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Bayesian Model Selection for Markov, Hidden
Markov, and Multinomial Models

Mathias Johansson and Tomas Olofsson

Abstract—Model selection based on observed data sequences is
used to decide between different model structures within the class
of multinomial, Markov, and hidden Markov models. In a unified
Bayesian treatment, we derive posterior probabilities for different
model structures without assuming prior knowledge of transition
probabilities. We emphasize the following tests: 1) Given a partic-
ular data sequence of n outcomes, is each state equally likely? 2)
Do the data support an independent model, or is a Markov model
a more plausible description? 3) Are two data sequences gener-
ated from a) the same Markov model? b) the same hidden Markov
model? For Markov models and independent multinomial models,
all results are exact. For hidden Markov models, the exact solution
is computationally prohibitive, and instead, an approximate solu-
tion is proposed.

Index Terms—Bayes procedures, hidden Markov models
(HMMs), Markov models.

1. INTRODUCTION

EQUENCE data may be modeled probabilistically using
Sseveral different model families, where the (independent)
multinomial, discrete Markovian, and hidden Markov models
(HMMs) are some of the most commonly used. Two important
questions that arise in sequence modeling are those of how to
determine whether 1) one sequence belongs to a class of models
with a fixed structure but with undetermined parameters, or how
to determine whether 2) two or more sequences have been gen-
erated by the same or by different models. This letter gives a
unified treatment of problems 1) and 2) using Bayesian infer-
ence for the multinomial, Markovian, and HMMs.

A. Contributions and Related Work

Multinomial and Markov models have been used in a vast va-
riety of fields over a long time; hence, publications on model se-
lection for these model families have appeared spread out over a
large literature. Several results that we present here from a uni-
fied Bayesian derivation have been derived before in specific
scenarios, but we include them as a service to the reader. As
these results have appeared in very different application areas, it
is difficult for a general reader to find the results and to see their
relations and tacit assumptions. We believe that this motivates
a unified derivation of these important results, which also high-
lights the basic unity of them all. Our treatment of HMMs has,
to the best of our knowledge, not been presented before. Here
lies the main novelty of our work, although our showing that all
model selection problems involving multinomial, Markov, and
HMMs are special cases of a particular integral (see (6) below)
is perhaps more important.
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Bayesian model selection is based on computing the evidence
(or, the marginal likelihood; see below for explanations) for a
given model. The Bayesian test of equiprobability of a multi-
nomial model, a special case of (10) derived below, has been
derived by others before (see Good’s paper [1]). Using a sim-
ilar Bayesian approach, Cooper and Herskovits [2] considered
evidence computations for Bayesian networks for inferring the
most probable network structures. As Markov models are a spe-
cial case of a Bayesian network, it is possible to derive our
(non-hidden) Markov model results from their expressions. In-
deed, in [3], the results of Cooper and Herskovits were applied
to clustering of different Markov processes.

Model selection for HMMs is typically done using asymp-
totically motivated criteria, such as variants of Akaike’s or the
Bayesian information criteria (see, e.g., [4]). However, in order
to use them, a particular state sequence must be singled out, and
the uncertainty concerning the actually traversed states is thus
neglected.

II. BAYESIAN MODEL COMPARISON

Our basic problem is that of determining the probability
for some clearly specified hypothesis M; that describes the
observed data, D, based on all available prior information I that
is relevant to the problem. The posterior probability is given by

P(D|M;, ) P(Mi|1)
P(D[T)

P<Mi|D7I>: (D

‘When the prior information I does not give any preference for
any model over any other, the principle of indifference [5] yields
the prior P(M;|I) = 1/M, where M is the overall number of
considered models. The numerator is obtained from

P(D|I) = ZP(D|ML-,I)P(M,;|I) 2)

where the sum is over all considered models. The crucial factor,
and our main concern, is thus the marginal likelihood, or the
evidence, for the model P(D|M;, I). As we shall see, the com-
putation of this factor follows a similar pattern for all models
considered in this letter.

We note that model comparison between M}, and M, can be
performed by evaluating the posterior odds

P(D|My, I) P(My|T)

O = PDM. 1) POLID)

3

With equal prior probabilities for the two alternatives,
the posterior odds (3) reduces to the evidence ratio
(P(D|My,I))/(P(D|M,I)). Henceforth, we will assume
equal prior probabilities for the models under consideration in
all tests. For more on Bayesian model selection, see [5, Ch. 20].

