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Abstract—This paper proposes the use of phase shift mi-
gration for ultrasonic imaging of layered objects and objects 
immersed in water. The method, which was developed in re-
flection seismology, is a frequency domain technique that in a 
computationally efficient way restores images of objects that 
are isotropic and homogeneous in the lateral direction but 
inhomogeneous in depth. The performance of the proposed 
method was evaluated using immersion test data from a block 
with side-drilled holes with an additional scatterer residing in 
water. In this way, the method’s capability of simultaneously 
imaging scatterers in different media and at different depths 
was investigated. The method was also applied to a copper 
block with flat bottom holes. The results verify that the pro-
posed method is capable of producing high-resolution and low-
noise images for layered or immersed objects.

I. Introduction

One important imaging method in ultrasonic testing 
is the synthetic aperture focusing technique (SAFT), 

which was introduced in ultrasonic nondestructive test-
ing (NDT) in the early 1970s [1] and has been in wide 
use since the late 1980s. In basic SAFT, a synthetic ar-
ray is emulated in post-processing using pulse-echo data 
acquired with a physically scanned single-element trans-
ducer. The post-processing consists of delay-and-sum 
beamforming and the resulting images generally have far 
better lateral resolution than the B-scans from which they 
are constructed. Moreover, the lateral resolution is inde-
pendent of depth. The coherent summation also yields an 
increase in signal-to-noise ratio resulting in an improved 
depth-of-field.

The early versions of SAFT were time domain imple-
mentations, followed later by implementations in the fre-
quency domain [2]–[5] evolving from acoustical hologra-
phy [6] and diffraction tomography. The frequency domain 
implementations are particularly attractive if the sound 
speed is constant throughout the entire propagation me-
dium, something which holds when a homogeneous and 
isotropic object is tested in contact. Then SAFT can be 
implemented in a computationally very efficient form us-
ing a method that was first proposed in geophysics [7], 
called Stolt migration or the frequency wavenumber meth-
od [3], [4], [8].

Practical drawbacks with contact testing are trans-
ducer wear and potentially poor or nonuniform coupling 
between transducer and test object caused by rough sur-

faces and, therefore, immersion testing is often preferred 
in NDT. Note that the assumption of constant sound 
speed in the propagating medium no longer holds for im-
mersion testing because the propagation involves at least 
two sound speeds, one in water and one in the solid. Thus, 
unfortunately, the conditions required by the frequency 
wavenumber method do not hold. In time domain SAFT, 
the problem manifests itself in that the refraction at the 
liquid-solid interface complicates the computation of the 
travel times required in the algorithm. Such complications 
are, of course, present in any situation having test objects 
consisting of layers with different sound speeds.

Despite these difficulties, which to some extent have 
prevented the use of SAFT for immersion test data, vari-
ous methods have been proposed to treat the immersion 
case. One such method, which is restricted to one refract-
ing layer only, is to use transducers that are focused on 
the object’s surface, see e.g., [9], in this way emulating 
a scenario similar to contact testing with a transducer 
having a diameter of the size of the focal diameter. Note, 
however, that diffraction causes the acoustical field emit-
ted from a focused transducer to take a form that may 
deviate from the spherical wave anticipated from a small 
transducer [10], thus to some extent violating the assump-
tions on which SAFT are based and thereby limiting the 
usefulness of the approach.

More generally, in inhomogeneous materials, the travel 
times required in time domain SAFT can be calculated us-
ing ray-tracing techniques [11]–[13] that are typically time 
consuming, thus limiting their practical usefulness. For 
the special case of horizontally layered materials, travel 
time approximations can be obtained more efficiently by 
means of so-called root-mean-squared (RMS) velocities 
[14], provided that the sound speed differences between 
layers are relatively small. This holds in many cases in 
reflection seismology, for which it is often used, and in 
medical ultrasound where it has recently been used in the 
context of aberration correction [15]. When testing metals 
in immersion, the sound speed contrast is typically high 
and the RMS-velocity approach has thus far not been used 
in the NDT community.

