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Abstract

Algorithms to estimate blindly the parameters and input sequences for a multiuser asyn-
chronous CDMA system are proposed. The communication system is modeled as a frequency
selective fading channel with multipath propagation where the number of active propagation
channels is unknown and highly time-varying. Estimates of input sequences and unknown pa-
rameters are jointly computed via the SAGE algorithm. The SAGE algorithm provides a unified
approach in combining jointly multiuser detection and parameter estimation in an optimal way.
Depending on the realizations of the SAGE algorithm well-known state and parameter estima-
tion schemes of various complexities are optimally combined.

Key-words: asynchronous CDMA, SAGE, multiuser detection, parameter estimation, HMM, Viterbi,
iterative decoding.

EDICS: 3-CEQU (Channel Modeling, Estimation, and Equalization)

1 Introduction

There are today several operational CDMA communication systems for both military and commer-
cial applications including satellite networking, cellular mobile radio systems, and indoor wireless
communications [1]. In a CDMA system, all users transmit simultaneously and at the same fre-
quency and the transmitted signals occupy the entire system bandwidth. Code sequences are used
to separate one user from another and it is assumed that the receiver has knowledge of these codes
of some or all users. Demodulation, based on the reception of the transmitted signals of all users in
the presence of additive noise, must occur to ascertain the information transmitted by each user. In

most CDMA systems the users transmit independently, thereby causing the transmitted signals to
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arrive asynchronously at the receiver. Many radio channels also exhibit severe multipath propagation
which causes frequency selective fading [2, 3.

The interest in the problem of multiuser detection was motivated by the work of Verdd [4]
where he devised both the minimum error probability detector and the maximum likelihood (ML)
sequence detector for CDMA systems over Gaussian noise channels. Many suboptimal algorithms,
computationally less intensive than their optimal counterparts, followed from the development of
these optimal detectors, see e.g. [5, 6, 7, 8, 9]. In [10], ML sequence estimation with unknown
random phase or fading parameters treated as missing data is derived. Similar to [10], the expectation
maximization (EM) algorithm [11] is used in [12] for detection in a multiuser synchronous channel,
rather than estimation of unknown parameters.

In [13], multiuser receivers iterate between the EM algorithm for amplitude estimation and multi-
stage data detection. [14] uses the EM algorithm for amplitude estimation of direct sequence CDMA
systems. The approach in [14] differs from the one in [13] in that the users’ data are considered prob-
abilistically as missing data. In [15], the EM algorithm is applied to the problem of ML sequence
estimation when symbol timing information is not present. Most of the work done on timing acquisi-
tion for CDMA systems focuses on jointly estimating the necessary parameters for all users [13, 16].
These techniques involve solving a multidimensional optimization problem for a large number of
parameters, which can be computationally intensive. In [17], a subspace-based scheme is derived for
estimation of channel parameters in CDMA communication systems operating over channels with
either single or multiple propagation paths. Subspace-based schemes for parameter estimation and
data detection of asynchronous CDMA systems are also proposed in [18].

In this paper, we consider an asynchronous multipath and multiuser CDMA system. Here, the
channel is modeled as an additive white Gaussian noise (AWGN) frequency selective multipath
channel with a fixed number of users, but with a time-varying number of propagation channels. We
assume that the input data belong to a finite symbol alphabet and that phase-shift keying (PSK) is
used for modulation.

The approach in the current paper is a generalized extension of the CDMA joint data and channel
estimation scheme presented in [13]. In [13], the number of multipath channels is fixed and known, an
assumption not true in practice. Here, we use a SAGE based algorithm to jointly estimate the channel
parameters, demodulate the transmitted messages, and estimate the number of active propagation
paths. This paper is an extension of [19]. Similar work can be found in [20] and [21], where data and
channel estimation in frequency non-selective synchronous channels is studied.

