.01 ol
0.01 [} 1 it

Fig. 6. The transfer function magnitude of the optimal differentiating
filter (4.7).
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t

100 150 200
Fig. 7. 1: The true input « (). 2: The optimal estimate (4.7).

TABLE II
THE ESTIMATION ERROR FOR SOME INPUT ESTIMATION FILTERS USED ON
(4.5). (4.6) 1IN ExampLE 2

Estimation Error
Standard Deviation

Filter 0z(1)/oe(t)
1) The optimal filter (4.7) 0.63
2) Smoothing with lag —m — oo 0.58
3) Simple differentiation: a(r) = (1 — g ') v(r) 0.95
4) Filter designed from Theorem 1, assuming a 1.08
white disturbance with variance 4.55 [same as in
4.5)]
5) The use of the estimate & (1) = 0. (Then, ¢z(t) 1.25
= ou(t).)

however, important to take the disturbance properties into
account correctly, as can be seen by comparing (1) to (4).

The true input u(r) is a rather noisy signal, cf. Fig. 7.
It may be the case that our interest is more in a smooth
estimate of the general direction of s(f). We may then
compute an estimate of a low-pass filtered version of the
input, for example,

a(t) =08u(r — 1) + 0.2u(r). (4.8)

The use of the substitutions suggested in Section III-B in
Theorem 1 then results in the filter

<l
i

v

t

100 150 200

Fig. 8. A low-pass filtered inPut (1), and the corresponding estimate
u(r|e) (2).

The formulation covers marginally stable and even
unstable input, system, or disturbance models. This does,
however, require precise a priori knowledge. For exam-
ple, if the disturbance model has poles on the unit circle,
the filter must have notches at precisely the right frequen-
cies. The question of required a priori knowledge is in-
teresting. In general, one of the blocks in the signal path
has to be known in advance. Normally, it is the system.
In equalization problems, it may be the input model, while
the system (channel) is unknown. The other block, and
the disturbance model, can then often be estimated from
output data. Requirements of identifiability, i.e., condi-
tions under which correct parameter estimation is feasi-
ble, have been indicated here. This problem is treated
more extensively in [3] and [4]. The development of
adaptive deconvolution algorithms is a focus of ongoing
research. A preliminary version of an adaptive estimator
has been described in [3].

APPENDIX
Proof of Theorem 1: We first show that the use of
(3.1), (3.2), and (3.3) implies that the estimation error is
given by (3.5). Second, it is shown that (3.5) is the min-

(0.1372 + 0.01258g ')(1 — 1.9¢ ™" + 0.9425¢2)(1 — q~")

u(t|ry =

The corresponding estimate is shown in Fig. 8.

V. CONCLUSION

We have described the design of optimal deconvolution
filters based on the solution of a spectral factorization and
a linear polynomial equation. The approach covers input
prediction, filtering, and smoothing problems of a general
structure and the use of prefilters in the criterion. It con-
stitutes a simple yet flexible design tool. We have empha-
sized that much can be gained by taking the spectral prop-
erties of colored inputs and disturbances into account. It
should, however, be noted that the choice of input model
and filter tuning parameter p will require some care, as
was pointed out in Section III-D.

(I —0.8¢7")(1 — 1.8226g ' + 0.8620¢ ?) y(1).

imum value. The proof follows a technique used in, e.g.,
[16, ch. 12.5].