In reflection seismology, the case of objects consisting 
of horizontal homogenous layers has been treated exten-
sively. There, a method called phase shift migration [16] 
has been developed for treating this scenario. Together 
with Stolt migration, it has become an important tool 
for analyzing the Earth’s interior structure [17] and it has 
been generalized in different ways, for instance, to admit 
also some lateral variations in sound speed [18]. Phase 
shift migration is a frequency domain approach that makes 
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explicit use of the wave equation in the processing. View-
ing the measured signals at the sensors as a boundary 
condition for the wave equation, the field is extrapolated 
using a phase-shift operator in the frequency domain to 
hypothetical measurements of the field at a set of different 
depths. From these, the image can be obtained in a fairly 
straightforward manner, see Section II.

Because of its iterative nature, the method is compu-
tationally less efficient than Stolt migration but, on the 
other hand, phase shift migration can treat the more com-
plicated scenario of having a sound speed that is constant 
in the lateral direction but varying in depth.

In this work, we investigate phase shift migration for 
imaging data acquired using immersion testing, which is 
an application that is particularly well-suited for phase 
shift migration because the sound speeds necessary in 
the processing typically are known to a high accuracy. 
The application used for illustration is immersion testing 
of copper blocks using a single scanned transducer and 
the experiments aim at demonstrating the potential of 
phase shift migration for this application. Note, however, 
that there are other potential important applications of 
the method. One such is inspection, in contact or in im-
mersion, of metal objects with a protective stainless steel 
overlay having a different sound speed than the backing 
material.

Phase shift migration has been previously used for ul-
trasonic imaging in [19]. Furthermore, the image-forma-
tion equations in [5] are essentially identical to those in 
phase shift migration. However, the potential of allowing 
vertical sound speed variations was not exploited in either 
of these two references. This was done in [6], but the imag-
ing was performed using monochromatic signals.

In this paper, we limit the work to concern only 2-D 
migration but we note that full 3-D migration is a straight-
forward extension. The theory and the algorithm are given 
in Section II. Experiments illustrating the approach are 
presented in Section III and, finally, conclusions and a 
discussion are given in Section IV.

II. Theory

In this section, a derivation of the reconstruction algo-
rithm used in the work is given. The derivation presented 
in Section II-A is based on what, in geophysics, is tradi-
tionally called the exploding reflector model [17], [20]. The 
reader should note that this model does not describe the 
single-transducer scanned pulse-echo measurements sce-
nario, hereafter called the monostatic1 case; rather, it is 
an analogous physical scenario for which a simple imaging 
algorithm can be developed. The idea is thus to solve the 
imaging problem for this simple case and then show how 
the monostatic case can be transformed to it by simple 
means.

In the exploding reflector model, the reflectors in the 
medium are assumed to “explode” simultaneously at time 
t = 0, each with a strength that is proportional to its re-
flectivity, creating a field that is simultaneously measured 
using an array of sensors. The model neglects multiple re-
flections between layers and only upward-traveling waves 
are considered. Furthermore, transmission losses at layer 
interfaces are neglected; see Appendix A for comments on 
this.

The derivation deviates from those found in the classi-
cal references, such as [16], in the respect that the vertical 
sound speed variations are introduced early in the model 
and not appearing as a last modification of a solution de-
veloped for a medium with constant sound speed; see [21] 
for comments on such inconsistencies.

Section II-B describes the steps necessary for adapting 
the monostatic case to an analogous exploding reflector 
scenario. A summary of the algorithm is given in Section 
II-C.

A. Phase Shift Migration for the Exploding  
Reflector Scenario

In the following, we consider propagation of longitudi-
nal waves in a medium illustrated in Fig. 1. It consists of 
L horizontal isotropic layers with thicknesses d1, …, dL 
and sound speeds, c1, …, cL, respectively. The coordinate 
axes x and z point in the horizontal and vertical directions, 
respectively, with z pointing downwards. We let zl denote 
the z-coordinate of the lower side of layer l, i.e., zl = 

q
l

qd=1å .