Contributions: In this paper, we propose three iterative, optimal in a maximum a posteriori
(MAP) sense, off-line schemes that yield the joint data and channel estimates of an asynchronous

multipath and multiuser CDMA system. The estimates are computed via the SAGE algorithm
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[22], and depending on the choices of the hidden data spaces and the parameter index sets, three
different algorithms are proposed. Algorithm I iteratively computes the MAP parameter estimates
and at the same time computes estimates of the transmited data and detects the active propagation
paths using a HMM smoother. Algorithms II and III compute the MAP channel-data estimates
jointly. In particular, Algorithm II iterates between a channel parameter estimator and the Viterbi
algorithm, which computes MAP sequence estimates of the data and the active propagation paths,
while Algorithm IIT computes each of the unknown data symbols and detects the active propagation
paths iteratively one at a time.

In computer simulation studies, we evaluate the performance of our detection and estimation
methods. We compare the errors of the channel estimates to the derived CRLB. The BER in
detecting the input sequence and the presence of multipaths is compared to results achieved by using
a Viterbi algorithm when all other parameters are assumed to be known.

The outline of this paper is as follows. In Section 2, the system model is described and the
problem and objectives are stated. Our suggested estimation and detection schemes are formulated
in Sections 3 and 4. Section 5 then provides the performance analysis of the proposed algorithms.

Finally, Section 6 contains some concluding remarks and potential directions for future research.

2 Problem Description

We begin with a description of the communication system and we outline our estimation and detection

objectives and the proposed schemes.

2.1 CDMA System Model

In this paper, we assume that the multiuser and multipath CDMA system operates over AWGN
frequency selective multipath channels [17, 18]. Let K denote the known number of asynchronous
users. Each user transmits N data symbols belonging to the finite symbol alphabet {0,1,... M —1},
where M is known. The input data are modulated using PSK. The kth user’s modulated signal (for
k=1,...,K) is given by

L-1

sp(t) = \/ﬁexp{jm} > {exp {j%mn,k} > rectr, (t — T, — nT)dk(l)} , —oo<t<oo, (1)
n=1 =0

where m,, ; is the nth symbol from the kth user, T is the symbol duration, T, = T/L is the chip
duration, and L is the number of chips per symbol. The symbols m,, ;, € {0,1,... M —1} are modeled
as a finite-state independent and identically distributed (iid) equiprobable random variables. Here,
dp(1),0 =0,...L—1, denotes the known code sequence of the kth user. P is the transmitted power,

¢y, is the carrier phase relative to the local oscillator, and rectr, (-) is a rectangular pulse of duration
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T,, given by

1, f0<t<T,

rectr (t) = { 0, otherwise ' 2)
The modulated signals are subject to attenuation and propagation delays. The propagation

delay, carrier phase, received power and channel response of the signal are assumed to be unknown

parameters requiring estimation. The received signal is given by

r(t) = ];rk(t) +w(t), —oo < t < o0, (3)

where 7 () is the received, attenuated and delayed signal of the kth user and w(t) is assumed to be
white complex Gaussian noise with zero mean and a two-sided power spectral density o2. The signal

rr(t), as illustrated in Fig. 2, is given by

r(t) = Zl Qkp Okp(t) Sk(t — i), (4)

where S is the maximum number of possible propagation paths, oy, is the attenuation factor, 7,
is the propagation delay of the kth user via the pth propagation path, and & ,(t) € {0,1} denotes
whether or not a path is active. We assume 7y, to be uniformly distributed within the interval [0, T'),
which implies that the length of the channel is always lower than the processing gain. The number
of transmission paths at any time instant is assumed to be unknown and time-varying. We use S
Markov chains as indicator functions to model the presence or non-existence of the possible paths.
The received continuous-time signal is converted into discrete-time by sampling of the output
matched to the chip waveform, which is a rectangular pulse for PSK [17]. Because of time-delays in
the system, each observation will contain at least the end of the previous symbol and the beginning
of the current symbol for each user and path. Furthermore, we assume that 0y ,(?) is constant during
one sampling period. Extending the results in [17], it can be shown that the discrete-time vector,

