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Capacity Analysis of Selection Cooperation in
Wireless Ad-Hoc Networks

Yanli Xu, Ping Wu, Lianghui Ding, and Lianfeng Shen

Abstract—In this letter, we analyze the transmission capacity
of selection cooperation (SC) in wireless ad-hoc networks. We
first derive the distribution of decoded relay set which follows
inhomogeneous Poisson point process (PPP) and then present
the closed-form expressions for the outage probability and
transmission capacity. Furthermore, we propose an upper bound
of source node density given an outage probability constraint and
find an optimal transmitter density at which the transmission
capacity reaches its maximum. Numerical results show that the
performance gain provided by SC can be optimally adjusted
by selecting appropriate node density. It is also shown that SC
further expands advantage at severer large-scale fading.

Index Terms—Selection cooperation, interference, outage prob-
ability, transmission capacity, stochastic geometry analysis.

I. INTRODUCTION

SELECTION cooperation (SC) is an attractive alternative
of the cooperative schemes, wherein each source is paired

with a best relay chosen from a set of potential ones [1]. It
has been proved that SC can achieve full-order spatial diversity
while avoiding the reduction of spectral efficiency compared
to multiple-relay cooperation. The performance analysis of SC
in a point to point system has been done rather extensively [2],
[3].

However, these analyses are insufficient when SC is applied
in large-scale wireless networks. On the one hand, interference
is non-ignorable in an overlaid wireless network. On the
other hand, the topology is random due to the mobility,
death and new arriving of nodes which leads to random
large-scale fading. Thus, to evaluate the advantage of SC,
we need to analyze the average performance by considering
both interference and random distances between transmitters.
Stochastic geometry [4] provides a natural way of defining
and computing macroscopic properties of large-scale networks
by averaging over all potential geometrical patterns of nodes.
Based on this theory, several works have been done to extend
the investigation from a point to point system to a network.
Outage performance and transmission capacity are presented
for the case of non-cooperation communication in [5], [6].
For cooperation case, the transmission capacity is investigated
in [7] without relay selection. In [8], a relay selection region
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is presented which is based on a uniformly distributed relay
set for each source. This assumption can not guarantee that a
best relay will be selected.

In this letter, we first derive the distribution of decoded
relay set and then we present closed-form expressions for the
average outage probability and transmission capacity of SC.
Finally, upper bound source node density is presented given
a tolerant outage probability. And an optimal density is also
provided to achieve maximum performance gain via SC.

II. SYSTEM MODEL

We consider an ad-hoc wireless network consisting of a
large number of transmitters distributed over a large plane. We
assume that the number of transmitters follows a homogenous
PPP at a snapshot in time. This assumption is roughly equiva-
lent to that transmitting nodes are independently and uniformly
distributed, which is often reasonable for networks with indis-
criminate node placement or substantial mobility. Transmitters
select themselves as source nodes or potential relay nodes
with some fixed probabilities. According to the thinning theory
of Poisson process [9], the distributions of source nodes and
potential relay nodes still follow homogenous PPPs, which
are denoted by Θ(𝜌𝑠) and Θ(𝜌𝑟) with node densities 𝜌𝑠 and
𝜌𝑟 respectively. The set of receivers is disjoint with that of
transmitters. Each source node has a unique intended receiver
at a distance 𝑑0. For easy explanation, we consider a source
node 𝑆 located at the origin and its associated destination 𝐷.
This pair serves as the reference communications link. The
statistical property of this communication link can also be
applied to others due to stationary [9].

Signals are subject to large-scale path loss proportional to
𝑑−𝛼 for distance 𝑑 and exponent 𝛼 > 2 as well as small
scale fading following Rayleigh distribution. Hence the fading
power factor 𝐻𝑖𝑗 between nodes 𝑖 and 𝑗 follows exponential
distribution with unit mean. Let 𝑑𝑖𝑗 be the distance, then the
received energy at 𝑗 from transmitter 𝑖 is

ℰ𝑖𝑗 = ℰ𝐻𝑖𝑗𝑑
−𝛼
𝑖𝑗 (1)

where ℰ is the transmission energy. Then the interference at
receiver 𝑗 of source 𝑆 is

