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Abstract—A polynomial LQG approach to the design of
feedforward regulators is presented. Given a linear system
and possibly a prespecified feedback, optimal feedforward
filters for non-minimum phase systems can be calculated in a
simple way. An infinite horizon criterion including a filtered
input signal is minimized. This makes it possible to include
frequency-dependent trade-offs between input energy and
disturbance rejection in the design. The achievable
feedforward control performance turns out to be unaffected
by the choice of feedback, if the optimal regulator structure
is used. This suggests a simple way of optimizing combined
feedback and feedforward regulators: a main output
feedback is first optimized with respect to unmeasurable
disturbances. The feedforward link is then optimized with
respect to the measurable disturbance.

1. Introduction

‘WHEN DISTURBANCES CAN BE MEASURED, their influence may
be cancelled. From single input linear models, it is simple to
compute feedforward filters giving perfect cancellation, if
such filters exist. When systems have unstable inverses or
significant time dealys, perfect cancellation may, however, be
impossible. In other situations, it requires unrealistically
large input signals. While the design of feedforward
regulators is not trivial in such cases, it is still worthwhile: if
measurable disturbances are present, the control perfor-
mance can often be improved radically by utilizing this
information, compared with the use of output feedback only.
The reason is that the regulator can begin to act on a
disturbance before it has affected the output. Application of
feedforward also facilitates the design of stabilizing feedback
regulators. With a feedforward link compensating for most of
the disturbance, designers can concentrate on the robust
stability, rather than the disturbance rejection, of the
feedback system.

A systematic method is needed for designing combined
feedback—feedforward regulators. Davison (1973, 1976)
described methods to cancel measurable deterministic
disturbances asymptotically. In the present paper, stochastic
disturbances are considered. We will optimize an infinite
horizon criterion using a polynomial LQG technique. It is
suitable both for off-line design and as a basis for adaptive
control.

Since a large majority of practical regulator design
problems can be decomposed into single input problems, we
will discuss scalar systems. Because computer control now
dominates in process control applications, discrete time
regulators are discussed. The method provides optimal
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feedforward regulators for non-minimum phase systems, This
is important, since sampling often leads to sampled systems
with unstable inverses even for continuous-time systems with
stable inverses, cf. Astrom et al. (1984).

Normally, feedforward has to be combined with output
feedback in a control system. A new contribution in the
present work, presented in Section 3, is the design of optimal
feedforward filters used in combination with any prespecified
feedback. Pole placement feedback, PID controllers and use
of feedforward only are some examples. We also discuss how
to combine feedback and feedforward filters. The achievable
feedforward control performance turns out to be unaffected
by the choice of feedback. This is, however, true only if
feedback and feedforward filters are combined in the correct
way.

I)E unmeasureable stochastic disturbances are present,
combined feedback and feedforward regulators may be
optimized using a simple step-by-step procedure: a main
output feedback is first optimized with respect to
unmeasurable disturbances. The feedforward link is then
optimized with respect to measurable disturbances. This
design procedure has been derived by Sternad (1985) and,
independently, by Grimble (1986). The result is discussed in
Section 4.

2. Problem formulation
The true system is assumed to be described by a linear
model with the following structure:

Alg™ Yy () =q " B(g™Yu(t) + ¢~D (g Yw(e) + Ce(?)
Gg™
H(g™) v

The main output y(¢) and the auxiliary output (measurable
disturbance) w(t) are assumed to be measurable without
additional measurement noise. u(¢) is the input and e(¢) is an
unmeasurable disturbance. A, B, ..., are polynomials in
the backward shift operator ¢! with degrees na, nb, . .. The
time delays k& >0 and d =0 may be such that k¥ > d [in which
case perfect cancellation of w(f) is impossible]. A and B are
not allowed to have unstable common factors. The
polynomials A, C, H and G are monic (their leading
coefficient is 1). The disturbances are represented by
equivalent stochastic models, with e(f) and v(f) being
uncorrelated white stationary random sequences. They have
zero means and variances A, and A,, respectively. The
polynomials C, G and H are stable.
The regulator structure

@1

w(t) =

0(g™)
P(g™")

will be used, see Fig. 1. The polynomials R and P are monic
and P is required to be stable. This choice of regulator
structure will be motivated in Section 3. The corresponding
parameter vector is given by

R(g™Hu(t) =~ w(t)—=S@ Yy (22

)"

2.3)
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F1G. 1. The system and regulator structure.