Yn, as depicted in Fig. 3, is given by

K 3 2m 27
Yn = Z Z Ek.p One.p (exp {]_mn—l,k} Pk,p + €XP {J—mn,k} Qk,p) + Wy, (5)
k=1p=1 M M
where
Pk,p = (1- ”k,p)a;"c(yk,p) + Nk pay, (Vk,p +1), (6)
Okp = (1 — nk,p)agc(’/k,p) + nk,pai(yk,p +1), (7)

and y, € CL is the nth vector output from the integrate-and-dump chip, w, € C¥ where each

element is a zero mean white complex Gaussian noise sequence with variance o?/T, and

$kp = Qrp\/ 2P exp{jdi}- (8)
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Onkyp € {0,1} is modeled as a two-state (on/off) Markov chain, which indicates whether the pth
propagation path of the kth user is active at time instant n. The transition probability matrix of

Onk,p is denoted as [1¢kp) — [tg?’p)], where

1" = Pr(Gusrnp = il0uks = 9),  Vij € {0,1}, (9)
0<tf? <1, Vi, je {01}, (10)
and
) ) =1 vie {0,1}. (11)
The time delay 7, is separated into an integer part v, € {0,1,...,L — 1} and a fractional part
Mkp € [Oa 1)a given by
.
%mod(L) = Vkp + Nk ps (12)

where mod denotes the modulus operator. Finally,

r A [dk(L—l/)dk(L— ].) le(L,,,)]l, for v € {1,,L}
) = { Orx1, forv =0 ’ (13)
I A 01y di(0) - -dp(L—v—1)], forve{0,...,L—1}
ak(V) N { 0L><1; fOI" v=1L ) (14)
Prior Distributions: Let § = (nk,p,yk,p,ﬁk,p,tgf’p);k =1,....K, p=1,...,8, i = 0,1) denote the

unknown parameter vector and f(#) denote the prior distribution of §. Note that if tg(c)’p ) and tﬁ’p ) are

estimated then t((ﬁ’p ) and tglf)’p ) are estimated using Eq. (11). We assume the parameters are mutually

independent, thus

K S

£0) = TI TI £ op) £ Wep) £ (Erp) £ £ F (2P, (15)

k=1p=1

We assume uniform priors on the transition probabilities and on time delays 7y ,, and consequently
on 7, and v . We assume &, to be Gaussian distributed with known mean y, and variance o}, .
When py,, is zero this implies that the fading on path p for the kth user is Rayleigh distributed.
Alternatively, when p , is nonzero, then we consider Rician fading channels.

Notation: Using N samples, let the sequence of measurements (yi, ..., yy) be denoted as Y. Let Y, 2
(y1,---,ys) and Y,V 2 (Yns---,yn). Let My and Ay, denote the symbol sequence (mi, ..., myk)
and the indicator functions (1., - -.,0n k) Of the kth user and pth propagation path, respectively.
Finally, let m,, 2 {muni;k =1,...,K}, o, 2 {Onpp;k=1,..., K, p=1,...,S}, M 2 {My; k =
1,...,K} and A2 {Agpsk=1,...,K, p=1,...,S}.



2.2 Objectives and Proposed Schemes

Given the observed data Y, it is desired to perform the following.
1. Parameter Estimation:

— Estimate the complex constants & ,, defined in (8), for each user k£ and each path p.
— Estimate the time-delays 7, for each user £ and each path p.

— Estimate the transition probabilities II*?) of the S different propagation paths and K

users.

2. FEstimation of Input Sequence: Estimate the transmitted input sequence m,;, for n =
1,...,Nand k=1,..., K.

3. Detection of Active Propagation Paths: Estimate the active propagation paths 4,4, for
n=12,....N,k=1,...,Kand p=1,2,...,S.

In this paper, we seek to compute the MAP data and channel estimates as follows

o MAP — arg max f(o)Y), (16)
MAP __

We propose to use the SAGE algorithm [22] to yield the desired data and channel estimates as
given in Eqs. (16)—(17). The SAGE algorithm is suited to problems where subsets of the parameter
vector can be updated sequentially. The SAGE algorithm is to be preferred to the EM algorithm,
since convergence of the likelihood function is significantly faster, and the maximization step is often
simplified.