Let p(x, z, t) denote the field resulting from the reflec-
tors in the media exploding simultaneously at t = 0. This 
field is observed along the horizontal line z = 0 and our 
aim is to extrapolate this observed field to lines at other 
depths within the media. As will be described later, these 
can then be used straightforwardly to create an image of 
the media.

The field extrapolation can be done by decomposing the 
field into a set of upward-traveling harmonic plane wave 

2523olofsson: phase shift migration for imaging objects

Fig. 1. The layered media considered in the derivation.

1	The term monostatic is borrowed from the radar community.



components, performing the extrapolation separately for 
each component, and superimposing the results. Consider 
one such upward-traveling harmonic component within 
the lth layer. It can be written as

	 p P k j k x k z z tl l x x l z l= ( , ) ( ( ( ) )),, 1w wexp + - -- 	 (1)

where ω is the angular frequency, kx and kl,z are compo-
nents of the wave number vector in the lth layer, and 
Pl(kx, ω) is the complex amplitude of the component. Here, 
we have used Snell’s law that states that kx is preserved at 
a refracting interface that is parallel to the x-axis. Thus, 
we write kx without a layer index, l. Note that writing the 
component’s z-dependence as a function of the difference 
z − zl−1 instead of z merely serves the purpose of simplify-
ing the notation in the following.

For a point belonging to the lth layer, the 2-D scalar 
lossless wave equation states that
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By inserting (1) into (2) we get
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and for a non-trivial solution, the dispersion relation
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must be fulfilled. From this, we can obtain kl,z as a func-
tion of ω, cl, and kx. If we consider only propagating (non-
evanescent) waves, we have
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where we have used the fact that kl,z is negative for an 
upward-traveling wave component.

By inserting (5) into (1), we obtain

	 p P z k j k x tl x x= ( , , ) ( ) ,w wexp( )- 	 (6)

with

	 P z k P k k z zx l x l x l( , , ) = ( , ) ( , , ),1w w a w - - 	 (7)

where αl(kx, ω, ζ) is defined as

	 a w z z w
l x

j kck e l x( , , ) = .
2 2 2- -( )/ 	 (8)

To find Pl(kx, ω), first consider layer l = 1. Note that at 
z = 0, the component p1 is simply

	 p P k j k x tx x1 1= ( , ) ( ( ))w wexp - 	 (9)

and, because the exponent is the conjugate of the kernel 
in a 2-D Fourier transform over x and t, the complex am-
plitude P1(kx, ω) must simply be the Fourier coefficient for 
the pair (kx, ω) which we obtain by a 2-D Fourier transfor-
mation of the field measured at z = 0.

For a point within layer l = 2, the field extrapolated to 
depth z1 is used as the boundary condition defining the 
solution within the layer. This gives us the solution

	 p P z k j k x tx x2 = ( , , ) ( ( )),w wexp - 	 (10)

with

	 P z k P k k d k z zx x x x( , , ) = ( , ) ( , , ) ( , , ).1 1 1 2 1w w a w a w - 	 (11)

By proceeding in a similar way for the remaining lay-
ers, we find that the component can be extrapolated to a 
general point within layer l using (6) with
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Note again that transmission losses at the interfaces are 
neglected. A correction for these can easily be included 
in the model, but for the purpose of imaging and with 
the relatively small angle of divergence for the transducer 
used in this work, such a correction is of limited value; see 
further comments in Appendix A.

The multiplication by α(∙) represents a phase shift, and 
it is from this relation that phase shift migration takes 
its name. Eq. (12) describes the relation between the 2-D 
Fourier transform of the field observed at z = 0, and the 
2-D Fourier transform of the field that would have been 
measured at z ≠ 0, had the sensors been placed at that 
particular depth instead of z = 0. Thus, p(x, z, t) can be 
recovered by a 2-D inverse Fourier transform.

