
2332-7731 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2019.2908860, IEEE
Transactions on Cognitive Communications and Networking

Sum Throughput Maximization in a Cognitive
Multiple Access Channel with Cooperative
Spectrum Sensing and Energy Harvesting

Sinchan Biswas, Student Member, IEEE, Subhrakanti Dey, Senior Member, IEEE, and Amirpasha Shirazinia

Abstract—This paper focuses on the problem of sensing
throughput optimization in a fading multiple access cognitive
radio (CR) network, where the secondary user (SU) transmitters
participate in cooperative spectrum sensing and are capable
of harvesting energy and sharing energy with each other. We
formulate the optimization problem as a maximization of the
expected achievable sum-rate over a finite horizon, subject to
an average interference constraint at the primary receiver, peak
power constraints and energy causality constraints at the SU
transmitters. The optimization problem is a non-convex, mixed
integer non-linear program (MINLP) involving the binary action
to sense the spectrum or not, and the continuous variables such
as the transmission power, shared energy and sensing time.
The problem is analyzed under two different assumptions on
the available information pattern: (i) non-causal channel state
information (CSI), energy state information (ESI) and infinite
battery capacity, and (ii) the more realistic scenario of the causal
CSI/ESI and finite battery. In the non-casual case, this problem
can be solved by an exhaustive search over the decision variable
or a MINLP solver for smaller problem dimensions, and a novel
heuristic policy for larger problems, combined with an iterative
alternative optimization method for the continuous variables.
The causal case with finite battery is optimally solved using a
dynamic programming (DP) methodology, whereas a number of
sub-optimal algorithms are proposed to reduce the computational
complexity of DP. Extensive numerical simulations are carried
out to illustrate the performance of the proposed algorithms. One
of the main findings indicates that the energy sharing is more
beneficial when there is a significant asymmetry between average
harvested energy levels/channel gains of different SUs.

Index Terms—Energy harvesting, Cognitive Radio, Multiple
Access Channel, Spectrum Sensing, Fading Channel

I. INTRODUCTION

TWO of the essential and limited resources in wireless
communications are radio spectrum and energy. With the

advent of advanced data hungry mobile devices, the demands
for both of them have increased significantly. The demands
for spectrum usage have been increasing due to applications
consuming high bandwidth. The traditional rigid spectrum
allocation policy is found to be fairly inefficient to mitigate
this problem [1]. To combat this issue, a dynamic spectrum
allocation policy paradigm of cognitive radio (CR) network
has been proposed in the literature [2]. In particular, in the
interweave paradigm of CR, the unlicensed secondary users
(SU) are capable of actively sensing the licensed primary user
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(PU) spectrum and using it whenever it is detected to be
not utilized by the PU [3]. Similarly, the SUs have to vacate
the PU spectrum as soon as it senses PU activity. In such a
framework, sensing of PU spectrum has become a significant
task. Significant research has been focused on different spec-
trum sensing algorithms like energy detection, cyclostationary
detection, matched filter detection etc [4]. The main focus
of such algorithms is to increase the efficiency of spectrum
utilization, while protecting PU from harmful interference. In
a multiuser secondary network with varying degree of sensing
performances, it has been well established that cooperative
spectrum sensing improves the PU detection performance. A
contemporary survey of energy-efficient cooperative spectrum
sensing algorithms can be found in [5] (see also references
therein).

Alongside spectrum utilization efficiency, the efficiency in
utilizing the energy has also become a significant issue. Just
like the spectrum requirement, the communication overhead,
signal transmission and detection at the receiver all require
significant amounts of energy depending on the application.
The usual battery powered electrical sources are unable to fully
replenish these ever-growing requirements because of its non-
renewable feature. In many applications, it is difficult to re-
place the batteries attached to the wireless devices periodically
because of their remote locations and the required labour costs.
To address this issue, the usage of renewable energy has been
proposed in the literature [6]. Such energy from the wind, solar
or other unconventional power sources are not only efficient in
terms of fulfilling the energy requirement but environmentally
sustainable as well. This has led to extensive research activities
in the domain of energy harvesting wireless communications
and networking [7], [8].

Significant recent research has been directed towards the
utilization of energy harvesting in wireless networks. The
transmission policies have been investigated for minimization
of transmission time completion with infinite battery capacity
[9] and finite sized battery [10]. Similar problems have been
addressed in the context of different channel models. The
optimal policies have been derived in the context of multiuser
settings with relay channel [11], broadcast channels [12],
interference channels [13] and multiple access channels [14].

CR network with energy harvesting capabilities effectively
use both of the above mentioned resources, which is the focus
of the present work. There has been significant research in this
domain. Opportunistic channel access and energy harvesting
process has been studied in this framework in [15], [16].
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Optimal spectrum sensing policy in an energy harvesting
CR network has been investigated in [17]. Opportunities and
challenges in such a network has been surveyed in [18]. The
energy harvesting feature creates a reliable energy efficient
system, while the dynamic spectrum allocation leads to more
efficient spectrum utilization. The cooperative energy sharing
feature has been incorporated into the system to satisfy the
energy requirements of the more vulnerable users in terms of
average harvested energy.

A. Background

This paper focuses on the specific case of CR networks with
SUs having energy harvesting and sharing capabilities. The
channels between SUs and the fusion centre (FC) constitute
a fading multiple access channel. For such a network, the
achievable sum-rate is generally used as a throughput measure.
Optimizing the achievable sum-rate in a CR network has been
investigated with respect to different fading channel models
in [19], [20]. As spectrum sensing is one of the primary
functionalities in CR networks, the sensing throughput tradeoff
has been rigorously studied in [21]. Capacity analysis of
wireless systems with energy harvesting capabilities has been
studied as well in [22]. Such analysis has also been extended to
the CR networks in the literature [23], [24]. In a separate field
of literature, distortion minimization in a multi-sensor setting
has been studied in an energy harvesting wireless sensor
network (WSN) with wireless energy transfer mechanisms
[25].

There has been some recent research in CR networks
with SUs having energy harvesting capabilities. In [26], the
spectrum sensing strategy is studied for a system with non-
linear energy harvesting model. In [27], achievable throughput
optimization has been investigated with respect to sensing time
and sensing threshold, whereas [28] addresses the problem
of optimizing the throughput with respect to sensing energy,
transmission energy and spectrum sensing time. In [29], the
authors analyze the asymptotic activity behavior of a single SU
in a hybrid energy harvesting scenario, and subsequently ana-
lyze the optimal sum throughput with respect to optimization
parameters such as asymptotic active probabilities, sensing
durations and detection thresholds over a single time slot for
a collection of heterogenous SUs, followed by an algorithm
for selecting the best subset of cooperating SUs. In [30], the
authors of [29] tackled the problem of throughput optimization
with different sets of fusion rules. In [31], the same authors
addressed the issue of protecting PU from collision with SU
traffic. In [32], the cross-layer problem involving physical
layer transmission power and network layer delay is addressed
with a game-theoretic formulation. In [33], throughput is
optimized with respect to the sensing threshold and the amount
of energy being harvested. In [34], the problem of optimal
spectrum sensing strategy is studied in energy harvesting CR
networks. In [35], this optimization is investigated with respect
to sensing time and energy harvesting time, considering a slot-
ted energy arrival policy. In [36], the problem is studied in the
scenario of multislot spectrum sensing and energy harvesting.
In [37], the optimal energy scheduling problem is studied in

the fading multiple access channel with energy harvesting.
In [38], optimal power allocation policy is analyzed when
only causal information is available to the energy harvesting
transmitters.

We partially addressed the problem of throughput optimiza-
tion in a CR fading multiple access channel with energy
harvesting secondary transmitters in [39] in a cooperative
spectrum sensing framework. It is obvious that there is a trade-
off between the accuracy of spectrum sensing process and the
throughput measure. This is due to the fact that, if the sensing
time is long enough, then the sensing accuracy is high, but on
the other hand, the transmission time decreases, which in turn
reduces the throughput. In [39], the optimization was carried
out with respect to the sensing time, SU transmission power,
and the binary decision variables concerning (i) whether to
sense (as sensing also costs energy) and (ii) the outcome of
the spectrum sensing decision regarding whether to access
the spectrum or not. In our current submission, we remove
the binary variable regarding the spectrum access decision by
considering explicit expressions for detection and false alarm
probability for the cooperative spectrum sensing process, and
we extend the paper to consider the additional feature of
energy sharing between neighbouring sensors. The energy
sharing mechanism considered here is assumed to be direc-
tional, which can be achieved via non radio-frequency wire-
less power transfer over shorter distances or radio frequency
based wireless power transfer over longer distances employing
energy beamforming technology [40], [41]. In addition, as
opposed to [39], where the PU interference at the secondary
base station was ignored, we consider the presence of PU
interference explicitly in the SU sum-throughput expression
when the PU is present. In this setting, we study the problem
of jointly maximizing the achievable sum-rate for a CR fading
multiple access channel with respect to the binary decision
variables regarding whether each SU senses for the PU, and
the continuous variables such as the SU transmission powers,
sensing times and energy transferred between neighbouring
sensors under an average interference constraint at the PU
receiver, energy causality and peak power constraints at the
SU transmitters.