Associated with each small group of parameters is a hidden data space, which together with the
observations form the complete data space. The simplicity of the SAGE algorithm relies on the
maximization of an objective function of the complete data, which is computationally more tractable
than maximizing the likelihood function directly.

We now outline the SAGE algorithm. Let ¢y denote the parameter components indexed by the
set T CQ=1{1,2,...,|4|}, where |¢| denotes the cardinality of parameter vector ¢, and let T denote
the compliment of Y, such that YUY =  and YNY = . Starting from an initial parameter estimate
#©, the SAGE algorithm yields on the /th iteration (for I = 0,1,...) the parameter estimate ¢() by
performing the steps outlined in Fig. 1.

In [22], it is proven that the sequence of estimates, {(ﬁ(”}, generated by the SAGE algorithm,

monotonically increases the penalized likelihood objective function. Asymptotic convergence rates
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are derived, and sufficient conditions for monotonic convergence in norm are determined. See also
[12].

In this paper, we propose three different detection schemes according to the choice of the index
sets T and the desired channel and data estimates given in Egs. (16)—(17). In Section 3, we propose a
scheme (called Algorithm I) for computing Eq. (16). In Section 4, we consider the problem formulation
stated in (17) and two schemes (called Algorithm II and Algorithm III) are proposed based on two
different choices of index sets, Y.

The SAGE algorithm provides a unified approach in combining jointly multiuser detection and
parameter estimation in an optimal way. Depending on the realizations of the SAGE algorithm well-
known state and parameter estimation schemes, such as the HMM smoother, the Viterbi algorithm,

the Yule-Walker and Baum-Welch re-estimation formulae, are optimally combined.

3 Parameter Estimation via SAGE: Algorithm I

In this section, we consider the problem formulation stated in Eq. (16), that is, we seek to compute

the MAP parameter estimates as follows
OMAP = arg max f(o)Y). (18)

As a by-product of the SAGE algorithm we compute MAP estimates of M, A as follows

(52/[,‘25 = arg, kmgf% 5 Pr (5,1,;6,,, PMAP Y) ’ (19)
n,k,p
m}f,ﬁp = arg max Pr (anC | GMAP, Y) , (20)

mn,kE{O,...,M—l}
forn=1,...N,p=1,...Sand k=1...K.
Using the notation in Subsection 2.1, the parameter vector is chosen as ¢ = 6 and the hidden

data space as X T = (M, A). The index sets are chosen from a partition {Yy,..., T4} such that

¢r, = (5P k=1, K, p=1,...,5, i=0,1), (21)
¢T2 = (nkpak_12 Kap:1a2a"'a‘s)a (22)
¢T3 = (V ,pa 'aKap:1a27"'7S)7 (23)
b, = (Geps k=1,2,...,K, p=1,2,...,5). (24)

We now present the details of the SAGE algorithm for computing MAP parameter estimates for our
asynchronous CDMA system defined in Subsection 2.1.
Expectation Step:
Evaluate
Q(0;00) 2 E{im £(v, M, A,0)|Y,00}, (25)
7



where

In f(Y,M,A,0) = —Nln (7;72) (26)

2
+ Z Z (m F(ep) +10 f(vep) + In f(EE7) + In f(¢57)) — n(ra? ) — w>

k=1p=1 Okp
N K S

N K
+ 3D I f(OnkplOn ks +ZZlnf Sipp) + ZZ In f (1 5)
n=2k=1p=1 k=1p=1 ne1 k=1
N Ut o 2
_,;10 kzlpzlfk,p nk,peXp{ I 1k}pk,p kzlpzlfk,p nk,pexp{ ank}gk,p

This step requires the evaluation of the following probabilities
YO (ims s i85 5) 2 P (M 1 = i, M = i, O 1 = i, 0 = sV, 01) (27)

where ’Lm é (im,b im,?a AR 7;Tn,l()ajm é (jm,bjm,?a cee 7jm,K) € {07 17 T 7M - 1}K and