The infinite horizon criterion

N
J=lim = S By + pE(A(g Yu()  (2.4)
No>w2N =0
is to be minimized. The input penalty 14 and the polynomial
A(g™") are chosen by the user. A(g D) =1-¢" gives dif-
ferential input penalty. In general, if A(g™") is a high pass
filter, high frequency components of the input will be
penalized.
Simple calculations give the following input and output
signals when (2.2) is used to control (2.1):

YO =2 v + 2 ey 23)
u() =~ v ()~ () 2.6)
where
«2 AR +q *BS 2.7)
M2 ¢ “DRP - q~*BQ (2.8)
F2 AQ +4q7*DSP. (2.9)

"The characteristic polynomial -of the closed loop system,
including the disturbance model, is PaH. The polynomial o
is required to be stable. It is evident from (2.8) that the
feedforward regulator Q/P = ¢~ “**DR/B would cancel the
measurable disturbance. It is realizable (stable and causal)
when d = k and B is stable.

Remarks on the notation. The following different types of
polynomials will be of use;

. D%D(z) =dy+dz+- +d, 2", where z is used for

q
° conjugt;te polynomials: D, 2 Dz Y =dy+diz7 4+ -+
ndz_" -
* reciprocal polynomials: D2 2"D, =dyz" +d,z" " +
ot dg

The polynomial arguments (g, z or z ) are often omitted

. to simplify the notation. The zeros of D are the zeros of D,

reflected in the unit circle. If D is stable, D will be unstable.
D, and D, denote the stable and unstable parts of the
polynomial D.

3. Optimal feedforward control
Let us define a spectral factorization

rBB.=BB, + pAAA A, @1

where r is a positive scalar factor and § is a stable monic
polynomial in z.

Let B =cB,B, where c is a constant, B, is stable and monic
and B, is unstable with B, being stable and monic. When
minimum variance control, p =0, is used, the spectral factor

will be given by ~
B=B.B,. (3.2)

To assure that f is stable, we require that B has no zeros on
the unit circle when minimum variance control problems are
considered.

The following theorem presents a method for optimizing
the feedforward part (Q, P) of the regulator (2.2). The
feedback (R, S), i.e. the parameters (r,...,r,,
805+« +» Sps) in (2.3), are held fixed. A stable causal optimal
feedforward filter Q/P can be computed for any stabilizing
feedback (R, S).

Theorem 1: Optimal feedforward control. Consider the
system (2.1) controlled by a stabilizing regulator (2.2) with
fixed R, §. Feedforward filter parameters attaining the global
minimum value of the criterion (2.4) with respect to

(le v pnp! QO) MRS QnQ) are given by
P=GB (3.3)

where B is the stable spectral factor of (3.1). The regulator
polynomial Q and a polynomial L (giving the minimal
criterion value) are the solution of

(BR, - pz *AAA S )z™*"*D G, =rBQ, + o H zL.
(3.4)

If A,=0 (only measurable disturbances), the minimal
criterion value 2Jgg is

_A, [LL,dz pA, [ GG,DD,AA, dz 3.5)

T oniJ BB, z | 2 rBB HH, '
]
Proof. See Appendix.

Remarks and interpretations

* Since f§ (stable) and o, H, (unstable) cannot have common
factors, (3.4) will be solvable. The degrees of Q,(z7*) and
L(z) are chosen so that the maximal occurring powers in
z7' and z, respectively, are covered. The degree of L
should e.g. be max {nf, nb —d + k} — 1.