Consider now an exploding reflector at the particular 
depth, z, identical with the depth of a hypothetical sensor 
plane. Because the vertical distance between the sensor 
plane and the reflector then is zero, the contribution from 
the reflector will appear at t = 0. Moreover, compared 
with any other observation time, the field originating from 
the reflector will be maximally concentrated in space at 
t = 0. We realize that by simply reading out the field at 
time t = 0 from p(x, z, t) for all points at the same depth, 
z, we will obtain a horizontal image line that has optimal 
lateral resolution. Time t = 0 is sometimes called the im-
aging condition for this scenario.

The inverse Fourier transform for obtaining p(x, z, t = 
0) is

	 p x z t P z k e kx
jk x

x
x( , , = 0) = ( , , ) ,ò ò w wd d 	 (13)

where we have used the fact that e−jωt = 1 for t = 0. The 
integral can be evaluated by first integrating P(z, kx, ω) 
over ω, followed by a 1-D inverse Fourier transform over 
kx.
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Finally, note that the computation of P(z, kx, ω) in (12) 
allows for an efficient recursive computation within each 
layer. If we have P(z, kx, ω), we can obtain P(z + Δz, kx, ω) 
with z and z + Δz both belonging to layer l, using

	 P z z k P z k k zx x l x( , , ) = ( , , ) ( , , )+ D Dw w a w 	 (14)

so if we choose an image grid that is regular in z, the fac-
tor αl(kx, ω, Δz) will be the same for each image line with-
in that layer, meaning that it can be pre-calculated and 
stored in a lookup table to speed up the computations.

B. Adaptations to the Case of Pulse-Echo Measurements

The phase shift migration equations were derived as-
suming an exploding reflector model and this model must 
be adapted to the monostatic case. The sound paths in 
the pulse-echo measurements are twice as long as those 
in an exploding reflector scenario, so the pulse-echo mea-
surements can be translated into an analogous exploding 
reflector scenario by simply dividing the physical sound 
speed by two.

As a consequence, the phase shift factor should, for the 
monostatic case, be redefined as
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Another deviation from this theory is that the field 
measurements are influenced by the transducer character-
istics. The electro-acoustical properties of the transducer 
affect the measured signal both at transmission and re-
ception and the overall effect is that the received signals 
become band-pass filtered and, more importantly, phase 
delayed. If these delays are not compensated for, the imag-
ing condition t = 0 will be poorly synchronized with the 
waves resulting from a scatter at z, and this will cause a 
deterioration of the lateral resolution.

A simple way to compensate for these phase delays is 
to correlate the received signals with the double path im-
pulse response of the transducer2 which is the method cho-
sen here. After the correlation, the maximum peak of an 
echo from a small reflector at a certain range will appear 
correctly synchronized with the two-way travel time pre-
dicted by the range. A good approximation of this impulse 
response used in the correlation is obtained by measuring 
the response from a reflector in the far field parallel to the 
transducer surface [22] and the correlation is conveniently 
performed in the frequency domain for each acquired sig-
nal, s(xn, z = 0, t), as

	 P x z S x z HC n n( , = 0, ) = ( , = 0, ) ( ),*w w w 	 (16)

where S(xn, z = 0, ω) is the Fourier transform of s(xn, z 
= 0, ω) and H*(ω) is the complex conjugate of the Fou-

rier transform of the double path transducer impulse re-
sponse.

We should note yet another deviation between reality 
and the assumptions used in the derivation. Because the 
diameter of the planar transducer is larger than the in-
volved wavelengths, only the field from a limited set of an-
gles centered around the normal to the transducer surface 
is sensed. Thus, the field that is processed is not the true 
field at the scanning surface but a spatially filtered version 
of it. Because the resolution in the reconstructed image 
is inversely proportional to the spatial bandwidth, and 
this bandwidth, in turn, is inversely proportional to the 
aperture of the sensor, the resolution will be proportional 
to the aperture. This is in accordance with the results 
presented in [23], showing that the resolution in synthetic 
aperture imaging is approximately D/2 where D is the 
aperture of the sensor.