B. Contributions
We consider the problem of maximizing the achievable sum-

rate with respect to the four optimization variables mentioned
above. The specific contributions of this paper are listed below:
• We solve the problem of expected sum throughput max-

imization over a finite time horizon in a fading mul-
tiple access cognitive network where the SUs having
energy harvesting and sharing capabilities. We explore
the problem in both finite and infinite battery capacity
settings, and with non-causal and causal information
patterns. In the case where all channel conditions and
harvested energy realizations are known non-causally for
the entire time horizon, an analysis is provided for the
optimization of the continuous variables (SU transmission
power, shared energy and sensing times) for the infinite
battery capacity setting, using an iterative alternating op-
timization approach, which only ensures locally optimal
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solutions, as the problem is jointly non-convex in the
continuous variables.

• In case of a non-causal information pattern, the over-
all optimization problem is a mixed integer nonlinear
programming problem, where the underlying nonlinear
programming problem is non-convex. It is well known
that (see [42], [43]) determining of a global solution
of the non-convex MINLP problem is NP-hard. We
do not pursue global optimization methods to avoid
their prohibitive computational complexity in the case of
longer horizons. Instead, for smaller problem dimensions
(small number of SUs and a short time horizon), we
use an exhaustive search policy to find the optimal
binary variables regarding the SUs’ decision to sense the
spectrum. We also provide a numerical study comparing
the results with those obtained using a global optimization
software. For larger problem dimensions, using either the
exhaustive search or global optimization is impractical,
and therefore we propose a heuristic policy to solve
the mixed integer non-linear program with respect to
the spectrum sensing decisions resulting in a moderate
computational complexity.

• The problem pertaining to the finite battery capacity with
causal CSI and ESI is studied using a dynamic program-
ming based stochastic control algorithm resulting in the
optimal sequence of the binary spectrum sensing deci-
sion variables, and discretized values of the continuous
variables in order to facilitate practical implementation.

• We also propose two other sub-optimal policies to mit-
igate the exponential complexity associated with the
dynamic programming (DP) algorithm. The first one is
a moving-horizon limited look-ahead policy, which has a
relatively low complexity especially when the length of
the finite horizon is high. The second one is an ad-hoc
policy to find sub-optimal values of all three continuous
optimization variables without involving the dynamic
programming algorithm, based on insights obtained from
the non-causal case.

• Finally, we compare a non-adaptive policy for sensing
time optimization (i.e. a fixed sensing time is adopted
across all time slots) with an adaptive sensing time
optimization (where the sensing time is optimized in a
dynamical fashion across the time slots) in the above
mentioned setting.

C. Organization
The rest of the paper is organized as follows. In Section

II we discuss the system model. In Section III we describe
the optimization problem and the procedure for finding the
optimal solution. In Section IV we provide an analysis for
the optimal solution of the problem for the infinite battery
and non-causal CSI/ESI scenario. In Section V we discuss
the proposed policy for causal CSI and finite battery scenario
using the dynamic programming algorithm. In Section VI
we propose two sub-optimal policies in order to mitigate
the complexity of dynamic programming algorithm. Section
VII contains simulation results followed by some concluding
remarks in Section VIII.

N

N

Fig. 1: Figure of System Model

II. SYSTEM MODEL

We consider a system model (see Figure 1) comprised of
a PU, N SUs and a FC, the role of which can be performed
by a secondary base station (SBS). We adopt a cooperative
spectrum sensing model, where individual SUs sense the PU
spectrum locally and transmit their local decisions to the SBS.
The SBS collates all the information from the SUs and arrives
at a global decision, which in turn is broadcast to the SUs by a
control channel, so that the SUs can decide to transmit or not.
We assume that time is slotted as shown in Fig.2. the energy
harvesting and sharing process is assumed to be independent
of the sensing and data transmission process, as we do not
restrict the harvesting and sharing to be based on RF energy
harvesting only, and these actions are carried out by the sensor
via a unit separate from the transceiver. We consider a finite
time horizon of M slots, where each slot is assumed to be T
time units in size. In each slot, the PU is either present with
probability µ or absent with probability (1 − µ). In the kth

time slot, as illustrated in Fig. 2, τk time units are used for
the spectrum sensing process and the residual (T − τk) time
units are used for the transmission process, provided the PU
spectrum is found to be vacant. Since sensing costs energy,
in the kth time slot, the ith SU decides to either sense the
PU spectrum or be idle based on the binary decision variable
ai,k, 1 ≤ i ≤ N, 1 ≤ k ≤ M . ai,k ∈ {0, 1}, where 1 (or
0) represents the decision to sense the PU spectrum (or not).
Note that if Bi,k, the battery energy level of the ith SU at the
beginning of the kth time slot, is smaller than psτk, where
ps is the sensing power, ai,k = 0. However, if Bi,k > psτk,
ai,k ∈ {0, 1}.

A. Energy harvesting and battery dynamics

As indicated in Fig. 2, we assume an energy full-duplex
energy harvesting scenario [29], where each SU has sep-
arate energy harvesting/sharing units and spectrum sensing
and information transmitter/receivers so that these harvest-
ing/energy sharing and spectrum sensing/information trans-
mission/reception processes can occur simultaneously and
independently. This is not unusual where the SU can harvest
energy from non-radio frequency sources, such as solar, wind
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Sensing time τk Transmission time (T − τk)

Time Slot: T time units

Energy harvesting and sharing Process

Fig. 2: Frame Structure

or vibrations etc. We also make the standard assumption that
the energy harvested in slot k is available for use in slot k+1
onward.

When the spectrum sensing decision ai,k = 1, the SU
transmits with a transmission power pi,k. With the assumption
of a finite battery size of Bmax at each SU, Bi,k can be
expressed as follows:

Bi,k+1 = min

{
Bmax, Bi,k − Ei,k +Hi,k

−
∑

m∈NT,i

Ti,m(k) +
∑

m∈NR,i

ηm,iTm,i(k)

}
(1)

where Hi,k is a random process denoting the amount of energy
harvested by the ith SU in the kth time slot. Ti,m(k) is the
amount of energy transferred from the ith SU to the mth

SU in the kth time slot. Ei,k, ηm,i,NT,i,NR,i represents the
amount of energy used by the ith SU in the kth time slot, the
energy transfer efficiency from the mth SU to the ith SU, the
set of SUs which ith SU shares its energy to and the set of
SUs that the ith SU received shared energy from, respectively.
Although our subsequent analysis does not strictly need it, we
assume that Hi,k is independent and identically distributed
(i.i.d.) across time and independent across the SU terminals.

In the case where ai,k is a variable of optimization, Ei,k,
can be subdivided into sensing energy and transmission energy
as follows:

Ei,k =

{
ai,kpsτk + pi,k(T − τk)

{(1− Pd(τk))µ+ (1− Pfa(τk))(1− µ)}

}
(2)

where Pd(τk) and Pfa(τk) denote the probability of detection
and the probability of false alarm at the FC in the kth time slot,
respectively. Note that in order to avoid an additional binary
decision variable regarding whether to access the spectrum
or not, we consider the above energy consumption model,
which is equivalent to accessing the spectrum with probability
(1 − Pd(τk))µ + (1 − Pfa(τk))(1 − µ) in the kth slot.
This approximation becomes exact when the time horizon M
becomes sufficiently large. See [39] for a treatment where the
spectrum access decision is also treated as a binary variable.

Applying the recursive definition of (1) we can write:

Bi,k = min

{
Bmax, Bi −

k∑
r=1

Ei,r +
k−1∑
r=1

Hi,r

−
k∑
r=1

∑
m∈NT,i

Ti,m(r) +
k−1∑
r=1

∑
m∈NR,i

ηm,iTm,i(r)

}
(3)

where Ei,k is defined in (2) and Bi represents the initial
battery state for the ith SU. In the case of infinite battery
capacity, the above expression in (3) simplifies to:

Bi,k = Bi −
k∑
r=1

Ei,r +
k−1∑
r=1

Hi,r −
k∑
r=1

∑
m∈NT,i

Ti,m(r)

+
k−1∑
r=1

∑
m∈NR,i

ηm,iTm,i(r) (4)

B. Spectrum Sensing Model

If an SU decides to sense the PU spectrum, the spectrum
sensing time τk for the kth time slot is divided into a
number of mini-slots, where the length of each mini-slot is
pre-decided. In each mini-slot the SUs take sensing samples
and try to determine the PU spectrum availability by using
a binary hypothesis testing problem based on the following
signal model:

H0 : yi,k,m = ni,k,m

H1 : yi,k,m =
√
qixk + ni,k,m (5)

where xk is the PU transmitted signal for the kth time slot,
which is real valued and distributed as xk ∼ N (0, σ2

x). qi is
the channel power gain between the PU transmitter and the ith

SU receiver, which is assumed to be constant throughout the
sensing process. yi,k,m and ni,k,m are the real valued received
signal and noise signal component respectively at the ith SU
receiver for the mth mini-slot of the kth time slot. The noise
is distributed i.i.d. as ni,k,m ∼ N (0, σ2

n). For the spectrum
sensing rule, we use an energy detection policy [44] in each
SU, such that the local spectrum sensing decision at the kth

time slot in the ith SU is determined by the following rule:

θi,k = I(
1

Sk

Sk∑
m=1

y2i,k,m ≥ ε)

where I is the indicator function, Sk is the number of mini-
slots in a particular time slot τk and ε is the detection threshold.
However, we should note the fact that the number of mini-slots
Sk being a discrete variable doesn’t imply that the spectrum
sensing time τk being a discrete variable. Thus in general if
the length of each mini-slot is τmini, a continuous variable,
the corresponding number of mini-slots can be determined as
Sk =

⌊
τk

τmini

⌋
. All the local decisions θi,k from the SUs are

sent to the FC by control channels and collated using an OR
logic fusion rule to achieve the global decision θk. Note once
again that our analysis is not restrictive to any particular type
of a fusion rule and other fusion rules such as the ”majority
logic” rule can also be easily considered (see Remark 2 below).
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Remark 1. A number of additional sources of energy con-
sumption has been ignored in this work, such as circuit power
consumption, energy consumption due to signalling overhead
of side-information over control channels etc. The rationale is
that (i) the circuit power consumption is assumed to be much
lower compared to energy consumption in communication,
especially over longer distances, and (ii) a non-trivial circuit
power consumption can be grouped together with the sensing
energy (whenever ai,k = 1) whereas energy consumption
due to signalling overhead can be easily subtracted from
the maximum battery capacity without affecting the analysis.
The nature of the numerical results will not be affected
considerably as long as such energy consumption is small
compared to energy consumed due to communication.