It is simple to generalize the design to systems with one
input and several measurable disturbances w,(¢) =
(G//H)ui(r). Use a regulator with feedforward links
(Q:/P)w,(t) calculated from

P, = pG; (3.6)
(BR, - PZEkAAA*S*)Z_dﬁkDi*Gi* =rB0;, + @ H,; zL;.
G.7

In the minimum variance control case (p =0), P =G =
B,B,G has a straightforward interpretation: if the system
has minimum phase zeros, they are cancelled. Non-
minimum phase zeros should of course remain uncan-
celled. The optimal feedforward filter has poles in their
inverse points with respect to the unit circle. In addition,
regulator poles should cancel the (stable) zeros of the
disturbance model G/H. (Cancellation of stable zeros of B
on the negative real axis may, however, lead to an
oscillative input, and hidden inter-sample oscillations on
the output. Use of a small input penalty solves this
problem.)

When perfect feedforward is impossible, the optimal
regulator will depend on our disturbance model: G and H
enter into (3.3) and (3.4). [When p=0, d=k and B is
stable, (3.3) and (3.4) reduce to the perfect feedforward
regulator Q/P =¢q ***DR/B, L=0. The disturbance
spectrum then becomes irrelevant.]

With the procedure in Theorem 1, feedforward filters may
be optimized for any given system controlled with a
prespecified stabilizing feedback. We may ask how the choice
of feedback (R, S) affects the achievable feedforward control
performance.

Theorem 2. The minimal criterion value (3.5) for e(f) =0 is
independent of the choice of feedback (R, S) in (2.2) if
a=AR+ g *BS is stable.
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Proof. Suppose that the system
Ay()=q *Bu()+ ¢~ Dw(t) (e()=0)  (3.8)

is controlled by

Rou(t) = — %—9 w(t) = Soy(6) (3.9)

for some stable P, and stabilizing (R, Sp).

Then the same stationary output and input, and
consequently the same criterion value, may be achieved by
the regulator

Ru(t) = — % w(t) — Sy(t) (3.10)

where (R, S) stabilize the system and P, Q are calculated
from
Q_ 04— g "DPRoS — S4R)
P Pyay
where & = AR + ¢ *BS and a,= AR, + g *BS, are stable.
We may verify this by using the control law (3.10) on the
system (3.8), with O/P chosen according to (3.11).
This gives the closed loop system
aPoayy(f) = (¢ “DRoPy— g *BQg)aw ()
aPoou(t) = —(AQq + g~ DSy Fo)aw(?).

(3.11)

The modes corresponding to « are hidden. They are neither
visible from the input nor from the output. Thus, the transfer
functions are the same as if the regulator (3.9) had been used
for control. Compare with (2.5)-(2.9).

We conclude that there cannot exist a feedback Ry, S,
which makes it possible to achieve a lower criterion value
than with other feedbacks R, S. If (Ry, Sy, Qo Pp) is
optimal, the regulator (3.10), (3.11) will achieve the same J.

B

The feedback will affect the transient from an initial
condition. In stationarity however, the feedback neither
improves nor impairs the feedforward quality. This makes it
possible to solve the feedback and feedforward design
problems separately. The transformation (3.11) was sug-
gested by E. Trulsson (1985, private communication). With
other choices of regulator structures, the achievable
feedforward performance depends on the choice of feedback.
For example, consider control error feedback, where the
feedforward signal enters through the reference input:

w0 =200 = Y@ 30 =-2w(),

Such regulators introduce additional zeros (the zeros of S)
into the path from y, to y. This may impair the feedforward
performance, in particular if these zeros are unstable. The
same is true for regulators where a feedforward compensa-
tion signal is added to the feedback control signal:

u(®) =2 y0) + use (s uer(®)= =L

This regulator structure introduces additional zeros (the
zeros of R) into the path from uge to y. With the structure
we have chosen, (2.2), introduction of new zeros into the
feedforward path by the feedback is avoided.