C. Summary of the Algorithm

The algorithm summarized in this section attempts to 
reconstruct an M × N image from points on a regular 
grid in a region of interest that is defined as the rectangle 
z ∈ [zmin, zmax], x ∈ [xmin, xmax]. In the following, we let 
zm denote the z-coordinates of the mth horizontal image 
line.3 These lines are separated by a distance Δz = (zmax 
− zmin)/(M − 1) and we have zm

 = zmin + (m − 1) Δz. In 
a similar way the N vertical image lines are separated by 
the spatial sampling distance Δx.

Let pC(xn, z = 0, t) denote a signal acquired at the 
transducer position xn, which has been correlated to the 
transducer impulse response as described in (16). The 
phase shift migration algorithm used in this work can be 
summarized as follows:

	 1) 	Apply a 2-D fast Fourier transform (fft) to the data: 
P1(kx, ω) = P(0, kx, ω) ← ffttx{pC(xn, z = 0, t)}, where 
the subscripts on the fft indicate which variables are 
transformed.

	 2) 	If zmin is not zero, use (12) to compute 
P(zmin, kx, ω).

	 3) 	Set z1 = zmin and do the following for all image lines 
m = 1 to M:

		C ompute p(x, zm, t = 0) by first summing P(zm, kx, ω) 
over ω,

	 P z k P z km
x

m
x( , ) = ( , , )

w

wå ,	 (17)

	 followed by a 1-D inverse fast Fourier transform:

	 p x z t P z km
x

m
x( , , = 0) ( , ) ,¬ifft { }	 (18)

		  and assign p(x, zm, t = 0) to the mth horizontal 
image line.
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2	The double path impulse response is a convolution between the elec-
tro-mechanical impulse response in transmit and the mechanical-electri-
cal in receive.

3	Please note the distinction between superscripts identifying the im-
age lines and the subscripts used to identify layer interface coordinates



	 b) 	If zm and zm+1 both belong to the same layer, l, 
use (14) to compute P(zm+1, kx, ω) for all values 
of kx and ω. Else, if zm belongs to l and zm+1 be-
longs to l + 1, compute P(zm+1, kx, ω) in two steps 
as P(zm+1, kx, ω) = P(zl, kx, ω)αl+1( kx, ω, zm+1 − zl) 
with P(zl, kx, ω) = P(zm, kx, ω)αl(kx, ω, zl  − zm).

Again note that the phase factors α(∙), appearing in steps 
2 and 3(b), should be for the monostatic case as defined 
in (15).

In these algorithmic steps, variables without subscript 
indices should be considered over their full range. As an 
example, p(x, z = 0, t) is represented by an Nx × Nt ma-
trix where Nx and Nt are the number of grid points in x 
and the number of time samples used in the processing. 
Because going from continuous to discrete data may intro-
duce aliasing problems, zero-padding is generally required 
to avoid this. See Appendix B for a discussion on aliasing 
issues in both the temporal and spatial domains.

III. Experiments

Two experiments were performed. The first demon-
strated the method’s ability to treat a scenario with scat-
terers residing in two layers having different sound speeds. 
This experiment, which is presented in Section III-A, was 
performed with a copper block immersed in water and 
containing several side-drilled holes (SDHs). A wire target 
was placed in the water in front of the block, creating a 
scenario with scatterers present both in the slow water 
media, with cH2O = 1482 m/s, and in the fast copper me-
dia, with cCu = 4660 m/s. The second experiment demon-
strated how the method can be used with immersion test 
data to improve the resolution in C-scans and improve 
the amplitude contrast between isolated reflectors and the 
contributions from grain scattering. In this experiment, 
presented in Section III-B, the test object was a copper 
block with flat bottom holes (FBHs).

A. Immersion Measurements of Copper Block With SDHs 
and a Wire Target in Water

The immersion test setup used in the first experiment 
is shown in Fig. 2. A planar circular 2.25-MHz transducer 
from Panametrics with 10 mm diameter was scanned along 
the x-axis and pulse-echo measurements were acquired at 
positions x1, …, x210 that were separated by Δx = 1 mm. 
The inspected object containing SDHs was placed with its 
front surface in the horizontal plane.