The probability of detection and false alarm for the OR
fusion rule then can be written as Pd = Pr {θk = 1|H1} and
Pfa = Pr {θk = 1|H0}. Pd(τk) and Pfa(τk) is given by the
following:

Pd(τk) = 1−Πi∈Ak(1− p(i)d (τk))

Pfa(τk) = 1−Πi∈Ak(1− p(i)fa(τk))

where Ak is defined as the set Ak = {i : ai,k = 1}, and
p
(i)
d (τk) and p

(i)
fa(τk) are the probability of detection and the

probability of false alarm at the ith SU in kth time slot, given
the sensing time τk and they can be computed by the following
expressions [21]:

p
(i)
d (τk) = Q

{
(
ε

σ2
n

− γi − 1)

√
τkfs

2γi + 1

}

p
(i)
fa(τk) = Q

{
(
ε

σ2
n

− 1)
√
τkfs

}
(6)

In the above two equations fs is the sampling rate and γi =
qi
σ2
n

is the signal to noise ratio corresponding to the channel
between the PU transmitter and the ith SU receiver.

Remark 2. If majority logic fusion rule is implemented
with identical detection and false alarm probabilities pd, pfa
respectively, for all SUs, then Pd and Pfa can be calculated
as follows:

Pd(τk) =

|Ak|∑
l=b|Ak|/2c+1

(
|Ak|
l

)
pld(1− pd)|Ak|−l

Pfa(τk) =

|Ak|∑
l=b|Ak|/2c+1

(
|Ak|
l

)
plfa(1− pfa)|Ak|−l

where |Ak| denotes the cardinality of the set Ak, and bxc
denotes the nearest integer less than x.

C. Communication channel models

We assume that the spectrum sensing channel gain (qi), and
the communication channel gains between the SU transmitters
and PU receiver (gi,k), as well as the SU transmitters and the
FC (hi,k) are i.i.d. exponentially distributed with unity mean
unless otherwise stated. All channel gains are assumed to be

mutually statistically independent. Interference caused by the
PU at the FC is treated as noise.

For easier readability we have summarized the relevant
parameters for our subsequent problem formulation in Table
I.

TABLE I: System Parameters

τk Time taken to perform the spectrum sensing in the kth

slot
pi,k Transmission power for the ith SU in the kth time slot
Ti,m(k) Energy shared from the ith SU to the mth SU in the

kth time slot
µ PU activity probability
NT,i Set of SUs that the ith SU shares its energy to
NR,i Set of SUs that the ith SU receives shared energy from
ηm,i Energy transfer efficiency from the mth SU to the ith

SU
hi,k Channel gain between the ith SU transmitter and the

FC in the kth time slot
gi,k Channel gain between the ith SU transmitter and the

PU Receiver in the kth time slot
qi Channel power gain between the PU transmitter and

and the ith SU
ps Power required to sense for the single unit of time
Pmax Peak power limit on pi,k
Bi Initial battery state for the ith SU
Hi,k Energy harvested for the ith SU for the kth time slot
ai,k Decision to sense the spectrum or not for the ith SU

in kth time slot
Qavg Average interference limit to the PU
σ2 Noise variance in the channel between the SU trans-

mitter and the FC
σ2
in Interference caused by the PU presence

III. PROBLEM FORMULATION

In this section, we formulate the optimization problem
considered in this paper, namely, an achievable sum rate max-
imization for a SU multiple-access channel, under the above
mentioned cooperative spectrum sensing framework, with an
average interference constraint [45] at the PU receiver, and
energy harvesting as well as peak transmit power constraints
at the SU transmitters.

A. Achievable Sum Rate Maximization

The achievable sum-rate expression, also weighted by the
probability of spectrum access, has two components. One
component corresponds to the case when the PU is active but
not detected by the spectrum sensing process, and the other
one corresponds to when it is not active and is also correctly
detected to be idle. The respective weighted achievable sum-
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rate can be expressed as the following:

D1(pi,k, τk) =
µ

M

T − τk
T

(1− Pd(τk))

log2

{
1 +

∑N
i=1 pi,khi,k
σ2 + σ2

in

}
D2(pi,k, τk) =

1− µ
M

T − τk
T

(1− Pfa(τk))

log2

{
1 +

∑N
i=1 pi,khi,k
σ2

}
(7)

where the PU interference (treated as noise) is given by
σ2
in. The sensing throughput maximization problem can be

formulated as the following (for all 1 ≤ i ≤ N , 1 ≤ k ≤M ):

max
ai,k,pi,k,τk,Ti,m(k)

E

{
M∑
k=1

{D1(pi,k, τk) +D2(pi,k, τk)}

}
(8)

s.t.
1

M

M∑
k=1

E

{
T − τk
T

(1− Pd(τk))
N∑
i=1

pi,kgi,k

}
≤ Qavg

(9)
0 ≤ pi,k ≤ Pmax;∀i, k; 0 ≤ τk ≤ T ;∀k
0 ≤ Ti,m(k)∀i,m, k (10)
k∑
r=1

(ai,rpsτr + pi,r(T − τr)((1− Pd(τr))µ

+ (1− Pfa(τr))(1− µ))) ≤ Bi +
k−1∑
r=1

Hi,r

−
k∑
r=1

∑
m∈NT,i

Ti,m(r) +
k−1∑
r=1

∑
m∈NR,i

ηm,iTm,i(r) a.s.;∀i, k

ai,k =

{
0 if Bi,k < psτk

∈ {0, 1} otherwise a.s.;∀i, k (11)

where a.s. stands for almost surely.
Remark It is important to note that the average interference

term in constraint has been normalized by the primary activity
factor µ, where Qavg = Q/µ, Q being the true average
interference limit, since no interference is caused when the
primary is not active. We would also like to point out that
the achievable sum-throughput expression used in the above
optimization problem for the multiple access channel has
the underlying assumption that the codewords used for data
transmission at each SU are independently generated from the
corresponding statistically independent Gaussian codebooks
[46], followed by successive decoding at the receiver.

The problem under consideration is a joint optimization
with respect to the transmission power pi,k, transferred energy
Ti,m(k), sensing time τk and the decision to sense ai,k.
The objective is to maximize the weighted achievable sum
rate expression (8), with respect to an average interference
constraint ((9)) imposed over the entire time horizon, whereas
(10) signifies the short term transmission power and sensing
time and transferred energy constraints imposed at each time
slot. The last constraint (11) is the energy causality constraint
which ensures for every SU, Ei,k ≤ Bi,k ∀i, k, and states

that ai,k = 0 (no sensing is possible) when there is not enough
energy to sense in the beginning of the k-th time slot, whereas
ai,k ∈ {0, 1} otherwise.

This optimization problem is a mixed-integer nonlinear pro-
gramming (MINLP) problem with respect to the binary vari-
able ai,k, and the continuous variables pi,k, τk and Ti,m(k). In
this particular case, the nonlinear programming problem with
respect to the continuous variables is non-convex, and hence
the associated MINLP problem is NP-hard [42], [47]. In the
non-causal case where all channel and harvested energy infor-
mation is known a priori, one can still use global optimization
tools, which demand exponential computational complexity
with respect to M,N . Consequently, for the case of small
M,N , we use an exhaustive search method to determine ai,k,
followed by an alternative iterative optimization method for the
continuous optimization variables as described below. Noting
that for a fixed τk, the resulting problem becomes jointly
convex in pi,k, Ti,m(k) and can be solved efficiently. On the
other hand for fixed pi,k and Ti,m(k), it results in a non-
convex problem in τk, which can also be locally optimized.
This iterative process is continued until a locally optimum
solution is found and the algorithm converges within a certain
tolerance. We compare the performance of this approach with
a global optimization tool based solution and reveal that
the corresponding solutions are very close. For large values
of M,N , both approaches quickly fail to be scalable. Note
however, that a global optimization approach cannot be used
in the causal case, as this involves a dynamic programming
based approach, where the associated value functions at each
iteration of the dynamic programming do not have a closed
form expression.

B. Heuristic Policy for ai,k
In the case of medium to large M,N , one cannot employ the

exhaustive search method to optimize over the binary variable
ai,k. Instead, we propose a heuristic policy to determine
ai,k. The policy focuses on the fact that an upper bound on
probability of false alarm i.e. Pfa ≤ κ, for some κ > 0, which,
in turn imposes a lower bound on sensing time as τl ≤ τk. The
value of such a lower bound τl can be determined according

to [21] τl = 1
fs

{
Q−1(Pfa)

ε

σ2n
−1

}2

, where Q is the cumulative

distribution function of the standard Gaussian random variable.
This heuristic policy proposes that if a particular SU has more
than enough energy in its battery to perform the spectrum
sensing operation for τl time units, the decision to sense is
taken affirmatively i.e. ai,k = 1, and vice versa. It should be
noted that the decision making of spectrum access decision
variable ai,k for this sub-optimal heuristic policy is taken
by individual SUs without any centralized control, which is
different from the optimal policy. Thus for this policy, if a
particular SU decides not to sense i.e., ai,k = 0, implying that
the i-th SU doesn’t have enough energy for sensing for the k-
th time slot, therefore setting the transmission power pi,k = 0.
In the optimal policy however, ai,k = 0 does not necessarily
imply pi,k = 0, as an SU may choose not to participate in
sensing, but still may access the spectrum if dictated by the
optimum solution.
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In the following section we analyze the optimization prob-
lem in the context of non-causal CSI and ESI and infinite
battery capacity. For a general M -horizon problem we provide
an analysis for determining pi,k and Ti,m(k) for a fixed τk,
and discuss feasibility conditions for finding a locally optimal
sensing time given fixed pi,k and Ti,m(k).