Assume that the system is stable, the unmeasurable
disturbances are insignificant and a precise model of the
system is available. Then, feedforward may be used without
feedback.

Corollary 3: Feedforward control of possibly non-minimum
phase systems. Under the constraint of stability and
causality, the feedforward regulator

u(t)= — 1Q>((Z:1)) w(t)

attains the global minimum value of the criterion J for a

stable system (2.1) if P=8G and Q,(z™"), L(z) are the
minimal degree solution of

z=**BD .G, =rBQ,+AH, zL. (3.12)
|

Proof. This follows immediately from Theorem 1 with
R=1,85=0, and «a=A.

Corresponding feedforward regulators could be con-
structed with state space methods. Use of an algebraic
Riccati equation requires about the same amount of
computation as a spectral factorization, if the state vector
dimension equals the polynomial order. In many cases,
however, the polynomial approach leads to simpler
calculations. This is especially evident for systems with
significant time delays. Delays increase the dimension of the
state vector, and the computational burden in solving
Riccati equations. Compare this to (3.1) and (3.12). The
spectral factorization is unaffected by the delays k and d. The
order of the polynomial equation is affected only by the
difference k — d.

4, LOG-optimal combined feedback and feedforward
regulators

Normally, feedforward has to be used in combination with
feedback, for several reasons: the feedforward control
principle is not robust. Significant unmeasurable distur-
bances may be present. In addition, the system may be
unstable.

A method is now presented for optimizing combined
feedback—feedforward regulators with the structure (2.2).

Theorem 4: Optimal combined feedback and feed-
forward. For the system (2.1), the global minimum value of
the criterion (2.4) with respect to the parameters (2.3) of a
stabilizing and causal regulator (2.2) is attained, if

P=G (4.1)

and the regulator polynomials R, § and Q are calculated as
follows.
Let B be the stable spectral factor from (3.1):

rBB, = BB, + pAAA A,.

Let R.(z™Y), S,(z"™") and X(z) be the minimum degree
solution with respect to X of the coupled polynomial
equations .

rBR, —z "B X = pAA AC, (4.2a)

1S, +2A, X =z*BC,. (4.2b)

Let Q,(z™") and L(z) be the minimum degree solution of
the polynomial equation

27D .G X=rpQ,+CH,zL. 4.3)
Proof. see Appendix

Note that P is given by G above, while P = G has to be
used when a feedback is absent or prespecified in an
arbitrary way. Use of an optimal feedback allows us to use a
lower order feedforward filter. (As a consequence, Theorem
1 and Corollary 3 cannot be derived as special cases of
Theorem 4.) Equation (4.2) implies & = AR + ¢ *BS = C.

Let us describe the optimization algorithm in words.
—TFirst, the stable spectral factor S(z) is calculated.

—Then, the feedback part R, § is optimized with respect to
the unmeasurable disturbance e(f). The poles are placed in
« = BC. This calculation is totally independent of the
feedforward filter and the transfer functions in the
measurable disturbance path. This means that the
regulator structure has fwo degrees of freedom.

—The feedforward filter is then calculated to suppress the
measurable disturbance w(f) in an optimnal way. The filter
will depend on the feedback calculated in the preceding
step [X(z) enters into (4.3)]. However, as was stated in
Theorem 2, the achievable feedforward performance is not
affected by the choice of feedback with our regulator
structure,
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Placement of poles in C may lead to nonrobust feedbacks,
with small gain and phase margins from some C-polynomials.
(Poles in C correspond to the Kalman filter observer poles of
a state space design.) This is a drawback of the LQG design.
A suboptimal pole placement should be used in such cases.
The sensitivity of the other poles, in 8, can in general be
decreased by increasing p, see also Nordstrom (1987).

The delay d affects the achievable control quality
significantly. Complete cancellation of w(r) is possible only
when d=k=1. It can be shown that when d =0, use of
feedforward does not improve the achievable control
performance, compared to feedback from y(¢) only. When
d>0, there will always be an improvement. Thus, it is
important to place the auxiliary w(f)-sensor so that the
disturbance is captured as early as possible, i.e. d is large.