𝐼 =
∑

𝑖∈Θ(𝜌𝑠),𝑖∕=𝑆

ℰ𝑖𝑗 = ℰ
∑

𝑖∈Θ(𝜌𝑠),𝑖∕=𝑆

𝐻𝑖𝑗𝑑
−𝛼
𝑖𝑗 = ℰ𝐼Θ(𝜌𝑠) (2)

where 𝐼Θ(𝜌𝑠) =
∑

𝑖∈Θ(𝜌𝑠),𝑖∕=𝑆

𝐻𝑖𝑗𝑑
−𝛼
𝑖𝑗 is the integrated noise. Here

we consider an interference limited network and neglect the
thermal noise, then the signal to interference ratio (SIR) at 𝑗
is

𝑆𝐼𝑅 =
ℰ𝐻𝑆𝑗𝑑

−𝛼
𝑆𝑗

𝐼
=

𝐻𝑆𝑗𝑑
−𝛼
𝑆𝑗

𝐼Θ(𝜌𝑠)
(3)
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III. PERFORMANCE ANALYSIS

The transmission of the Decode-and-Forward SC strategy
is divided into two time slots. Similar to [3], in the first slot,
the source node transmits its data, then a best relay is selected
by competition from the decoded set where nodes can decode
data from the source correctly. Note that a node is possible to
be selected as a relay by more than one source but this case
happens with a small possibility and is thus ignored like in
many previous works [8]. In the second time slot, the selected
relay forwards data to the destination. Concerning the outage
probability, we have the following proposition.

Proposition 1 Given the set of receivers Ψ = 𝐷∪Θ(𝜌𝑟), the
outage probability can be expressed as

𝑃𝑜𝑢𝑡,𝑆𝑗 = 1− exp
(−𝑐𝜌𝑠𝑑2𝑆𝑗

) ∀𝑗 ∈ Ψ (4)

where 𝑐=𝜋𝜅𝜂𝑚𝑡ℎ, 𝜅=𝑚Γ(𝑚)Γ(1 − 𝑚) and 𝑚=2/𝛼. When
𝑗=𝐷, we obtain the outage probability for direct transmission
(DRT).

Proof: The outage probability is the probability that the
SIR at the receiver falls below a specified threshold 𝜂𝑡ℎ re-
quired for successful reception. For equality, the transmission
energy of source in DRT is 2ℰ0. The transmission energy of
source and relay in SC is ℰ0 respectively. From (3), we can
notice that SIR is independent of the transmission energy. Thus

𝑃𝑜𝑢𝑡,𝑆𝑗 = Pr

{
𝐻𝑆𝑗𝑑

−𝛼
𝑆𝑗

𝐼Θ(𝜌𝑠)
< 𝜂𝑡ℎ

}
= 1− 𝐸

[
exp

(−𝜂𝑡ℎ𝑑𝛼𝑆𝑗𝐼Θ(𝜌𝑠)

)]
= 1− 𝐹

(
𝜂𝑡ℎ𝑑

𝛼
𝑆𝑗

) (5)

where 𝐸(⋅) and 𝐹 (⋅) are expect value and Laplace transform
for random variable 𝐼Θ(𝜌𝑠), respectively. The Laplace trans-
form of 𝐼Θ(𝜌𝑠) is [6]

𝐹 (𝑤) = exp(−𝜋𝜌𝑠𝜅𝑤𝑚) (6)

Substituting 𝐹
(
𝜂𝑡ℎ𝑑

𝛼
𝑆𝑗

)
=exp

(−𝜋𝜌𝑠𝜅𝜂𝑚𝑡ℎ𝑑2𝑆𝑗

)
into (5) com-

pletes the proof.
After receiving data from 𝑆, potential relay nodes in Θ(𝜌𝑟)

who can decode data correctly constitute the decoded set 𝒟𝑠.
We provide the distribution of 𝒟𝑠 in the following proposition.

Proposition 2 The number of nodes in set 𝒟𝑠 follows an
inhomogeneous PPP with the intensity measure Λ(𝒜) =∫
𝒜 𝜌𝑟 exp(−𝜌𝑠𝜅𝜂𝑚𝑡ℎ𝜎)𝑑𝜎, where 𝒜 ⊂ ℝ2 is a closed area.