IV. NON-CAUSAL OPTIMIZATION WITH INFINITE BATTERY

We discuss the non-causal throughput maximization prob-
lem over a finite time horizon in the context of infinite battery
in two different settings: adaptive and non-adaptive sensing
time scenarios. Section IV.A focuses on the adaptive sensing
time strategy, where the sensing time is optimized for each
time slot, whereas Section IV.B describes the algorithm for
the optimization. We study the non-adaptive sensing time
optimization strategy in Section IV.C, where the sensing time
is kept at a fixed optimized value for all time slots.

A. Adaptive Optimization with Non-Causal CSI

In this subsection we derive the optimal transmission power
(pi,k) and shared energy (Ti,m(k)) while keeping the sensing
time τk fixed. The optimization problem under consideration
is then a jointly convex problem in pi,k and Ti,m,(k). In
the following subsection, we derive the optimal sensing time
keeping pi,k and Ti,m(k) fixed. The channel state information
gi,k, hi,k and the energy state information of the battery Hi,k

are assumed to be known non-causally for this scenario. The
following derivation assumes that ai,k is pre-determined either
according to an exhaustive search strategy or the heuristic
policy proposed in Section III.B. The optimal values are
determined using the KKT necessary conditions. As the overall
problem is non-convex, only local optima can be guaranteed.

1) Transmission Power and Transferred Energy Optimiza-
tion: We first provide an analysis for obtaining the optimal
transmission power and shared energy parameters in the con-
text of non-causal CSI and ESI, assuming the battery capacity
is infinite.

The problem for optimizing the transmission power and
transferred energy for an M -horizon setting is the following:

max
pi,k,Ti,m(k)

M∑
k=1

{D1(pi,k) +D2(pi,k)} (12)

s.t.
1

M

M∑
k=1

T − τk
T

(1− Pd(τk))
N∑
i=1

pi,kgi,k ≤ Qavg (13)

0 ≤ pi,k ≤ Pmax;∀i, k, 0 ≤ Ti,m(k), ∀i,m, k (14)
k∑
r=1

(ai,rpsτr + pi,r(T − τr)

{(1− Pd(τr))µ+ (1− Pfa(τr))(1− µ)}) ≤ Bi +
k−1∑
r=1

Hi,r

−
k∑
r=1

∑
m∈NT,i

Ti,m(r) +
k−1∑
r=1

∑
m∈NR,i

ηm,iTm,i(r);∀i, k

(15)

Remark: In the objective function, D1 and D2 are defined in
(7). The expectations from (12) and (13) are removed with
respect to (8) and (9), because the random parameters such
as channel gains and energy arrival process are known non-
causally in this case.

We formulate the Lagrangian for the problem as following:

L({pi,k} , {Ti,m(k)} , λ, {δi,k} , {αi,k} , {υi,m,k} , {βi,k})

=
M∑
k=1

D1(pi,k) +
M∑
k=1

D2(pi,k)

− λ

{
1

M

M∑
k=1

T − τk
T

(1− Pd(τk))
N∑
i=1

pi,kgi,k −Qavg

}

+
M∑
k=1

N∑
i=1

δi,kpi,k −
M∑
k=1

N∑
i=1

αi,k(pi,k − Pmax)

+
M∑
k=1

N∑
i=1

N∑
m=1,m6=i

υi,m,kTi,m(k)−
M∑
k=1

N∑
i=1

βi,k×{
k∑
r=1

(ai,rpsτr + pi,r(T − τr)

{(1− Pd(τr))µ+ (1− Pfa(τr))(1− µ)})−Bi −
k−1∑
r=1

Hi,r

+
k∑
r=1

∑
m∈NT,i

Ti,m(r)−
k−1∑
r=1

∑
m∈NR,i

ηm,iTm,i(r)

}
(16)

where ai,k satisfy the constraint in (11). λ, δi,k, αi,k, υi,m,k
and βi,k are the non-negative dual variables associated with
the average interference constraint, transmission power lower
and upper limits, transferred energy constraints and energy
causality constraint respectively.

We define C as a set of pi,k and Ti,m(k)’s which satisfy
(13),(14) and (15). We also define the vector of Lagrange
parameters as λ̃ = (λ, {δi,k} , {αi,k} , {υi,m,k} , {βi,k}). Then
the Lagrange dual function is expressed as:

g(λ̃) = max
{pi,k,Ti,m(k)}∈C

L({pi,k} , {Ti,m(k)} , λ, {δi,k} , {αi,k} ,

{υi,m,k} , {βi,k})
(17)

The dual problem is defined as:

min
λ̃�0

g(λ̃) (18)

where � denotes elementwise inequality. The above men-
tioned dual problem can be solved using a sub-gradient
method [48]. We determine the dual function g(λ) by
solving the KKT conditions for the optimization prob-
lem, where the primary and dual solutions are denoted as
p?i,k, δ

?
i,k, α

?
i,k, T

?
i,m(k), υ?i,m,k, β

?
i,k. The optimality conditions
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are given as the following:

∂L
∂pi,k

= χ1 + χ2 + δ?i,k − α?i,k

− T − τk
MT

λgi,k(1− Pd(τk))(T − τk)((1− Pd(τk))µ

+ (1− Pfa(τk))(1− µ))
M∑
r=k

β?i,r = 0 ∀i, k

∂L
∂Ti,m(k)

= 0 ∀i,m, k

λ

{
1

M

M∑
k=1

T − τk
T

(1− Pd(τk))
N∑
i=1

pi,kgi,k −Qavg

}
= 0

δ?i,kp
?
i,k = 0 ∀i, k; υ?i,m,kT

?
i,m(k) = 0 ∀i,m, k

α?i,k(p?i,k − Pmax) = 0 ∀i, k
λ̃ � 0, (13),(14),(15) hold. (19)

where χ1, χ2 represents the gradients of the achievable sum
rate with respect to pi,k when the PU is active and idle,
respectively. The expression for χ1 and χ2 can be written as:

χ1 =
dD1

pi,k
=
µ(T − τk)

MT log 2

hi,k(1− Pd(τk))

σ2 + σ2
in +

∑k
l=1 p

?
l,khl,k

(20)

χ2 =
dD2

pi,k
=

(1− µ)(T − τk)

MT log 2

hi,k(1− Pfa(τk))

σ2 +
∑k
l=1 p

?
l,khl,k

(21)

a) Optimal Transmission Power: From the above men-
tioned KKT conditions we find p?i,k by following the same
approach as [19]. To derive p?i,k we propose the following
lemma:

Lemma 1: Let i and j be two arbitrary SUs, where
i, j ∈ {1, 2, . . . , N} with p?i,k > 0 and p?j,k = 0, then the
following must be satisfied: di,k

λei,k+fi,k
≥ dj,k

λej,k+fj,k
∀k, where

di,k, ei,k, fi,k are given by the following expressions:

di,k =
T − τk
MT log 2

hi,k; ei,k =
T − τk
MT log 2

gi,k(1− Pd(τk))

fi,k = (T − τk)((1− Pd(τk))µ+ (1− Pfa(τk))(1− µ))

×
M∑
r=k

β?i,r

Proof. Please refer to Appendix A.

Now let π be a permutation over the set {1, 2, . . . , N} such
that dπ(i),k

λeπ(i),k+fπ(i),k
≥ dπ(j),k

λeπ(j),k+fπ(j),k
when i < j, i, j ∈

{1, 2, . . . , N}. Suppose that there are |I| SUs that can transmit
where I ⊆ {1, 2, . . . , N}. It can be checked that I =
{π(1), π(2), . . . , π(|I|)}. The following lemma provides a
way to determine |I|.

Lemma 2: |I| is given by the largest value of x such that:

dπ(x),k

λeπ(x),k + fπ(x),k
>

{
µ(1− Pd(τk))

σ2 + σ2
in +

∑x−1
y=1 Pmaxhπ(y),k

+

(1− µ)(1− Pfa(τk))

σ2 +
∑x−1
y=1 Pmaxhπ(y),k

}−1

and the optimal transmission power for the π(I)th SU can be
expressed as p?π(|I|),k = min{Pmax, P ∗k }, whereas p?π(a),k =
Pmax, a < |I| and p?π(a),k = 0, a > |I|, and P ∗k is
the solution to the nonlinear (quadratic) equation (43) (see
Appendix B).

Proof. Please refer to Appendix B.

b) Optimal Transferred Energy: The KKT conditions
corresponding to Ti,m(k) are as follows:

∂L
∂Ti,m(k)

{
≥ 0 for T ?i,m(k) = 0
= 0 for T ?i,m(k) > 0

(22)

The necessary condition for the energy transfer is summarized
in the following lemma:

Lemma 4: If it is optimal to transfer energy from the
ith SU to the mth SU at time slot k, i.e. T ?i,m(k) > 0,
then νm,k+1 = ηi,mνi,k, where νm,k is the inverted sum of
the future Lagrangian multipliers and expressed as : νm,k ={∑M

r=k βm,r

}−1
.