DA, . N .
is = (95115 -596k.5)5 J6 = (Jsi1s- -+ Jo.ic.s) € {0, 1}55. Thus,

Q(6:00) 2 ¥ % Z zm,jm,i(s,j(;){—ln (W;j) (28)

tmsJm G5,Js N=1

2
+ Z Z (hlf Mep) + 10 f (i) + In FEEP) +In f(15P) — In(no? ) — M)

k— 1p—1 Okp

K S K
+ Z Z(l —H{n-1})In t'le:’:zﬂékp + Z Z I{n -1} lnf((sl,k,p = jﬁ,k,p) + Z lnf(mn,k = jm,k)
k=1p=1 k=1p=1 k=1
2
Tc 2 L) _ o
Z Z Ek,pJs,kp €XD { Mlm k} Py — D D Ekplokp €XD {J H]m,k} Ok p

k=1p=1 k=1p=1

Here, I{-} is the indicator function, such that

0, otherwise

Iz} = { L, ifz=0 (29)

The probabilities in (27) are efficiently computed via the forward backward recursions of an HMM
smoother. Following [23], we first define the forward o and the backward 8 unnormalized densities,

as follows

ag)(im,jmaiéajd) = f (mnfl = imamn = jm,énfl = iéa(sn = jé,an(l)) ) (30)
ﬁnl)(imajma 7;57j5) = f (Ynjj-1|mn—1 = im; my = jm7 6n—1 = i&; 677, = j57 Yna e(l)) .

Let

. A
lm =

[t e i | (31)
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and let similar notations hold for j,, and [,,. Furthermore, let

AT : : : : '
152[15,1,1 W12ttt leLs o2l ZJ,K,S]- (32)

Similar notation holds for js and /5. Define the following quantity

A
bg)(lm7jm7](5) = f(yn|mn—1 = Uy M = Jm,y Op = .76) = ( ) X (33)

P
exp {

Using similar arguments as in [23], we show that the following recursions hold for the updating

2 X3 . 27
ZZ EkpJo,k,p EXD { IM —— k} Prp — DD Ekplojep €XP {J ﬂ]m,k} Ok.p

k=1p=1 k=1p=1

of the unnormalized densities

ag-)kl(jma lma j&a l&) = Z Z a’g) (imajma i&,jg) Pr(mn+1 = lm) Pr(5n+1 = l5|5n = JJ)by(zl-)H(]m, lma l(;),

im i
forn=1,...,.N—1, (34)
57(;,l)(imajma iéaj&) = Z Z 5n+1 jma ma]da lé) Pr(mn—l—l = l )Pr(6n+1 — ll5|5 — j&)bn—f—l(]ma lma lé)a
b s
forn=N-1,...,1 (35)

fOr 4y s b € {0,1,..., M — 1} 45, 55,15 € {0,1}%5 where

P =l) = M %, (36)
Pr((sn-i-l = l5|5’n = -75) = H H ]ékplISkP (37)
k=1p=1

The forward and backward densities are initialized as follows

agl)(imajma i&vj&) = bgl)(im:jmajﬁ)a for Zma]m € {07 1: R M - 1}K77;(57j5 € {O: 1}KS:
BV (i, i, gs) = 1, £ i, jm € {0,1,. .., M — 1} s, js € {0, 1}55.

Finally, the state probabilities 7()(-) are given by

n

CVn(ima jm7 7;(5: ]J)Bn(zm: jm; Z.(Faj&)
Ezm,]m 225,]5 O‘n(zmv ]m7 2(57 ]J)/Bn (Z’ma .]m; 1(57 .75)

7(l) (Zma]ma/”J:JJ) (38)

forn=1,...,N and i, jm € {0,1,..., M — 1}X i5,55; € {0, 1}55,

This completes the Expectation step of the algorithm given in Fig. 1.
Maximization Steps:

Instead of maximizing (25) directly as a function of #, the SAGE algorithm updates subsets of
parameters sequentially, keeping the other parameters fixed at their previous values. Depending on

the choice of the parameter index set, T, the parameters are updated as follows.
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Transition Probability Matriz Update: Here, the index set T is studied. Given the constraints
0 <" <1,Vi,j € {0,1} and T}y " = 1, for each i € {0,1}, compute

e ) )
t;;""5i=0,1

Using standard HMM theory [23], it turns out that the Markov chain transition probability estimates
on the (I + 1)th iteration are given by

SNy Pr (Snpp = iy a1 = 1Y, 00)

(k.p)) D) :
t = , for i € {0,1 40
fork=1,2,..., Kand p=1,2,...,5. Where
Pr <5n,k:,p = 7:7 5n—1,k,p = Z|Ya 0(1)) = Z Z ’Y}zl) (imajma i&vj&)- (41)
imajm Zg;éz,j(;;él
Update of the Fractional Part of the Time Delay: Here, the index set T, is studied. Compute n,(cl’;:l)
forpe {1,2,...5}, k€ {1,... K}, as follows
gk =Ly K, p=1,.,9)) —arg  max Q" (gr,;69). (42)

(nk,p;k:L...,K, p:l,...,S)

This is solved by differentiating QY2 (fﬁn; qﬁ(l)) with respect to ., Vk € {1,...,K},p € {1,...,S}
and setting each equation equal to zero. The resulting K.S simultaneous equations are solved ac-
cording to the following:

Let eV be a K x S matrix such that the (', p')th element is e,(cl,ﬂ) and

P
+1 l
egc/’p,) - E {6/(6'),])’

Y, 9”)} , (43)

where

k=1p=1

N K S
2 ,
55!,),1), = > Re {(cff,)k,,p,)H (yn - f,ﬁﬂ,én,k,p exp {] ﬂmn—l,k} a (Vlglza)

k=1p=1

- ) 2m 0
=~ Y & bnkpexp { i gmanf o) ) 1 (4

where (-)¥ denotes the conjugate transpose operator, and

27 . .
oo = Busatlpesp {7 ggmecsaf [0 0 + 0 1)
2w
Houkatllyexp {37 f [-a () + a0 + 1)]. (45)

Let WD be a KS x KS matrix, given by

WD = {i \W#*”\Q\ Y, e@} , (46)
n=1
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where the (K (p — 1) + k)th column of the L x K'S matrix W{*+ is given by ¢’ . The fractional

n, k D"
part of the time-delays are given by the following modified Yule-Walker equation

vec (n(l+1)) = (W(l+1))_1 vec (e(l+1)) , (47)

where 7+ is a K x S matrix, and the (k, p)th element is equal to n(l+1).

Update of the Integer Part of the Time Delay: Here, the index set Tj is studied. Compute (v p; k =
L,...K,p=1,...5)" as follows

(ep;k=1,...K,p=1,... S)(Hl) = arg max Qs (¢Ts; (b(l)) . (48)

(Vk,psk=1,..K, p=1,...5)
The joint maximization of QY3 <¢T3; ¢(l)) with respect to (vg, k =1,... K,p=1,...5) is a discrete
combinatorial optimization problem with computational cost O(LX?).
Update of the Complex Constant & (which is a known function of the unknown parameters carrier

phase, transmitted power, channel response): Here, the index set T, is studied. Compute (& p;k =
1...K,p=1,...5)* as follows

(gk,p; k = 1a e Ka b= 1a L S)(l+1) = arg max QT4 (¢T4; Qﬁ(l)) ) (49)

(& pik=1,.K, p=1,...5)
The joint maximization of &, Vk € 1,..., K and Vp € {1,...,S} is computed by solving a K x S
linear system of equations derived from taking the derivative of QY+ (¢T 0 gb(l)) with respect to each
&kp and setting the results equal to zero.
Let €41 denote the K x S matrix, such that the (k, p)th element of £!*1) is equal to f (1) - e(1)
is given by the following modified Yule-Walker equation

vec (5(”1)) = (R(l“))_1 vec (h(l“)) : (50)

where h(*1) is a K x S matrix, and its (k, p)th element is given by

T
k.p ak + (72

2 H 2
Z E {( n k,ppk)p) Yn XD {—J ﬂﬂ—mn—l,k} + (6nkpoly)  Ynexp {—J ﬂﬂ-mnk}

and R*Y is an KS x K S matrix, given by

V001, (51)