Proof: Define 𝜎 as the area of the circle whose center is
𝑆 and radius is 𝑟 and let 𝑑𝜎 be infinitely small area on interval
[𝑟, 𝑟 + 𝑑𝑟]. According to (4), for a node 𝑟 away from 𝑆, i.e.,
𝑑𝑆𝑗 = 𝑟, the probability it can decode data from 𝑆 correctly
is 1−𝑃𝑜𝑢𝑡,𝑆𝑗 = exp

(−𝑐𝜌𝑠𝑟2). Thus the number of nodes in
𝑑𝜎 is 𝜌𝑟 exp

(−𝑐𝜌𝑠𝑟2) 𝑑𝜎 which is depend on the location of
node. Hence nodes in 𝒟𝑠 follows an inhomogeneous PPP. For
a closed area 𝒜 ⊂ ℝ2, the average number of nodes decoding
data correctly from 𝑆 is

Λ(𝒜) =

∫
𝒜
𝜌𝑟 exp(−𝜌𝑠𝜅𝜂𝑚𝑡ℎ𝜎)𝑑𝜎. (7)

According to the SC strategy, the node in 𝒟𝑠, that has
instantaneous maximum signal strength at the receiver is
selected as the relay for 𝑆, i.e, 𝑅 = arg

𝑗∈𝒟𝑠

max
{
𝐻𝑗𝐷𝑑

−𝛼
𝑗𝐷

}
.

Then 𝑅 transmits data to 𝐷 interfered by the relays chosen
for other sources. Let 𝒟𝑖 denote the decoded set of source
node 𝑖. Then the probability that a node 𝑗 ∈ Θ(𝜌𝑟) belongs
to 𝒟𝑖 is 𝑃𝑖𝑗 = 1 − 𝑃𝑜𝑢𝑡,𝑖𝑗 = exp

(−𝑐𝜌𝑠𝑑2𝑖𝑗). Defining
𝒟 =

∪
𝑖∈Θ(𝜌𝑠)

𝒟𝑖 as the union set, we have 𝑃 ′ =
∑

𝑖∈Θ(𝜌𝑠)

𝑃𝑖𝑗 ,

where 𝑃 ′ is the total probability of 𝑗 ∈ 𝒟, i.e., the probability
𝑗 decoding data from at least one source correctly. Since
Θ(𝜌𝑠) is homogenous PPP, 𝑃 ′ is independent of the location
of 𝑗 based on the Slivnyak Theorem [9]. And 𝒟 still follows
homogenous PPP since it is obtained by thinning Θ(𝜌𝑟) with
probability 𝑃 ′. Likewise, the number of chosen relays follows
homogenous PPP. Since each source only selects one best
relay, the density of chosen relays is also 𝜌𝑠. So we still
denote the integrated interference induced by other chosen
relays as 𝐼Θ(𝜌𝑠). With the help of the best relay 𝑅, the outage
probability of SC is

𝑃𝑜𝑢𝑡,𝑆𝐶 = Pr
{
𝐻𝑅𝐷𝑑

−𝛼
𝑅𝐷 < 𝜂𝑡ℎ𝐼Θ(𝜌𝑠)

}
= Pr

{
max

{
𝐻𝑗𝐷𝑑

−𝛼
𝑗𝐷

}
< 𝜂𝑡ℎ𝐼Θ(𝜌𝑠)

} (8)

Defining the event Ϝ as

Ϝ =
{
max

{
𝐻𝑗𝐷𝑑

−𝛼
𝑗𝐷

}
< 𝜂𝑡ℎ𝐼Θ(𝜌𝑠)

}
(9)

then the outage event can be expressed

Ϝ =
{
∀𝑗 ∈ 𝒟𝑠, 𝐻𝑗𝐷𝑑

−𝛼
𝑗𝐷 < 𝜂𝑡ℎ𝐼Θ(𝜌𝑠)

}
=

{
𝒟𝑠 ∩ 𝐴 = ∅

} (10)

where the set 𝐴 =
{(
𝑗 ∈ ℝ2

)
;𝐻𝑗𝐷𝑑

−𝛼
𝑗𝐷 ≥ 𝜂𝑡ℎ𝐼Θ(𝜌𝑠)

}
.