Proof. As according to the KKT condition (22), we know that
if T ?i,m(k) > 0 then ∂L

∂Ti,m(k) = 0, and υ?i,m,k = 0. Thus,

we have
∑M
r=k β

?
i,r = ηi,m

∑M
r=k+1 β

?
m,r, which leads to the

required result.

Similar to [25], the above result can be used to show that
energy transfer in both directions between a pair of SUs at
the same time slot cannot be an optimal since the efficiency
factor ηi,m ≤ 1 .

2) Optimal Sensing Time: Fixing the transmission power
and the transferred energy would result in the optimization
problem:

max
{τk}∈(0,T )

M∑
k=1

{D1(τk) +D2(τk)}

s.t.
1

M

M∑
k=1

T − τk
T

(1− Pd(τk))
N∑
i=1

pi,kgi,k ≤ Qavg

k∑
r=1

(ai,rpsτr + pi,r(T − τr)((1− Pd(τr))µ

+ (1− Pfa(τr))(1− µ))) ≤ Bi +
k−1∑
r=1

Hi,r

−
k∑
r=1

∑
m∈NT,i

Ti,m(r) +
k−1∑
r=1

∑
m∈NR,i

ηm,iTm,i(r), 0 ≤ τk ≤ T

(23)

where the lower bound on τk is changed to τl in case of the
heuristic policy for determining ai,k.
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We formulate the Lagrangian for the problem as follows:

L =
M∑
k=1

D1(τk) +
M∑
k=1

D2(τk)− λ(
1

M

M∑
k=1

T − τk
T

(1− Pd(τk))
N∑
i=1

pi,kgi,k −Qavg)

−
M∑
k=1

N∑
i=1

βi,k(
k∑
r=1

(ai,rpsτr + pi,r(T − τr)((1− Pd(τr))µ

+ (1− Pfa(τr))(1− µ)))−Bi −
k−1∑
r=1

Hi,r

+
k∑
r=1

∑
m∈NT,i

Ti,m(r)−
k−1∑
r=1

∑
m∈NR,i

ηm,iTm,i(r)) (24)

The gradient of the Lagrangian with respect to τk can be
written as:

∂L
∂τk

= (λω
(3)
k − ω

1
k)(1− Pd)− ω(2)

k (1− Pfa)− ω(4)
k

+ (λω
(3)
k + ω5

k − ω
(1)
k )(T − τk)

∂Pd
∂τk

+ (ω
(6)
k − ω

(2)
k )(T − τk)

∂Pfa
∂τk

where ω(1)
k , ω

(2)
k ω

(3)
k ω

(4)
k ω

(5)
k ω

(6)
k are given by the following

expressions:

ω
(1)
k =

µ

MT
log

{
1 +

∑N
i=1 pi,khi,k
σ2 + σ2

in

}

ω
(2)
k =

(1− µ)

MT
log

{
1 +

∑N
i=1 pi,khi,k
σ2

}

ω
(3)
k =

1

MT

N∑
i=1

pi,kgi,k

ω
(4)
k =

N∑
i=1

(ai,kps − pi,k((1− Pd)µ

+ (1− Pfa)(1− µ)))
M∑
r=k

βi,r

ω
(5)
k =

N∑
i=1

µpi,k

M∑
r=k

βi,r; ω
(6)
k =

N∑
i=1

(1− µ)pi,k

M∑
r=k

βi,r

This optimization problem is not convex in τk and a locally
optimum solution for the sensing time can be found by solving
the necessary KKT conditions ∂L

∂τk
= 0 for 0 < τk < T , while

∂L
∂τk
≥ 0 for τk = T and ∂L

∂τk
≤ 0 for τk = 0 or τk = τl.

The feasibility of obtaining a locally optimal τk is guaran-
teed if the following conditions are satisfied:

∂L
∂τk
|τk→T = (λω

(3)
k − ω

1
k)(1− Pd)

− ω(2)
k (1− Pfa)− ω(4)

k > 0

∂L
∂τk
|τk→0 < 0 (25)

For a given set of parameters defining the optimization prob-
lem, one needs to check whether there is a set of Lagrange
parameters λ, βi,r that satisfy the above mentioned conditions.
To this end, one can build up a lookup table of the relevant
Lagrange parameters for given sets of optimization problem
parameters (using numerical methods as no direct closed form
relationship exists), and use this for a feasibility check.

If feasible, the equation ∂L
∂τk

= 0 can be solved by applying
a bisection search method in the interval 0 ≤ τk ≤ T or
τl ≤ τk ≤ T , depending on the method for finding ai,k.

B. Algorithm for Locally Optimal Transmission Power, Shared
Energy and Sensing Time

In this section we summarize the above mentioned opti-
mization procedure in an algorithmic form (Algorithm 1) for
computing locally optimal values of the transmission power,
sensing time and shared energy. We assume that there are pre-
decided tolerance values ε and δ. C(pi,k, τk) represents the
achievable sum rate corresponding to the transmission power
pi,k and sensing time τk.

Algorithm 1 Algorithm for calculation of optimal parameters
for fixed ai,k

1: Initialization: Choose a feasible initial sensing time τ0k
for all k ∈ {1, 2, . . . ,M}, tolerance of the algorithm δ,
Lagrange parameter λ0 and step-size of the sub-gradient
algorithm ε. Choose also the initial achievable sum rate
as 0.

2: repeat
3: For l = 0, 1, . . . ( l is an iteration number)
4: Determine the optimal transmission power pl+1

i,k by
solving the quadratic non-linear equation (43).

5: Compute the shared energy T l+1
i,m (k) by solving the

following iteration:

T l+1
i,m (k) =

{
T li,m(k)−ε(

M∑
r=k

βli,r−ηi,m
M∑

r=k+1

βlm,r)

}+

(26)
where βi,k’s are determined by a dual sub-gradient
algorithm.

6: Fixing the pl+1
i,k and T l+1

i,k , the τ l+1
k is solved by

applying a bisection search method.
7: Solve for λ in the optimization problem (18) by a dual

sub-gradient method given as

λl+1 =

{
λl − ε

{
Qavg − E

{∑M
k=1

T−τ l+1
k

MT (1 −

Pd(τ
l+1
k ))

∑N
i=1 p

l+1
i,k gi,k

}}}+

.

8: until Convergence |C(pl+1
i,k , τ

l+1
k ) − C(pli,k, τ lk)| ≤

δ ∀i,m, k, where C(pi,k, τk) is the achievable sum rate
expression from (8).

Convergence analysis: The objective function of the op-
timization problem in (8) is non-decreasing from iteration
to iteration of the alternating optimization procedure as at
each iteration it is maximized with respect to a parameter
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by fixing the other parameters. It can be easily shown that
by considering only the short term constraints (10), in the
extreme scenario, i.e, ai,k = 1 ,∀i, k,∀k, τ?k = 0 ,∀k and
p?i,k = Pmax ,∀i, k, the achievable sum rate is upper bounded
by the following expression:

E

{
M∑
k=1

µ

2M
log2

{
1 +

∑N
i=1 Pmaxhi,k
σ2 + σ2

in

}

+
M∑
k=1

(1− µ)

2M
log2

{
1 +

∑N
i=1 Pmaxhi,k

σ2

}}

where the expectation is taken over hi,k. Note that the ad-
ditional constraints can only limit the feasible set further
and thus lower the objective function value. Using Jensen’s
inequality, we can write:

E

{
M∑
k=1

µ

2M
log2

{
1 +

∑N
i=1 Pmaxhi,k
σ2 + σ2

in

}

+

M∑
k=1

(1− µ)

2M
log2

{
1 +

∑N
i=1 Pmaxhi,k

σ2

}}

≤
M∑
k=1

µ

2M
log2

{
1 +

∑N
i=1 PmaxE {hi,k}
σ2 + σ2

in

}

+

M∑
k=1

(1− µ)

2M
log2

{
1 +

∑N
i=1 PmaxE {hi,k}

σ2

}

=

M∑
k=1

µ

2M
log2

{
1 +

∑N
i=1 Pmax
σ2 + σ2

in

}

+

M∑
k=1

(1− µ)

2M
log2

{
1 +

∑N
i=1 Pmax
σ2

}
(27)

Thus, the objective function is upper bounded by the achiev-
able sum rate using a feasible policy involving ai,k, pi,k, τk.
Since a non-decreasing sequence that is upper bounded must
converge, it follows that the alternating optimization algorithm
above converges to a local optimum.

C. Non-adaptive Optimization with Non-Causal CSI

In this section we propose a policy (albeit sub-optimal)
where instead of optimizing the sensing time for each indi-
vidual time slot, we use a constant (but optimized) sensing
time for all time slots. In this case, the analysis for the
transmission power and transferred energy (for a fixed sensing
time) remains the same as before. A locally optimum non-
adaptive sensing time can be found by solving the following

optimization problem (where pi,k, Ti,m(k) are kept fixed):

max
{τ}

M∑
k=1

{D1(τ) +D2(τ)}

s.t.
1

M

M∑
k=1

T − τ
T

(1− Pd(τ))
N∑
i=1

pi,kgi,kai,k ≤ Qavg

0 ≤ τ ≤ T
k∑
r=1

(ai,rpsτ + pi,r(T − τ)((1− Pd(τ))µ

+ (1− Pfa(τ))(1− µ))) ≤ Bi +
k−1∑
r=1

Hi,r

−
k∑
r=1

∑
m∈NT,i

Ti,m(r) +
k−1∑
r=1

∑
m∈NR,i

ηm,iTm,i(r) (28)

We can formulate a Lagrangian L∞ similar to (24), and solve
for a locally optimum τ∗ by solving ∂L∞

∂τ = 0. Feasibility
and convergence analysis of this setting can be carried out in
a similar fashion to the adaptive case.