We now turn our attention to the specific tests, starting with
tests on the multinomial model.
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A. Independent Multinomial Models

Independent multinomial models are completely parameter-
ized by K probabilities, one for each possible state. Let fj, de-
note the probability for observing state k at any time. We have
K such probabilities that we gather in the parameter vector
f = (f1,..., fx)T. They sum to unity and are assumed con-
stant over time and independent of previous states. The proba-
bility for observing a specific sequence S of states is thus simply

P(SIf,I) = fi* - K" “)

where n; denotes the number of observations of state k. Let
n=>y w1 Ni denote the total number of observations, i.e., the
length of the sequence S.

Let Hx denote the hypothesis stating that a sequence is in-
dependent multinomial. We now wish to compute the evidence
P(S|Hn,I)= [ P(S|ftHNI)P(f|HyI)df, where df is short-
hand for the volume element df; - - - df .

If our prior information I suggests no preference for any
vector f over any other, we express this state of indifference by
assigning a uniform prior over the values that sum to unity

K
P(f|HNI) = C6 <ka—1> s fe20 ®)
k=1

where 6(z) = 1ifx =
normalization constant.
Below, we will use the result (see the Appendix)

K K
/ff,l L) (ka—l) g = =t T £1) (6)

Pt I'(n+ K)

0, 6(z) = 0 elsewhere, and C' is a

By noting that the prior (5) must integrate to unity, we find by
inserting n1 = ... = nx = 0 that the normalization constant
becomes C' = (K — 1)!. The evidence for a multinomial model
now follows directly from the integral result (6) as

(K = D! Ty Pl + 1)
I'(n+ K)

P(S|HNI) = ()

This result can be extended to the case when we have ob-
served two sequences, S' and S2. Let n; and n? denote the
number of observations of state k in S! and S2, respectively,
and let n;, = ni + ni, i.e., the accumulated number of obser-
vations of state k in S and S2. Finally, let 77 = Zszl k.

Consider now the case that these sequences both originate
from the same multinomial model, and denote that hypothesis
H, . This is equivalent to the statement that the same f has
generated both sequences. Consequently, the evidence for H,
is obtained directly from (7) with nj, in place of ny

K — DI, Ty + 1)
T(7+ K)

P(S, S| Hox ) = (8)

We now have the necessary means to set up the first test.

Test 1 (Same Versus Different Multinomial Models): Let Hn
and H;y denote the hypotheses stating that two sequences, S*
and S2, originate from the same multinomial model and dif-
ferent multinomial models, respectively. The evidence of the
first is given by (8), and the evidence of the latter is simply the
product of the evidences for the respective sequences given by
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(7). We have
P(D|H,n,I) 1 T+ KIn®+K)
P(D|Hgn,I) (K —1)! I(n+ K)

y [Ty D + 1)
K K :
[Tp=i T (n% +1) [Tiea T (nllc +1)

©)

Test 2 (Is a Particular Model Supported by Data?): In prac-
tice, we often have a suggestion for a particular multinomial
model. We would then like to test whether this model is sup-
ported also by the observed data. Let the particular model, I, v,
be specified by a known probability vector f. Given a sequence
S, we then wish to test this model versus the class of all other
multinomial models. The evidence for H,,x is simply given by
(4). The posterior odds are thus obtained by dividing this by the
evidence (7) for an unspecified multinomial model

_ P(S|HyNI) _  Tn+ K)fi™ - [~

0= P(SIHNI) (K — )2, T(ng + 1)

(10)

If this ratio is larger than unity, the data support the particular
model H,x.

B. Markov Models

Let Hj; denote the hypothesis stating that the sequence
originates from a Markov process. The Markov model can be
regarded as a generalization of the independent multinomial
model, in which probabilities f;; for the next state j depend
on the current state k but no earlier states. A K -state Markov
model is uniquely described by a transition matrix F defined by

fu .. fix
F=| : . (11)
Tx1 K
and a vector fy = (fi0,.-.-,fro)’, where fro is the prob-

ability of starting in state k. For notational convenience,
we also introduce the parameter vectors fy,...,fx, where
f = (fiks.--, fxx)?, ie., the transition probabilities associ-
ated with leaving state k.

For a known set of parameters, the probability for obtaining
a specific sequence S of observations is

K K
P(S|f07F/I) = .in H Hf}:’llu

k=11=1

12)

where 1 is the first state, and my; is the number of observations
of transitions from state [ to state k. Note that the expression for
the Markov likelihood is entirely analogous to the independent
multinomial likelihood (4).