For a somewhat different system structure, combined
optimization of feedback and feedforward has been treated
by Grimble (1986) (for d =0 only) and Hunt et al. (1987)
(for d =0). For the special case C =1, G =1, the regulator
of Theorem 4 has been derived by Peterka (1984). In that
work, two coupled polynomial equations define the
feedforward polynomial Q. Only one equation, namely (4.3),
is in fact needed.

The regulator (2.2) must be realized minimally, as a single
dynamical system having two inputs and one output. For
spectral factorization algorithms, see Kufera (1979). For
nf =2, simple explicit expressions exist for the spectral
factor, cf. Peterka (1984). The coupled equation (4.2) can be
found to give an over-determined set of simultaneous
equations in the coefficients of R, § and X. This system will,
however, have a unique minimum degree solution w.r.t X,
(Some equations of the system will be linear combinations of
the others.) A simple way to find the (exact) solution is.to
use the least-squares method for solving over-determined
systems of equations.

For a further discussion of the regulator above, the
interested reader is referred to Sternad (1987). There, servo
problems are also discussed. Step disturbances and drifting
disturbances are handled by using a differential model, as in
Peterka (1984). Auxiliary signals w(¢) affected by the input
u(t) are handled by subtracting the input influence internally,
inside the regulator. It is also shown that the feedforward
regulator of Corollary 3 cancels deterministic disturbances
(steps, ramps, sinusoids) asymptotically, without further
modification. Several adaptive implementations have been
tested and compared.

S. Concluding discussion

We have presented a polynomial LQG approach for
designing feedforward regulators, Scalar discrete-time
systems have been considered. Given a linear system and
possibly a prespecified feedback, optimal feedforward filters
for non-minimum phase systems can be calculated in a simple
way. By penalizing a filtered input signal, it is possible to
make frequency-dependent trade-offs between input energy
and disturbance rejection. Optimal combined feedback and
feedforward regulators can be designed by a simple
step-by-step method.

The results have some limitations. Only linear single input
systems have been considered. The use of an infinite horizon
criterion neglects the effect of initial values. When B has
zeros close to the unit circle, the regulator start-up from an
initial condition will be slow. Time-varying regulators could
provide an optimal transient, but they would be considerably
more complicated than the ones discussed above,

A discussion of several other aspects, such as the control
behaviour between the sampling instants and problems with
noise-corrupted measurements, can be found in Sternad
(1987). A very close correspondence has been found between
optimal feedforward control and the input estimation
(deconvolution) problem. The correspondence is explained
in Sternad and Ahlén (1988).

The opportunities to use off-line designed feedforward
regulators are limited by the availability of accurate process
models. This motivates the development of adaptive
regulators based on the algorithms presented above.
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Appendix

Proof of theorem 1

Since w(t) and e(t) are assumed to be mutually
uncorrelated, the feedforward design is not affected by e(r).
Assume e(t) = 0. The expression (3.5) for the criterion value
when the feedforward filter (3.3), (3.4) is used and e(f) =0
has been derived from (2.5), (2.6) by straightforward, but
somewhat tedious calculations in Sternad (1987). There, an
alternative, more direct proof of optimality can be found.
Here, we will verify that (3.5) represents the minimum, with
a technique used for feedback optimization in Astrém and
Wittenmark (1984).

Let us write an arbitrary feedforward control action as

-1
Rlg™u() = =S(a O 5w +n () (AD
where R, § are prespecified and stabilizing, Q/P is calculated
from Theorem 1, and n(f) is an arbitrary additional
feedforward signal, generated from a linear combination of
measurements w(t). It will be shown that it is optimal to
choose n(t) =0.
Using (2.1) with e(r) =0, (A1), (2.7), (2.8) and (2.9), the
criterion (2.4) can be expressed as

J=T+2,+J, (A2)

where
e 1 & /MG 2 AFG 2
Jl”§ﬂ2N§E<PaH”(’)> +pE<PaH”(’)>

.1 & /B MG
JZ‘,\II‘E’mzNz,E<E"(’_k)ﬁ”('))

- E(2n) )

.1 & /B 2 AA )2
Jy= lim 2N§]E<;n(t—k)) +pE<7n(1)> .