V. CAUSAL OPTIMIZATION WITH FINITE BATTERY

In this section, we consider the finite horizon achievable
sum rate optimization problem under the more realistic as-
sumption of causal CSI and ESI, and a finite battery setting.
Similar to the previous section, this optimization can be done
for non-adaptive and adaptive sensing time both. For space
limitations, we only consider the adaptive sensing time strategy
below.

A. Achievable Sum Rate Optimization with Causal CSI and
ESI

The throughput optimization in the context of causal CSI
and ESI with finite battery is a stochastic control problem
and can be solved by dynamic programming (DP) techniques.
Note that in the case of DP, at each stage, it is natural to
consider the optimization over ai,k in an exhaustive search,
along with optimization over discretized values of all the
continuous optimization variables for facilitating numerical
implementation.

1) Information Pattern: In each time slot the FC receives
the CSI between the PU transmitter and the SU receivers
gk = {g1,k, g2,k, . . . , gN,k} causally with the assumption of a
priori knowledge of the PU transmission levels and channel
reciprocity. The CSI between the SU transmitter and the FC
hk = {h1,k, h2,k, . . . , hN,k} is also received at the FC by
channel training, estimation and feedback mechanisms. The
battery state information of the individual SUs are collected
at the FC and collated as Bk = B1,k, B2,k, . . . , BN,k. The
information available at the kth time slot is given by the tuple
Jk = {gk,hk,Bk,Jk−1}.
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2) Dynamic Programming Algorithm: We denote the im-
mediate per-stage cost function for the stochastic control
problem as

C(pi,k, τk) = D1(pi,k, τk) +D2(pi,k, τk)

−λ

{
T − τk
MT

(1− Pd(τk))
N∑
i=1

pi,kgi,k −Qavg

}
(29)

Here, λ is the Lagrange parameter corresponding to the
average interference constraint. D1 and D2 are defined in (7).

Combining all the other short term constraints on the
transmission power, shared energy and sensing time, and the
energy causality constraint, along with the binary search space
of ai,k, we define the feasible set for the optimization variables
as:

A =

{
(ai,k, pi,k, Ti,m(k), τk) : ai,k, pi,k, Ti,m(k), τk

satisfy(10), (11)

}
For a fixed λ, the optimal values of transmission power,
sensing time and energy shared can be determined by the
following theorem:

Theorem 1. If the initial condition is J1 = {g1,h1,B1},
then the value of the finite horizon finite battery problem with
causal information is given by V1(g1,h1,B1), which can be
computed by the backward Bellman dynamic programming
equation:

Vk(gk,hk,Bk) = max
(ai,k,pi,k,Ti,m(k),τk)∈A

[C(pi,k, τk)

+ E[Vk+1(gk+1,hk+1,Bk+1)|ai,k, pi,k, Ti,m(k), τk]],

k = 0, 1, . . . ,M − 1 (30)

where the terminal condition is given by VM (gM ,hM ,BM ) is
given as the solution to the optimization problem (8)-(11) for a
single slot k = M with the causal knowledge of gM ,hM ,BM .

Proof. The proof can be obtained by the standard optimality
conditions for the finite horizon stochastic control problem
[49], and is omitted for brevity.

The solution of the causal optimization problem, which can
be computed numerically, is obtained as:{

a?i,k, p
?
i,k, T

?
i,m(k), τ?k

}
= argmaxai,k,pi,k,Ti,m(k),τk∈A

[C(pi,k, τk) + E[Vk+1(gk+1,hk+1,Bk+1)|ai,k,
pi,k, Ti,m(k), τk]] (31)

3) Sub-gradient Method for the Lagrange parameters: The
optimal value of λ from (29) can be found by solving the
following equation:

λ

{
E

{
M∑
k=1

T − τk
MT

(1− Pd(τk))
N∑
i=1

pi,kgi,k

}
−Qavg

}
= 0

(32)

This is achieved by using a sub-gradient algorithm [36] by
updating the value of λ

λl+1 =

{
λl − αl

{
Qavg

− E

{
M∑
k=1

T − τk
MT

(1− Pd(τk))
N∑
i=1

pi,kgi,k

}}}+

(33)

where l is the iteration index and αl is a scalar step size
parameter for the lth iteration satisfying

∑∞
l=1 α

l = ∞ and∑∞
l=1(αl)2 <∞, and {x}+ = max {x, 0}.
Note that the DP algorithm (31) and the subgradient based

update (33) are performed offline, iteratively until conver-
gence, purely based on the statistics of the channel gains
and harvested energy information. Since there is no closed
form expression to the optimal solutions, one needs to dis-
cretize the search space for the continuous control variables
pi,k, Ti,m(k) and τk, and the state variables gk,hk,Bk. With
these discretized search space, the FC creates a lookup table
which is shared with all SUs. In real time the FC receives the
continuous valued channel gains and battery states and check
for the closest quantization point in its lookup table. The table
index for the optimal sensing time, transmission power and
energy shared is fetched from the look-up table and sent to
the individual SUs, and then used by the SUs for sensing,
information transmission and energy sharing.

VI. SUB-OPTIMAL POLICIES

In order to apply the dynamic programming algorithm for
a fixed value of λ, we discretize both the state space parame-
ters gk,hk,Bk and action space parameters pi,k, Ti,m(k), τk,
where i = 1, 2, . . . , N and k = 1, 2, . . . ,M . If we consider
A and S to be the sets of discretized action (control) space
and state space respectively for a given time slot (considering
all the users together), then the complexity of the dynamic
programming algorithm becomes O

(
(2N |A||S|)M

)
, where

the factor 2N comes from the binary variable ai,k for N
secondary users. To combat this exponential complexity, in this
section we propose a number of low-complexity suboptimal
policies.
A. Limited Look-ahead Policy

Here we propose a limited 2-Horizon look-ahead policy
based on the approximate dynamic programming literature
[39]. For this policy, only a two horizon lookup table in the
backward Bellman algorithm is created. For any time slot, the
causal optimization is performed with the help of the above
mentioned lookup table considering only one future time slot
at a time.

B. Ad-Hoc Policy

Here we formulate a sub-optimal policy based on the nec-
essary conditions determined in the Section IV for non-causal
information with infinite battery and extend that approach to
the causal information scenario with finite battery capacity.
To alleviate the complexity associated with optimizing the
achievable sum-rate over all time slots, we implement a greedy
algorithm and formulate the optimization problem in terms of
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individual time slots. The optimization of the sensing time
τk is done through a discretization process similar to the DP
algorithm. The parameter corresponding to the decision to
sense ai,k is determined using the heuristic policy proposed
in Section III.B. The simplified optimization problem over
individual time slots becomes:

max
pi,k

µ

M

T − τk
T

(1− Pd(τk)) log2

{
1 +

∑N
i=1 pi,khi,k
σ2 + σ2

in

}

+
1− µ
M

T − τk
T

(1− Pfa(τk)) log2

{
1 +

∑N
i=1 pi,khi,k
σ2

}

s.t.
T − τk
T

(1− Pd(τk))
N∑
i=1

pi,kgi,k ≤ Qavg (34)

0 ≤ pi,k ≤ Pmax∀i, k; 0 ≤ τk ≤ T ∀k; 0 ≤ Ti,m(k) ∀i,m, k
(ai,kpsτk + pi,k(T − τk)

{(1− Pd(τk))µ+ (1− Pfa(τk))(1− µ)}) ≤ Bi,k (35)

We can solve this problem using the same approach as in
[19]. Using the techniques used in Section IV, we conclude
the following:

• Only one SU in the set {1, 2, . . . , N} would be able to
transmit power from the open set (0, Pmax). All the other
SUs either transmit with Pmax or do not transmit in the
time slot under consideration.

• If i 6= j, and pi,k > 0 and pj,k = 0, then hi,k
λ?µgi,k+δ∗i

≥
hi,k

λ?µgi,k+δ∗j
, where λ? and δ∗i are the optimal Lagrange

parameters corresponding to (34) and (35), respectively.
• The above inequality also holds for the scenario when
pi,k = Pmax and pj,k ∈ [0, Pmax).

Thus we infer that for such choices of i and j , the following
condition holds:{

gj,k
hj,k
− gi,k
hi,k

}
≥ 1

λ?µ

{
δ?i
hi,k
−

δ?j
hj,k

}

If we fix λ? > 0 and δ?j = 0 then we can have hi,k
gi,k
≥ hj,k

gj,k
.