As presented in proposition 2, the number of nodes in
𝒟𝑠 follows inhomogeneous PPP. Thus, by making use of the
avoidance probability we can express the outage probability
for SC as follows

𝑃𝑜𝑢𝑡,𝑆𝐶 = exp

{
−
∫
ℝ2

1ÂΛ (𝑑𝜎)

}
(11)

where 1Â is the indicator function. Since

1Â = Pr
{
𝐻𝑗𝐷𝑑

−𝛼
𝑗𝐷 ≥ 𝜂𝑡ℎ𝐼Θ(𝜌𝑠)

}
= exp

(−𝜋𝜌𝑠𝜅𝜂𝑚𝑡ℎ𝑑2𝑗𝐷)
= exp

(−𝑐𝜌𝑠𝑑2𝑗𝐷) (12)

then, (11) can be written as

𝑃𝑜𝑢𝑡,𝑆𝐶 = exp

(
−
∫
ℝ2

exp
(−𝑐𝜌𝑠𝑑2𝑗𝐷)

Λ (𝑑𝜎)

)
(13)

Substituting Λ (𝑑𝜎) = 𝜌𝑟 exp(−𝜌𝑠𝜅𝜂𝑚𝑡ℎ𝑠)𝑑𝜎 into (13) yields

𝑃𝑜𝑢𝑡,𝑆𝐶 = exp

(
−𝜌𝑟

∫
2𝜋

0

𝑑𝜃

∫ ∞

0

𝑟 exp
(
−𝑐𝜌𝑠𝑑

2
𝑗𝐷

)
exp

(
−𝑐𝜌𝑠𝑟

2
)
𝑑𝑟

)

= exp

(
−𝜌𝑟

∫ 2𝜋

0

𝑑𝜃

∫ ∞

0

𝑟 exp
(
−𝑐𝜌𝑠

(
2𝑟2 + 𝑑2

0 − 2𝑟𝑑0 cos 𝜃
))

𝑑𝑟

)

= exp

(
−𝜋𝜌𝑟

𝑐𝜌𝑠

𝑒−
𝑐𝜌𝑠𝑑20

2

)

(14)
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Fig. 1. Comparison of the transmission capacities of DRT and SC against
source node density 𝜌𝑠.

From (14), we can find that 𝑃𝑜𝑢𝑡,𝑆𝐶 grows with 𝜌𝑠. Thus,
given an outage constraint 𝜀, i.e., 𝑃𝑜𝑢𝑡,𝑆𝐶 ≤ 𝜀, there is an
upper bound for 𝜌𝑠. In practice, the density of 𝜌𝑠 is small, so

we use the approximation 𝑒−
𝑐𝜌𝑠𝑑

2
0

2 ≈ 1 − 𝑐𝜌𝑠𝑑
2
0

2 . Hence, the
upper bound of 𝜌𝑠 can be found from (14) as follows

𝜌𝑠 =
𝜋𝜌𝑟

𝑐
(

𝜋𝜌𝑟𝑑2
0

2 − ln 𝜀
) (15)

The transmission capacity is defined as the number of
successful transmissions per unit area [10]. Given source node
density 𝜌𝑠, we can obtain the transmission capacity of SC

𝑇𝐶𝑆𝐶 = 𝜌𝑠 (1− 𝑃𝑜𝑢𝑡,𝑆𝐶) = 𝜌𝑠

(
1− exp

(
−𝜋𝜌𝑟
𝑐𝜌𝑠

𝑒−
𝑐𝜌𝑠𝑑20

2

))
(16)

The outage probability of DRT can be obtained from proposi-
tion 1. Then the transmission capacity of DRT is 𝑇𝐶𝐷𝑅𝑇 =
𝜌𝑠 exp

(−𝑐𝜌𝑠𝑑20).
Proposition 3 Define the relay selection gain 𝐺 as the ratio
of transmission capacity between SC and DRT, namely