If we, again completely similar to the multinomial case, as-
sume complete ignorance of the parameter values in F and f,
and assume no dependencies between the vectors fy . . ., fx, we
obtain the parameter prior

K
P(fo, F|I)= P(fo| )] [ P(£:]1)
=1

K K
= Cob <Z fro— 1)1‘[0,5 (Z fri— 1) (13)
k=1 l k=1
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where the normalization constants C; = (K —1)!.Itis now clear
that the evidence for a Markov model is of the same form as in
the independent multinomial case, and the final result follows
from application of the basic integral result (6). By integrating
over the parameter space and using (6), (12), and (13), we obtain
the evidence P(S|H s, I)

P(S|Hyr, T) = /P(S|F7f07I)P(F,f07I)df0dF

- / FioP (Rl Har, T)dfy

X H / Fime L e P (g |1 df

KH

where m; = Z r—1 Mk, and f;o is the probability for the ob-
served initial state. Note that (14) is just a product over evidence
factors of the same form as in the multinomial case (7) multi-
plied by 1/ K, accounting for the probability for the initial state.

Similar to the multinomial model, the evidence for a hypoth-
esis, Hsyy, stating that two sequences, S L and 52, belong to the
same Markov model can also be easily evaluated, cf. (8)

1 [Ty Dk +1)
mH(K_l)!k—

Hk L(mp+1)

Dm+k) Y

1 g2
P(SY,S*|Hspr, I) Tt K)

(15)
where ¢; = 1 if the initial states are different and ¢; = 2 if the
states are the same.

Now we are prepared to present two tests, one for determining
whether two sequences originate from the same process and one
for determining whether a sequence isindependent or Markovian.

Test 3 (Same Versus Different Markov): Let Hipy and H gy
denote the hypotheses stating that two sequences, S* and S2,
originate from the same Markov model or different Markov
models. The evidence for the first is given by (15), and the ev-
idence for the latter is simply the product of the evidences for
the respective sequences. This yields the odds

O— P(D|Hspr, I)
~ P(D|Haas, 1)
Keq ﬁ ml+K)F(m12+K)
(K+1 I + K)

T + 1)

X . 1
HF (myy, + )T (mf, +1) (10
Test 4 (Test of Independence): We here compute the odds for

the hypothesis of an independent multinomial model versus that

of the Markov class of models. Before we calculate the odds,
we draw attention to a slight difference in how the counters my,
and ny, are treated. For the multinomial model, n;, is the total
number of occurrences of state & in the sequence, whereas my, is
the number of occurrences of state k, excluding the nth position.

Thus, ny and my, are related through ny = my + 65, =, Where

0s,, =k 1s one if the last state in the sequence is k, otherwise zero.
We obtain the odds

P(S|Hn. 1)

P(S|Har 1)

_ K [, D(mu+ KT (05, =i+ 1)
(K=D)L D+ K[ (maa+1)

O=

. (17)
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C. Hidden Markov Models

Let Hy denote the hypothesis that a HMM generates the ob-
served data. A HMM is a generalization of a Markov model. The
sequence generated from an HMM is no longer observations of
the states s; at times ¢ but rather observations of data x; that
are thought of as being emitted by the states. The probability
for observing the data sequence X = {z1,...,2,} given the
corresponding state sequence S = {si,..., S}, the emission
probability, is assumed to be of the form

1 ) = H ewt St
t=1

n
1) =[] Platlse, Ha,
t=1

where we introduce the shorthand notation e.,s, =
P(x¢|sy, Hyg,I) for the emission probabilities. The eg,s,
are assumed known and independent of previous observations.
The evidence for an HMM is obtained by marginalizing the
joint probability distribution for X, the unknown transition
probabilities F, and the state sequence S according to

P(X|HH,I):/ZP(X|S,F,I)P(S|F,I)P(F|I)dF
S

P(X|S, Hy, (18)

:/ZP(X|S7I)P(S|F7I)P(F|I)dF

:ZP(X|S7 I)/P(S|F,I)P(F|I)dF. (19)

For notational compactness, the conditioning on Hy on the
right-hand side is not written out, and fj is included in F. Recall
that the joint probability P(X|S, I) for the observed sequence
is given by (18). We see that the final integral over F in (19)
is the evidence (14) for a standard, non-hidden, Markov model.
The total evidence (19) is thus