T, N 2
R = 5 {ng_jl \Rﬁ? Y, 0<l>} + %, (52)
where ¥ is a KS x KS diagonal matrix given by
¥ =diag(1/o71,1/051,...,1/0%1,1/07 5., 1/0% 5)- (53)
RY has dimensions L x K S, where the (K (p — 1) + k)th column is given by
5n,k,pp,(cl,)p exp {j%mn_l,k} + 5n,k,pg,(cl,)p exp {j%mn,k} . (54)
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4 Joint Data and Channel Estimation via SAGE: Algorithms
IT and III

In this section, we consider the problem formulation stated in Eq. (17), that is, we seek to compute

the joint MAP data and channel estimates as follows
MAP _

Using the notation in Section 2.1, the parameter vector is chosen as ¢ = (M,A,0) and the
hidden data space as XY = ¢y. Consequently, the proposed SAGE algorithms reduce to coordinate
descent methods. Depending on the choice of the partition set we propose two joint data and channel
parameter estimation schemes. In the first scheme called Algorithm II, presented in Section 4.1, the
data estimation and the active path detection is performed jointly via a Viterbi algorithm. The
second data estimation problem, presented in Section 4.2 is performed iteratively following a similar

approach to [13]. We call this Algorithm III.

4.1 Algorithm II

In this subsection, the index sets are chosen from a partition {Yq,..., Y5} such that
or, = (K7 k=12 K p=12..,8, i=01) (56)
or, = (hp; k=1,2,....K, p=1,2,...,5) (57)
br, = (Ukp; k=1,2,...,K, p=1,2,...,5) (58)
dr, = (Ep; k=1,2,....,K,p=1,2,...,95) (59)
br, = (M,A) (60)

The key idea is to iterate between channel (transition probabilities, time delay, channel amplitude)
estimation and data/active channel detection assuming all other parameters known and fixed to their
previous best estimates. The details of the SAGE algorithm for computing the joint MAP data and
channel estimates for our asynchronous CDMA system is given below.

Expectation Step:

Evaluate for the ith, ¢ = 1,...,5, index set:

Q" (¢r; 0") £ Inf (Y, by, 63,). (61)

Maximization Steps:

Transition Probability Matriz Update: Given the constraints 0 < tg-c’p ) <1 and Z;:o tz('f’p ) =1 for

each 4, j € {0,1}, compute
(kp)) D Y1 (4 ()
(tii ) = arg lg}cap))( Q (gb, ¢ ) . (62)

it
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The Markov chain transition probabilities are then given by

oy _ et {8y} {0, -
0 EN 11{57(}1”,, }

i}, for i € {0,1}, (63)

fork=1,2,..., Kandp=1,2,...,5.
Update of the Fractional Part of the Time Delay: Compute 77,(C+ ) forpe{1,2,...5}, ke {1,...K},

as follows

(hp k=1,....K, p=1,...,5) ) = arg max QY <¢T2;¢(l)) : (64)

(M, p3k=1,.0, K, p=1,...,S)

Let e/ be a K x S matrix such that the (k', p’)th element is e,(c,ﬂ) = 6,(61—;1), where 6,(€f+/) is given in

Eq. (44). Let W+ be a KS x K S matrix, given by

N
WD — 3 ‘Wr(Llﬂ) 2
n=1

: (65)

where the (K (p — 1) + k)th column of the L x K'S matrix W{+ is given by ¢’ . The fractional

n, k P
parts of the time-delays are given by the following modified Yule-Walker equation

vec (n(l+1)) = (W(Hl))_1 vec (e(l+1)) : (66)
Update of the Integer Part of the Time Delay: Compute (vpp;k=1,...K,p=1,... S)H1) as follows

(Vk,p; k= 1,.. .K, p=1,... S)(l+1) = arg max QTS (¢T3; ¢(l)) ’ (67)

(Vk,psk=1,...K, p=1,...5)

where QY3 ((bm;qﬁ(l)) is given in (61). The joint maximization of QY3 (qﬁTa;qﬁ(l)) with respect to
(ep k=1,...K,p=1,...5) is a discrete combinatorial optimization problem with computational
cost O(L¥5). In the subsection 4.2 below, we propose an alternative SAGE scheme, that reduces the
cost to O(LK S) per iteration.