The acquired data are presented in Fig. 3(a) as an en-
velope B-scan, obtained by Hilbert transformation of the 
raw data. The front surface echo is seen at approximately 
t = 150 μs corresponding to the water path of approxi-
mately 110 mm, and the wire target can be seen at x = 
110 mm at t = 140 μs. A secondary echo from the wire 
is also seen at t = 160 μs at the same scanning position. 
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Fig. 2. Schematic setup for immersion testing of the copper block con-
taining side-drilled holes. The ultrasonic transducer was scanned in the 
x-direction and pulse-echo measurements were performed at discrete lo-
cations x1, …, xN that were separated by Δx = 1 mm.

Fig. 3. (a) The B-scan from the copper block with side-drilled holes and 
with a wire target in front of the upper surface. (b) Result from phase 
shift migration.



It corresponds to a transducer–Cu–wire–Cu–transducer 
sound path. The SDHs are seen as hyperbolic patterns at 
various depths.

In Fig. 3(b), the image reconstructed using phase shift 
migration is presented. In this image, in which the hori-
zontal image lines are separated by Δz = 0.1 mm, the re-
sponses from the SDHs are concentrated to small spots and 
the same holds for the wire target. Note that a geometrical 
correction is obtained through the migration because the 
method takes into account the different sound speeds at 
different layers. Thus, the wire target’s distance between to 
the front surface of the block can be correctly measured in 
the image to be 7 mm. Because of the shorter wavelength in 
water, the wire target has a better vertical resolution than 
the SDHs in the copper block. Note also that the lateral 
resolution of the SDHs is approximately uniform through-
out the entire object.

The diffuse spot centered at x = 110  mm and z = 
132 mm corresponds the previously mentioned double re-
flection Cu–wire–Cu. Because multiple reflections are not 
taken into account in the development of the method, such 
echoes generally lead to blurred artifacts such as the one 
seen here.

The lateral resolution can be further examined in Fig. 
4, where local profile plots for the SDHs as well as the 
wire target are shown both for the B-scan and the recon-

structed image. These profiles were obtained by calculat-
ing the maximum amplitudes within a depth interval cov-
ering the target of interest and projecting the values onto 
the x-axis. For ease of comparison, the profiles have been 
normalized to the same maximum amplitudes.

Inspection of the profile plots confirms the conclusion 
that the lateral resolution in the reconstructed image is 
practically independent of the depth. This holds also for 
the wire target which is surrounded by a medium with a 
different sound velocity than the SDHs. If we define the 
resolution to be the length of the cross section at 50% of 
the maximum of the amplitude, we get a resolution that 
is approximately 5 mm for both the holes and the wire 
target. This is in accordance with the results for synthetic 
aperture imaging [23], stating the resolution to be approx-
imately D/2 for a sensor with an aperture of D. Here we 
have D = 10 mm.

B. Immersion Test of Copper Block With FBHs

In the second experiment, a volume scan of a copper 
block with FBHs was performed. The dimensions of the 
block are shown in Fig. 5. The purpose of the experiment 
was to illustrate the improvements in detectability and 
lateral resolution that can be achieved through the meth-
od. The block had a grainy structure that caused both 
strong back scattering noise as well as sound attenuation 
and the responses of the FBHs were therefore relatively 
difficult to detect in standard B-scans. Only the 4-mm 
diameter FBH gave a response strong enough to be easily 
detected in those images.

Figs. 6 and 7 show two examples of envelope B-scans 
from the data set along with the corresponding recon-
structed images. Fig. 6 shows an extracted B-scan over 
the 1-mm and 4-mm FBHs. The 1-mm hole is not seen at 
all, but the response from the 4-mm FBH can be seen at 
an interval around x = 82 mm and t = 82 μs. Note that 
the width of the response is approximately 15  mm. In 
the corresponding reconstructed image, the 4-mm FBH at 
around z = 97 mm is reduced in size significantly.

Fig. 7 shows an extracted B-scan over the 2-mm and 
3-mm holes, and we can see weak responses from these 
holes at around t = 82 μs, for x around 18 mm and 80 mm, 
respectively. The 3 mm and 2 mm FBHs at around z = 
97 mm in the corresponding reconstructed image are bet-
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Fig. 4. Profile plots of the side-drilled holes and the wire target in the 
original B-scan and the reconstructed image. The profiles of side-drilled 
holes are shown gray with various line styles to separate visually and the 
wire target is shown as a solid black line.