Using the above mentioned policy we sort all the SUs ac-
cording to the descending order of the ratio of their direct and
interference channel gains. Starting with the SU corresponding
to the highest ratio, we determine the SU transmission power
of the according to the following expression:

p?i,k = min

{
Pmax,

TQavg
(T − τk)gi,k(1− Pd(τk))

,

Bi,k − psτk
(T − τk) {(1− Pd(τk))µ+ (1− Pfa(τk))(1− µ)}

}
(36)

If there is still energy left in the battery after the transmission
process, the rest of the energy is shared to the SU with
highest µhµg , ensuring that there is no battery overflow [25]. The

optimal transmission energy shared is given by the following
expression:

T ?i,m(k) = min

{
max

{{
Bmax −Bm,k + Em,k

−2µHm

}
/ηi,m; 0

}
;Bi,k

}
(37)

C. Computational complexity

Heuristic Policy for ai,k: The proposed heuristic policy for
finding the spectrum access decision variable ai,k ensures that
individual SUs can determine their corresponding spectrum
access decision ai,k in a decentralized fashion. Compared
to the optimal policy, no look-up table is required in the
FC for specifically optimizing ai,k for the heuristic policy.
Thus in this scenario, the value of ai,k can be instantaneously
computed as the indicator variable IBi,k≥psτl , resulting in a
computational complexity of O(1) for a given i, k. However,
for optimizing the rest of the optimization variables like τk,
pi,k and Ti,m(k) look up table needs to be created and stored
in FC as usual via dynamic programming, resulting in an ex-
ponential complexity of O

(
(|A||S|)M

)
. Therefore the overall

complexity of the heuristic algorithm is O
(
MN(|A||S|)M

)
.

Limited Look ahead Policy: For this sub-optimal policy,
the look up table is only stored for two time slots. Thus the cor-
responding computational complexity is O(M(2N |A||S|)2).
Ad-hoc Policy: For the ad-hoc policy, the value of the
transmission power pi,k, Ti,m(k) are obtained by the closed
form expressions in (36-37), for each k, while ai,k is computed
using the heuristic policy and τk is computed using a set of
discretized values, say of cardinality |Aτ |. In this case, the
complexity is O(MN2(|Aτ ||S|)M ).

VII. SIMULATION RESULTS

In this section we present some numerical results to illus-
trate the performance of the various algorithms considered
in the previous sections. We assume the energy harvesting
process at the SUs is an exponentially distributed random
process with a mean of 1 µ J, unless otherwise stated. The PU
activity probability is set to µ = 0.8 (we also present some
results for µ = 0.2 later in this section). The sensing channel
signal to noise ratio (SNR) is assumed to be −15dB. The PU
signal variance is taken to be σ2

x = 1 mW. The length of a
time slot is taken as T = 2 ms, and the individual mini-slot
length is 0.001 ms. The probability of false alarm limit of the
heuristic policy κ is taken to be 0.1. The sampling frequency
is assumed to be 1 MHz and the normalized threshold of
detection is assumed to be ε

σ2
n

= 1.006. This corresponds to
a minimum sensing time limit τl = 0.05 ms. This constraint
on the minimum sensing time has been applied only to the
heuristic policy based methods.

We assume a secondary network with N = 2 users and
with a maximum transmission power of 10 mW each. The
PU interference and noise variance for the channel between
the SUs and the FC is taken to be σ2

in = σ2 = 4 × 10−10

W. Assuming the maximum average received SNR at the FC
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of approximately 5 dB (with the primary interference active),
this corresponds to a path loss of approximately −87 dB with
a path loss exponent of 2.7 over a distance of 100 metres
between the SU and the FC, using the simplified path loss
model from [p. 46, [50]], where the reference distance for
the antenna far field is 10 m, and transmission frequency at
2.4 GHz. The energy transfer efficiency for energy sharing is
assumed to be 0.4. The average interference limit (normalized
by the path loss factor between the SUs and the PU receiver)
Qavg = 5 mW. The initial battery level for each SU is assumed
to be 0.4 µ J. For the dynamic programming simulation
the state space parameters gk,hk,Hk and the action space
parameters pi,k, Ti,m(k), τk are quantized into 5 different
discrete levels.

In Fig.3, we plot the average sensing time (averaged over
the time horizon) for the non-causal CSI and ESI denoted by
τavg with respect to the average harvested energy denoted by
µH , keeping the mean of the channel mean gains denoted by
µg and µh constant, for M = 2, 3, 4. The averages are taken
over 50 Monte-Carlo simulations. From Fig.3, it is evident
that the average sensing time τavg decreases monotonically
by increasing the length of the horizon. As a numerical
comparison, for mean harvested energy µH = 3.5µJ , the
normalized average sensing times corresponding to M = 3
and M = 4 are 12.1 and 31.7 percent less compared to
M = 2 respectively. This is due to the fact that increasing the
length of horizon M in the non-causal CSI and battery state
scenario helps to spread out the sensing time over multiple
time slots, which means on average the transmission time
increases and the sensing time decreases with increasing M .
A similar behaviour of τavg is observed when plotted against
increasing µh/µg , keeping µH fixed, and hence not shown
here.

Fig.4 compares the average throughput with respect to
the ratio of mean channel gain µh/µg keeping µH fixed
for horizon length M = 2 and M = 3 with non-causal
information. The spectrum sensing decision variable is opti-
mized using both the exhaustive search and a MINLP solver
called MIDACO [51]. From the figure, it is noticeable that
both approaches result in approximately the same throughput.
Although the MINLP solver is computationally faster, neither
of these methods is scalable for moderate to large values of
M,N .. Fig.5 shows the average throughput plotted against the
battery capacity Bmax for the adaptive and the non-adaptive
optimization policy with non-causal and causal information.
These simulations are averaged over 100 Monte-Carlo iter-
ations. We can notice that for Bmax = 1.4µJ the average
throughput corresponding to causal non-adaptive policy is 17.5
percent less compared to its adaptive counterpart. As expected,
the adaptive policy out-performs its non-adaptive counterpart
at the expense of higher computational complexity.

Fig.6 shows the optimized average throughput, i.e. average
throughput plotted against battery capacity Bmax with non-
causal CSI and battery state scenario with the exhaustive
search technique (for the decision to sense), causal CSI and
ESI with exhaustive search and heuristic policy (for the
decision to sense). It is noticeable that for M = 4 and
Bmax = 1.4µJ the average throughput corresponding to

causal adaptive policy and heuristic policy are 5 and 11.7 per-
cent less compared to its non-causal counterpart, respectively.
As expected the average throughput increases with increasing
horizon length and non-causal CSI/ESI scenario provides an
upper bound for the causal counterpart. As the heuristic policy
is less computationally complex, we are able to simulate the
average sum throughput with causal information with this
policy for horizon M = 10, 15, 20 in Fig. 9. As expected, it is
seen that the average sum throughput increases with increasing
horizon length.
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We have compared the policies proposed in our previous
work in [39] with the ones introduced in this present work
in Fig.7. The figure includes plots for average throughput
with respect to battery capacity Bmax for Non-causal, causal
and heuristic policy with horizon length M = 4. The plots
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show that the policies introduced in this work outperforms
their counterpart policies introduced in [39]. For a numerical
comparison, for Bmax = 0.8µJ , the average throughput
corresponding to the causal policy introduced in [39] is 13.3
percent less than its counterpart introduced in this paper. This
is due to the fact that in our previous work, one additional
optimization variable was spectrum sensing decision θk, which
could only take binary values, whereas in our present work,
the problem formulation includes parameters like probability
of detection Pd and probability of false alarm Pfa, which
are continuous functions of sensing time parameter τk. We
have also simulated comparative plots for Non-causal, causal
and heuristic policy when the PU traffic is comparatively light
in Fig.8. For this figure, we have assumed the PU activity
probability to be µ = 0.2. The plots show that the average
throughput for this scenario is higher compared to the scenario
involving µ = 0.8. This is due to the fact that PU spectrum
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Fig. 7: Average Throughput comparison between Proposed
policy and the policy in [38] for Non-Causal, Causal and
Heuristic Policy vs Battery Capacity Bmax for Horizon length
M=4.
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availability for µ = 0.2 is much more significant compared to
the case when µ = 0.8.

Fig.10 shows the ratio of average throughput between
heuristic and non-causal policy for horizon length M = 4
with respect to varying level of battery capacity Bmax. We
also provide an upper bound based on a feasible policy for the
non-causal case for this ratio of average throughput between
the heuristic and the non-causal policy. We assume that the
sensing time for every time slot to be τk = τl. We also assume
that no energy is shared between the SUs. Assuming that each
SU transmits the same amount of power at every time instant,
we can derive the following expression as an upper bound of
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pi,k.

pi,k ≤ min

{
Pmax,

Qavg

N T−τl
T (1− Pd(τl))

∑M
k=1

∑N
i=1 gi,k

,

min
{
Bmax, Bi +

∑k−1
r=1 Hi,r − psτl(

∑k
r=1 ai,r)

}
k(T − τl)((1− Pd(τl))µ+ (1− Pfa(τl))(1− µ)

}
(38)

We also assume that at every time slot at least one SU decides
to sense, the probability of which is very high when the
number of SUs becomes large. This allows us to use the
tightest upper bound which satisfies all such MN constraints
in (38) for the transmission by all SUs at all time slots. We
propose a lower bound on the throughput ratio, by using
the upper bound expression for the non-causal policy from
equation (27). The expression in (27) assumes that the inter-
ference constraint is absent from the optimization problem,
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Fig. 12: Average Throughput vs Energy Transfer Efficiency η
Horizon length M=4 with Non-Causal, Causal and Heuristic
Policy.

resulting in an enlarged feasible set of transmission power
and sensing time. Thus the corresponding lower bound is
rather loose compared to its upper bound counterpart. The
throughput ratio between the Heuristic and Non-causal policy
increases gradually with battery capacity Bmax, because as
the battery capacity Bmax increases, on average the amount
of energy that can be stored without overflow in the battery
also increases. This further makes the optimal solutions for
non-causal scenario less superior compared to its heuristic
counterpart, as both policies have more energy at their disposal
for the sensing, transmission and energy sharing process.