N-—>o
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Because (Q, P) satisfy Theorem 1, the criterion value for
n(f)=0, Jy, is finite and is given by (3.5). If n(f) were
nonstationary, the ensemble means in J, and J, would change
with time, and the criterion could be undefined. Assume n(t)
to be stationary. It can then be expressed as a filtered
feedforward signal

T(q") T(qg ) G(g™")
N(g™) N(g HH(g ")

where N is stable. Using Parseval’s formula, (3.3), (2.8),
(2.9) and (A3), the term J, can be expressed as

oL Z*BTGM, dz
2 27 |Z‘=1(1’NHﬁ*D’*H* z
‘”B‘ﬂg AATG AF, dz
27 Ji,1-1 oNH B,a H, z
TG[(ZkB(Z*dD*R*G*ﬁ*_Z*kB*Q*)

n(t)= w(t) = v(t) (A3)

=l —pA&*A(A*Q*+Z_dD*S*G*ﬂ*)]¥
2i aNHB o H, z
TG[(z* “BR, — z “pAAA,S,)D,G.B,
:L —rﬂﬂ*Q*]d_z_
27 oNHB o H, z

where the spectral factorization (3.1) was used in the last
step. The use of the polynomial equation (3.4) now reduces
L to

1 [TGB e, HyzL 1 [T(2)L(2)G(z) , _

=50 aNHB o H.2 Y " 2m P a()NH(z) =0

since @(z), N(z) and H(z) are assumed to be stable, i.e. to
have poles strictly outside the unit circle. Thus, the integral
vanishes because the integrand has no poles inside the
integration path.

Now, since J, =0, and J; is quadratic in n(¢), it is obvious
that (A2) is minimized by setting n(f) =0, i.e. by using the
feedforward filter defined by Theorem 1.

&

Proof of Theorem 4

As a consequence of Theorem 2, a feedback (R, §) can
first be designed optimal with respect to e(f). Then, a
feedforward filter optimizing the influence from w(f) can be
designed from Theorem 1. As was proved by Ku&era (1979),
an optimal feedback is designed by solving (4.2). For an
alternative proof, see Peterka (1984). By multiplying (4.2a)
by A, and (4.2b) by z7*B, and adding them, (4.2) is seen to
imply pole placement in «=pgC. Now, multiply a,=
AR, +27*B.S,=8,C, by pAAA,. This gives

~pAAA z7*B .S, = pAAA AR, — pAAA,B.C,.

Addition of BB, R, and multiplication by z¥7* gives
z*Y(BB,R, — pAAA,2z7*B.S,)

= Zk_l(r:B:B*R* - pAAA*ﬁ*C*).
By dividing by B,B, and comparing with (4.2a) it is found
that
z7Y(z*BR, — pAAA.S,) _Z“ (R, = pAAAC,) _

ﬁ* B*

X(z).
(A4)

The optimal feedforward polynomial Q satisfies (3.4). The
use of o, = B,C, and (A4) in (3.4) gives

(Z,B*X)ZﬁdD*G* =rB0, + B,C.H,zL. (A5)

Since B, is a factor of the other two terms, it must be a
factor of @,. (It cannot have common factors with f, since
z"PB, = B will be strictly unstable, while § is stable.) Let
Q,= Q;ﬁ -

Equation (AS) then reduces to (4.3)

27D, G X =rfQ', + C,H, zL.

If the stable common factor 8 in Q/P = Q'B/Gp is cancelled
and Q' is named Q, we have the regulator (4.1), (4.3).