Fig. 5. Copper block with four flat bottom holes.



ter localized in the x-direction thus providing better con-
ditions for extracting a C-scan.

C-scan images from the depth interval covering the 
FBHs in the Cu-block were extracted from the raw data 
as well as from the reconstructed images by projecting 
the maximum amplitude values within the interval onto 
the x–y plane. The depth interval of interest corresponds 
to the interval z ∈ [95, 99] mm if the water path is taken 
into account. In the C-scans that are presented in Fig. 8, 
the FBHs of diameters 2, 3, and 4 mm are visible in both 
C-scans but the resolution is much improved in the C-
scan based on the migrated data. In particular, the 3-mm 
diameter FBH is, in the original C-scan, partly masked by 
disturbances caused by early parts of the back wall echo 
entering the time window of interest. In the migrated C-
scan, these disturbances are less prominent and the true 
position of the FBH is more easily found.

Note that the improvement in resolution only concerns 
the direction of migration; the migration has not signifi-
cantly improved the resolution in the y-direction.

Both C-scans in Fig. 8 have been normalized with re-
spect to their maximum pixel value providing a fair com-
parison of the noise level in the images, and we note that 
phase shift migration has improved the signal-to-noise ra-
tio, giving better contrast.

IV. Conclusions and Discussion

Phase shift migration has been proposed for ultrasonic 
imaging of objects immersed in water and the algorithm 
has been demonstrated to correctly treat media with dif-
ferent sound speeds and to yield images with an improved 
lateral resolution under such conditions.

The experiment with the copper block with SDHs 
showed that the lateral resolution in the reconstructed 
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Fig. 6. (a) Original B-scan acquired at y = 18 mm passing over the 1-mm 
and 4-mm flat bottom holes. (b) Image resulting from phase shift migra-
tion. The response of the 1-mm flat bottom hole is too weak to be seen.

Fig. 7. (a) Original B-scan acquired at y = 63 mm passing over the 
3-mm and 2-mm flat bottom holes. (b) Image obtained by migration of 
the B-scan.



image is independent of depth to a good approximation. It 
was also demonstrated using data from a block with FBHs 
that the phase shift migration, along with the resolution 
improvement, helps in improving the amplitude contrast 
between isolated reflectors and the contributions from 
grain scattering, and thus is a useful tool for the detection 
of defects that are buried deeply in grainy materials.

The method considers longitudinal propagation only 
and any contribution associated with shear waves are ne-
glected. Two facts motivate this approximation: First, the 
velocity of shear waves is around half the velocity of the 
longitudinal waves, which means that the contributions 
from the two modes appear well separated in time, at 
least for deep reflectors. Second, the echo transmittance 
for shear waves is very small compared with the longi-
tudinal. See Appendix A for numerical examples of the 
relative strengths of the mode components for the experi-
ments presented in the paper.

The algorithm is implemented using fast Fourier trans-
form routines and the current implementation allows pro-
cessing of the B-scans that takes less time than the data 
acquisition. As an example, the acquisition time of the 1325 
× 210 B-scan used in the experiments presented in Section 
III-A was approximately 3 min, whereas the processing 
time was 3.5 s on a dual core 2.80 GHz laptop. Finally, we 
note that the method can be straightforwardly extended 
to processing of 3-D data, thus allowing for simultaneous 
improvement in both of the lateral dimensions.

Appendix A:  
Comments on Transmission Losses at Layer 

Interfaces

In the modeling, transmission losses at the layer inter-
faces were neglected and this will cause errors in the com-
puted field as it is backpropagated through an interface. 
We should note, however, that as long as the effect of the 
transmission loss can be well approximated by a constant 
scaling, independent of angle of incidence and thus inde-
pendent of kx, the resulting effect on the reconstructed 
image will merely be an amplitude scaling that will be 
constant within each layer. Such a scaling will not influ-
ence the lateral resolution.