_(K-D)7 ;{1)!K ZP(X|S, I

H Hk 1 mfl +1)
m l + K ) ’
Note here that the number of transmons my, and m? depends
on the state sequence S. Since an exact computation of (20) re-
quires a summation over all possible sequences, this is generally
not feasible. Instead, we propose an estimate that approximately
evaluates all possible sequence paths.
We use the standard Markov model, but instead of increasing
a single counter my; by one at a particular observation time, all
counters are increased by an amount less than one, with the total
ateach time step summing to one. The amount that we add to m,
at time ¢ is the probability for the state transition [ to k given the
observations at ¢ and ¢ — 1. An interesting interpretation of this
approach is obtained by noting that this corresponds to a situation
where all possible sequence paths are traversed simultaneously,
with each state being occupied by a certain percentage P(s; =
k,st—1 = Uz, z1—1,I). We then use the expression for the ev-
idence (14) from the standard Markov model but instead of my;

P(X|Hg,I)

(20)

— 1) + P(St =k,s4_1 = l|$t,$t_1,l)
p(xi|se =k, I)p(s¢ = k|T)

=it — 1
Y e
" p(ze—1lse—1 =1, Dp(se—1 = I|I)
P(wi_1|])
=gt — 1) 4 =R e @1)

Zst e-T/tSt 281—1 ef’?t—lst—l
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Fig. 1. Exact (dark) and approximative (light) log odds for tests between
X1 =1{1,1,1,1,1,1,1,1} and the sequences (i) X1, (ii) {1,1,1,2,2,2,1,1},

@ii) {1,1,2,2,1,1,2,2}, and (iv) {1,2,1,2,1,2,1,2}.

In summary, we compute

P(X|Hg,I) :/P(X|F,I)P(F|I)dF (22)
using the approximation
K K
P(X[F. 1)~ fio [T T] £ (23)

k=11=1

with my; given by (21).

Test 5 (Same Versus Different HMM): To test whether or
not two observed sequences have been generated by the same
HMM, the odds (16) are calculated using the estimates 77x; from
(21). The parameter ¢; = Hle (ko + 1), where myo =
555=k + 553:k, is approximated using

P(xylsy =k, 1
0o, =k = P(sy = k|t I) = 15 tlst 1) . (24)
st Plaelse, 1)

Test 6 (Test of Independence): To test whether a data se-
quence supports a hidden independent multinomial model in
favor of a general HMM, the odds (17) are computed using 771z,
from (21), and 65—, as above.

D. Freely Available Software Implementations of the Tests

We have implemented the tests described here in Matlab. The
tests can be downloaded from http://www.signal.uu.se/Staff/mj/
pub/MarkovTests.zip. In implementing the tests, we have used
the log odds without explicit computation of the Gamma func-
tion. We then obtain exact results, even for large numbers of
observations.

III. EXAMPLES

Test 5 was compared with an exact Bayesian test based
on the evidences in (19). In the comparison, a sequence
X1=1{1,1,1,1,1,1,1, 1} was tested against sequences of in-
creasing dissimilarity (see Fig. 1). The underlying Markov chain
had two possible states, and the emission probabilities were
€rp=isp=i = 1 —€,fori =1,2,and ey, —; s, =j = €, forsi # j.
We examined the parameter values € € {0.01,0.1,0.2,0.3}.
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We note in Fig. 1 that the approximation is accurate for small
e. For larger ¢, i.e., for less informative sequences, it becomes
more cautious and favours similar HMMs.

IV. COMMENTS

The standard procedure for model selection today is
chi-square tests using maximum likelihood estimates (MLEs)
for the transition probabilities. Besides the ad hoc status of
chi-square [5], the procedure to estimate transition probabilities
based on few data and treating them as known can be danger-
ously misleading. The MLE for a transition probability f;; is
mj;/m;, which will yield zero probability for non-observed
state transitions. If we have only observed a short data series,
this is of course absurd. Using the approach we have taken
here, the transition probabilities are not estimated at all; rather,
we take all possible values into account, weighted by their
respective probability. It can finally be noted that if we would
wish to make an estimate of fj;, the posterior expectation
becomes (mj; + 1)/(m; + K).

APPENDIX
We wish to integrate the state probabilities out of the expres-
sion for the prior (5) for the sequence multiplied by the likeli-

hood (4). We omit the normalization constant C'in the prior and
solve the more general integral expression

J(q) = /m/f{’” o FRES(fr 4+ fre— q)dE. (25)
0 0
We note that the Laplace transform of J(q) is

N N ... -1
/.../e—s(f1+---+ff<>ff”'1 R df = _mlgmf;nk' (26)
0 0

where m = Ef‘zl m,;. Taking the inverse transform yields

J(q) = ——————¢" T 27
W= i =) @7)
Using ¢ = 1, we obtain
g K T 1
J(1) = e iy Dlmi£1) g,
(m+ K —1)! I'(m+ K)
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