𝐺(𝜌𝑠) =
𝑇𝐶𝑆𝐶

𝑇𝐶𝐷𝑅𝑇
= 𝑒𝑐𝜌𝑠𝑑

2
0

(
1− exp

(
−𝜋𝜌𝑟
𝑐𝜌𝑠

𝑒−
𝑐𝜌𝑠𝑑20

2

))
(17)

The maximum of relay selection gain 𝐺 is 𝐺𝑚𝑎𝑥 ≈
𝑒

𝜋𝜌𝑟𝑑20
ln 𝑎 (1 − 𝑎−𝑒−

𝜋𝜌𝑟𝑑20
2 ln 𝑎 ) and the corresponding optimal source

node density to be 𝜌𝑜𝑝𝑡𝑠 = 𝜋𝜌𝑟

𝑐 ln 𝑎 , where 𝑎=𝑒
𝜋𝜌𝑟𝑑20

2 /𝜋𝜌𝑟𝑑
2
0.

Proof: For a small 𝑥, we have 𝑒−𝑥 ≈ 1−𝑥. Thus we

approximate 𝐺(𝜌𝑠) as 𝑒𝑐𝜌𝑠𝑑
2
0

(
1− 𝑒−

𝜋𝜌𝑟
𝑐𝜌𝑠 𝑒

𝜋𝜌𝑟𝑑20
2

)
for a small

𝜌𝑠. Letting 𝐺′(𝜌𝑠) = 0, we can get the stationary point,
i.e., the optimal source node density 𝜌𝑜𝑝𝑡𝑠 = 𝜋𝜌𝑟

𝑐 ln𝑎 , where

𝑎=𝑒
𝜋𝜌𝑟𝑑20

2 /𝜋𝜌𝑟𝑑
2
0. Substituting 𝜌𝑜𝑝𝑡𝑠 into (17), we obtain the

maximum 𝐺𝑚𝑎𝑥.

IV. SIMULATION RESULTS

Simulations are made on the transmission capacities of DRT
and SC based on the closed-form expressions derived above.

Assuming that the distance between 𝑆 and 𝐷 is 𝑑0 = 2 and
the required threshold to decode data correctly is 𝜂𝑡ℎ = 10𝑑𝐵,
we study how the transmission capacity is affected by the
parameters such as source node density 𝜌𝑠, potential relay
node density 𝜌𝑟 and path loss factor 𝛼.

Fig. 1 shows that the transmission capacities in all the cases
first increase with 𝜌𝑠, and then decrease after reaching the
maximum. That’s because larger 𝜌𝑠 means more simultaneous
transmitters while it also leads to higher level of interference.
By comparing the curves of DRT (marked by circles) and
SC (marked by triangles), we can see that SC brings gains
over DRT and gains provided by SC are marginal at high 𝜌𝑠.
Define 𝐺1

𝑚𝑎𝑥 and 𝐺2
𝑚𝑎𝑥 as maximum gains provided by SC

when 𝛼 is 4 and 3 respectively at 𝜌𝑟 = 0.1. Define 𝐺3
𝑚𝑎𝑥

as the maximum gains when 𝛼 = 3, 𝜌𝑟 = 1. We can see that
these maximum gains can be achieved by choosing appropriate
𝜌𝑠. As for 𝛼, we can notice that larger 𝛼 (depicted by dotted
lines) yields larger transmission capacity since the interfering
signals are faded quickly with distance. SC further expands
the advantage over DRT at higher 𝛼. Comparing the curves
of 𝜌𝑟=0.1 and 𝜌𝑟=1 for SC when 𝛼 = 3, we can find that
the transmission capacity increases with 𝜌𝑟 and this gain can
be maximized by selecting 𝜌𝑠.

V. CONCLUSION

We have analyzed the outage probability and transmission
capacity of the decode-and-forward selection cooperation (SC)
in ad-hoc wireless networks. It has revealed that SC enhances
reliability and transmission capacity while this advantage is
marginal at high source node density 𝜌𝑠. In addition, we can
adjust 𝜌𝑠 and the potential relay node density 𝜌𝑟 to achieve
target performance gain. In practice, it will be useful to adjust
gains provided by SC and design cooperative networks.
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