Using (2.1), (2.2), and (2.3), the estimation error (2.4)
is given by

2(t) = u(r) - %y(, —m) = <1 B q_m_k%>

o

Se - g2, (Al)

D

Assuming z(¢) to be a stationary signal, Parseval’s for-
mula can be used to express its variance. Since e¢(7) and
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v(t) are mutually independent, we get

2 N

NCN,C(RA — z " *BQ) (R Ay

225

_ z:n+kB*Q*) @

Ez(1)

B 27j &m:n
M (§ ADMQA DM O @
27 Jiz=1 RANDR.A«N.D, z

RANDR, A, N,D, z

A <§> (NN, CCAA,BBx — NN, CCy A" "B, Qs — NN, CCyBxAsz " “BQ + rfB,,00) dz

T 2

where (3.1) and R = 8 have been used. The use of Q =
0, NA and (3.3) reduce the numerator of the integrand in
(A2) to

NN, AAL(CC, BBy — 2" Cy By N4 CBQ:

— " KCBNC,B4Q, + 88400 +)

(CB,N, C)(CBNC,)

r

= NN*AA*[CC*BQ* -

N <Zm+kC*B*N*C

7 - J?B*Q1>

_ <z—mAi;?N(; B VGBQ|*>}

CC4pMADMyADs | DD*LL*]

= NN*AA*L
r r

(A3)

where (3.1) and the fact that Q, satisfies (3.3) were used

in the last step. The use of (A3) in (A2) gives the expres-

sion (3.5). As long as § is a stable polynomial, the

expression corresponds to a finite variance of a stationary

estimation error sequence. Thus, we have shown the first

part. Next we will show that (3.5) is the minimal value.
Let us write an arbitrary input estimate as

ANDAN,D, 80+ z

(A2)

a(t]r — m) = %y([ Cm) () (Ad)
where Q /R is calculated from Theorem 1, and n(7) is an
arbitrary additional signal generated from a linear com-
bination of measurements y(t) up to time ¢t — m. It will
be shown that it is optimal to choose n(t) = 0.

The estimation error variance when using (A4) is given
by

lim ALIEJI E(u(t) — a(t|t = m))z

N—o o

= lim %EI Ez(t)2 — 2En(t) z(1) + En(t)z.

(AS)

Here z(t) is the estimation error generated by the filter of
Theorem 1. Ez(1)? is given by (3.5). If n(r) were non-
stationary, the ensemble mean En(1)* would grow with
time, and the criterion would be infinite. Assume n(¢) to
be a stationary sequence. It can then be expressed as a
filtered output signal

G(g™")
H(q™")
where H is restricted to be stable, and G cancels possible
unstable factors of A, N, or D.

Using (A1) and (A6), the middle term of (A5) can then
be expressed as

n(t) = y(t — m) (A6)

. BO\ C . OM _.._. GBC . GM

2Ez(t t) = 2F 1 — m—k ZX } _ m X 7 m—k = 7~ + m M ¢
) =26 (1= ¢ EB8) et — g S ut || g DD + 4 G0
—_ )\e @ NC(RA - z_m‘kBQ) m+k G*B* C* dZ )\l' —m QM m G*M* dZ
= . - . o~ T . < e——4 —
oz =1 RAND H.A D, z @ Jiz=1 RN~ H.N, z

A L (NN C(BA - 27" "*BNAQ,)z" **B,.C, — pNAQ,ADMM A, D,) G, d:

@ BANDA, DN, H, z

_ N § (N, CB" B, Cy

j BDA,N, D,

38+ 0) Gy dz
H, z’
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R = B3, O = NAQ,, and (3.1) have been used above. The
use of (3.3) gives
A BzDL,. G, dz

2E7(t t) = —
2(r) n(1) 7 J BDAN,D.H, z

_ & ZL*(Z) G*(Z) @ _
B v} A4(2) Ni(z) Dy(2) Hy(z) 2 -

(A7)

Since H(z ') is assumed strictly stable, H,(z) will have
all poles outside the unit circle. Since G is assumed to
cancel all unstable factors of A, D, or N, the integrand of
(A7) has no poles at or inside the integration path of the
unit circle. The integral will thus vanish.

With Ez(t) n(t) = 0, the estimation error (A5) is

E(u(t) — a(t]t — m))’ = Ez(1)’ + En(1).

It is evident that it is minimized if and only if n(¢)

=0,
since En (1)? is nonnegative. ||
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