In Fig. 11, we compared the average throughput with respect
to the battery capacity Bmax with causal information and
adaptive sensing time, limited look-ahead policy and ad-hoc
policy. From the simulation, we notice that for M = 4 and
Bmax = 1.4µJ the average sum throughput corresponding
to causal limited look-ahead policy and ad-hoc policy are



2332-7731 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2019.2908860, IEEE
Transactions on Cognitive Communications and Networking

16

13.7 and 20 percent lower compared to its causal adaptive
counterpart respectively. Between the limited look-ahead and
ad-hoc policy the first one is more computationally complex,
but performs better in terms of average sum throughput,
which again illustrates the trade-off between complexity and
performance.

In Fig.12, we use an asymmetric energy harvesting and
channel gain model. This situation is different compared to
all the previous figures, where we assumed that the mean
channel gains µg and µh and mean harvested energy µH are
the same for the two SUs. Intuitively, SUs do not have any
incentive to share energy with their neighbours if their CSI
and ESI are symmetric. We assume that the mean channel
gain between the SU transmitters and the PU receiver, µg = 1
for both SUs, but the mean channel gain between the SU
transmitters and the FC is different for different SUs. We
take µ1

h = 1 and µ2
h = 10. The harvested energy mean is

taken as µ1
H = 10µJ and µ2

H = 1µJ . The battery capacity
is assumed to be Bmax = 1.5µJ . The figure shows that
the average sum throughput indeed increases with increasing
energy transfer efficiency, indicating an increased incentive to
share energy in the asymmetric case. This increase is more
prominent in the non-causal and causal dynamic programming
graphs as compared to the heuristic policy, where the increase
is marginal in nature.

VIII. CONCLUSIONS

This paper deals with a mixed integer non-linear pro-
gramming problem of maximizing a finite horizon expected
achievable sum rate of a cognitive multiple access channel
consisting of energy harvesting SUs under long term average
interference constraints at the PU with a cooperative spectrum
sensing model, where the SUs are also capable of directional
energy sharing with their neighbours. We first investigated
this optimization problem with non-causal CSI and infinite
battery settings, where the integer variable for decision to
sense is optimized by an exhaustive search approach when
the horizon length and number of SUs are small, and a less
computationally complex heuristic policy in the case of longer
horizon lengths and moderate to large number of SUs. In
the non-causal case, we also provided analytical solutions
for the sensing time, transmission power, energy shared. The
performance in the non-causal scenario is used to provide
an upper bound on the performance of its causal CSI (and
ESI) counterpart. The causal CSI and ESI scenario with
finite battery setting is handled using dynamic programming
techniques. To combat the curse of dimensionality of dynamic
programming, we also propose two sub-optimal policies for
the scenario involving causal information, namely limited look-
ahead and ad-hoc policy. Through simulations we found
that the energy sharing is only beneficial in the situation
involving asymmetric energy harvesting and channel condition
scenarios, i.e, when some SU is harvesting significantly less
on average compared to other SUs, but has a better channel
for data transmission.

APPENDIX A
PROOF OF LEMMA 1

Proof. Since p?j,k = 0 and p?i,k > 0 from the KKT condition
it follows that δ?i,k = 0, α?j,k = 0, and δ?j,k ≥ 0, α?jik ≥ 0.
Using the KKT optimality conditions, it can be deduced after
some basic algebra that:

(T − τk)

MT log 2
hi,k

{
µ(1− Pd(τk))

σ2 + σ2
in +

∑N
l=1 p

?
l,khl,k

+
(1− µ)(1− Pfa(τk))

σ2 +
∑N
l=1 p

?
l,khl,k

}
≥ T − τk

MT
λgi,k(1− Pd(τk))

+(T−τk) {(1− Pd(τk))µ+ (1− Pfa(τk))(1− µ)}
M∑
r=k

β?i,r

(39)

(T − τk)

MT log 2
hj,k

{
µ(1− Pd(τk))

σ2 + σ2
in +

∑N
l=1 p

?
l,khl,k

+
(1− µ)(1− Pfa(τk))

σ2 +
∑N
l=1 p

?
l,khl,k

}
≤ T − τk

MT
λgj,k(1− Pd(τk))

+(T−τk) {(1− Pd(τk))µ+ (1− Pfa(τk))(1− µ)}
M∑
r=k

β?j,r

(40)

The above two equations imply the required result.

APPENDIX B
PROOF OF LEMMA 2

Proof. First, we need the following lemma:
Lemma 3: The optimal solution of the problem has at most
one user indexed by i that satisfies 0 < p?i,k < Pmax where
i = π(|I|), and the following condition must hold for the
optimal transmission power:

dπ(|I|),k

λeπ(|I|),k + fπ(|I|),k
=

{
µ(1− Pd(τk))

σ2 + σ2
in +

∑|I|
c=1 Pmaxhπ(c),k

+
(1− µ)(1− Pfa(τk))

σ2 +
∑|I|
c=1 Pmaxhπ(c),k

}−1
(41)

Proof. (By contradiction) We assume that there exist two users
i and j such that with 0 < p?i,k < Pmax and 0 < p?j,k < Pmax.
From the KKT condition we determine that δ?i,k = δ?j,k =
0 and α?i,k = α?j,k = 0 respectively. Using these values we
can deduce: di,k

λei,k+fi,k
=

dj,k
λej,k+fj,k

. Since hi,k and gi,k’s are
independent of hj,k and gj,k’s and they are drawn from a
continuous distribution and λ is constant, it can be inferred that
the above equality is satisfied with a probability of measure
zero. Thus we can deduce that there is at most one user (say
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user i) with 0 < p?i,k < Pmax. Thus the following expression
holds for transmission power for ith SU:

di,k
λei,k + fi,k

=

{
µ(1− Pd(τk))

σ2 + σ2
in +

∑|I|
c=1 Pmaxhπ(c),k

+
(1− µ)(1− Pfa(τk))

σ2 +
∑|I|
c=1 Pmaxhπ(c),k

}−1
(42)

Using the KKT conditions it is easy to check that for any
user z ∈ I, z 6= i, with p?z,k > 0 must satisfy dz,k

λez,k+fz,k
≥

di,k
λei,k+fi,k

. Thus it follows that i = π(|I|).

From this result, we can now infer that there are only two
possible sets of solutions for p?i,k, k ∈ I:

• Case I: p?π(a),k = Pmax, a = 1, 2, . . . , |I|.
• Case II: p?π(a),k = Pmax, a = 1, 2, . . . , |I| − 1

The expression for p?π(|I|),k can be solved by solving the
following non-linear equation:

{
µ(1− Pd(τk))

ρ1 + p?π(|I|),khπ(|I|),k
+

(1− µ)(1− Pfa(τk))

ρ2 + p?π(|I|),khπ(|I|),k

}−1
= ω

(43)
where

ρ1 = σ2 + σ2
in +

|I|−1∑
c=1

Pmaxhπ(c),k

ρ2 = σ2 +

|I|−1∑
c=1

Pmaxhπ(c),k

ω =
dπ(|I|),k

λeπ(|I|),k + fπ(|I|),k

Since p?π(|I|),k ≤ Pmax, thus we can write the optimal
transmission power as p?π(|I|),k = min{Pmax, P ∗k }, where P ∗k
is the feasible solution to the quadratic equation (43).

All that is required now is to show the fact that optimal
number of active users |I| is the largest value of x such that :

dπ(x),k

λeπ(x),k + fπ(x),k
>

{
µ(1− Pd(τk))

σ2 + σ2
in +

∑x−1
c=1 Pmaxhπ(c),k

+
(1− µ)(1− Pfa(τk))

σ2 +
∑x−1
c=1 Pmaxhπ(c),k

}−1
(44)

It can be shown that both the case I and case II, for any SU
π(b), b = 1, . . . , |I|, the above inequality holds. Since from
Lemma 1, it can be said that its left hand side decreases with x,
while the right hand side increases with x, thus it is sufficient
to show that the inequality holds for b = |I|. Thus in this case

δ?π(|I|),k = 0 and α?π(|I|),k ≥ 0, we have

dπ(|I|),k

λeπ(|I|),k + fπ(|I|),k
≥

{
µ(1− Pd(τk))

σ2 + σ2
in +

∑|I|
c=1 p

?
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+
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σ2 +
∑|I|
c=1 p

?
|I|,khπ(c),k

}−1

>

{
µ(1− Pd(τk))

σ2 + σ2
in +

∑|I|−1
c=1 Pmaxhπ(c),k

+
(1− µ)(1− Pfa(τk))

σ2 +
∑|I|−1
c=1 Pmaxhπ(c),k

}−1
Next we have to show that for any user π(j), j = |I| +
1, . . . ,M , the inequality does not hold. Again it is sufficient
to show that it does not hold for π(|I| + 1). For that user
δ?π(|I|+1),k ≥ 0 and α?π(|I|+1),k = 0, we have

dπ(|I|+1),k

λeπ(|I|+1),k + fπ(|I|+1),k
≤

{
µ(1− Pd(τk))

σ2 + σ2
in +

∑|I|
c=1 p

?
|I|,khπ(c),k

+
(1− µ)(1− Pfa(τk))

σ2 +
∑|I|
c=1 p

?
|I|,khπ(c),k

}−1

≤

{
µ(1− Pd(τk))

σ2 + σ2
in +

∑|I|
c=1 Pmaxhπ(c),k

+
(1− µ)(1− Pfa(τk))

σ2 +
∑|I|
c=1 Pmaxhπ(c),k

}−1
Thus we can determine |I|, and the proof is complete.
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