The circular transducer used in the experiments had a 
diameter of D = 10 mm, a center frequency Fc = 2.25 MHz, 
and bandwidth of approximately ΔF = 1.5 MHz. Thus, 
the lowest frequency at which the transducer operated was 
1.5 MHz, which yields a maximum wavelength of approxi-
mately λ = 1 mm in water. The maximum beam divergence 
is then given by [24] θ = arcsin(1.22λ/D) ≈ 0.122 radians 
or 7°. Thus, we know that the sound enters into the cop-
per object with angle of incidence of at most 7°. The echo 
transmittances [24] for longitudinal-longitudinal waves at 
a water-copper interface calculated for angles between 0° 
and 7° vary between 0.1345 for 0° and 0.1286 for 7°. Thus, 
the difference is maximally 6% and we can, in the experi-
ments presented in this paper, safely approximate them as 
being constant for all angles of interest.

Furthermore, the echo transmittance for transversal 
waves appearing as a result of mode conversion at the 
boundary is less than 7% of the echo transmittance of 
longitudinal waves at 7° and approximately 3% at 4.7°, 
which is the beam divergence at the center frequency. As 
a consequence, the contribution of the transversal waves 
to the final image will be very weak and this motivates 
neglecting these waves in the processing.

Appendix B:  
Comments on the Use of the Discrete Fourier 

Transform and Aliasing

All Fourier transforms involved in the algorithm are 
performed using discrete data and the fast Fourier trans-
form has been used for all calculations. Aliasing may then 
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Fig. 8. C-scan based on (a) raw data and (b) migrated data. Note that 
the C-scans are seen from a top view with the 4-mm diameter flat bot-
tom hole seen at the upper-right corner.



appear both spatially and temporally. The temporal sam-
pling must fulfil the Nyquist criterion, stating that the 
sampling frequency must at least be twice that of the high-
est frequency appearing in the signals. This requirement is 
fulfilled with a large margin in the experiments presented 
below; the sampling frequency was 25 MHz, whereas the 
center frequency of the transducer was 2.25 MHz and with 
a bandwidth of about 1.5 MHz.

The spatial sampling of the x-axis is more critical. In 
its conventional form, in which a scenario with constant 
velocity and point-like transducers are considered, the 
spatial sampling theorem states that the distance between 
two sampling points on the x-axis, Δx, should be separat-
ed by no more than λmin/4 for pulse-echo measurements 
where λmin is the minimum wavelength appearing in the 
measurements. As an example, if we use a transducer with 
an upper frequency of 3 MHz for the measurements in wa-
ter, having a velocity of 1500 m/s, we have λmin = 0.5 mm 
and Δx < 0.125 mm, which is a quite small separation 
that will lead to impractically long data acquisition times 
if large areas are to be scanned.

The requirement Δx < λmin/4 is, however, quite a bit 
too pessimistic and does not take into account the trans-
ducer’s directivity. If this is done, we arrive at the much 
less restrictive result [25] stating that when a circular 
transducer of diameter D is used, the spatial sampling 
must be performed at steps no longer than Δx < D/4. For 
a transducer of 10 mm, we thus have that Δx < 2.5 mm 
which is fulfilled in our measurements.

Finally, aliasing can occur also at the inverse trans-
form back to spatial coordinates. The Fourier coefficients 
are essentially connected to a function that is periodic 
both in t and x and especially the periodicity in x may 
cause problems in the reconstruction. The problem can 
be avoided by using zero-padding of the measured data in 
the x-direction.

Consider scanning over a region-of-interest that has 
length Wx in the x-direction and has a maximum depth of 
zmax with a transducer with divergence angle θ. Say that 
Nx is the number of samples used in the Fourier transform 
in the x-direction after zero-padding. According to [26], 
the minimum Nx required to avoid aliasing is then ap-
proximately given by
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where N and Δx are the number of acquired A-scans and 
the scanning step, respectively, and ⌈ ⌉ denotes the ceiling 
operator.
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