Update of the Complex Constant & (which is a known function of the unknown parameters carrier
phase, transmitted power, channel response): The K x S matrix (£)*1) is given by the following

modified Yule-Walker equation
vec((€)*Y) = (RUV)"tvec(hY), (68)
where h(#V is a K x S matrix, and its (k, p)th element is given by
N
1) _ Hrp | Te o 2T o O\H 2 (l)
Moy ™ = Ok T ngl {<5 kpPk P) Yn eXp{ B VEEETT <5n7kmgkm) Yn XPATT p Mk (69)

and R is an KS x K S matrix, given by

N
R =3 |RO[ 4 3. (70)
n=1
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Y is given by Eq. (53) and (R7)® has dimensions L x KS, where the (K(p — 1) + k)th column is
given by
27 L 2m

gy exp {4+ 0% el exp { i mile ). (71)
Joint Estimation of Input Sequences and Detection of Active Propagation Paths: The joint data
estimation and active path detection is a discrete optimization problem, efficiently solved via dynamic
programming (also known as the Viterbi Algorithm). The dynamic programming algorithm that
yields the Markov chain sequence estimate (M,A)!*1) on the (I + 1)th iteration, based on the

measurements Y and the parameter estimate #), is given in Fig. 4.

4.2 Algorithm III

The index sets are chosen from a partition {Y1,..., Y31 ks nK+NKs} such that
br, = (P k=1,2,... K, p=1,2,...,5 i=0,1) (72)
dr, = (kp; k=1,2,...,K,p=1,2,...,5) (73)
¢T3 = (74)
¢T2+KS = Vk,s (75)
Aryins = (p k=1,2,..., K, p=1,2,...,5) (76)
¢T4+KS == ml,l (77)
¢T3+KS+NK = mN,K (78)
¢T4+KS+NK = 51,1,1 (79)
¢T3+KS+NK+NKS = 5N,K,S (80)

The details of the SAGE algorithm for computing the joint MAP data and channel estimates for
our asynchronous CDMA system are given below.

Expectation Step:
Evaluate for the ith index set (i =1,...,3+ KS+ NK + NKS):

QT (¢r; 60) £ Inf(Y, by, b%,)- (81)

Maximization Steps:

14



Instead of maximizing (81) directly as a function of #, the SAGE algorithm updates some param-
eters sequentially by keeping the others fixed to their previous values. In particular, depending on
the choice of the parameter index set, T, the parameters are updated as follows.

Transition Probability Matriz Update: The update formulae for (t57)¢+1 are given by (63).
Update of the Fractional Part of the Time Delay: The update formula for 77,(:;1) is given by (66).
Update of the Integer Part of the Time Delay: Compute U,(Cl;l) fork=1,...K, p=1,...5 as follows

(+1) Yor (ko . A
Yew T arguk,pgi)f.,lz}g e 1)S+p(¢r2+(k—1)5+p’¢())’ (82)

where QY¢ is given in (81). This is a discrete optimization problem with cost O(L) per iteration for
each k£ and p.
Update of the Complex Constant & (which is a known function of the unknown parameters carrier

1+1)

phase, transmitted power, channel response): The update formula of £/+1) is given by (68).

Estimation of Input Sequences: Compute msll;l) forn=1,...,N, k=1,...K as follows

(+1) _ Y3 KSt(n—1)K+k .40
M,k _argmn,ke{%{lgf{.,M—l}Q " (¢T3+Ks+(n—1>z<+k’¢ ), (83)

where Q¢ is given in (81). This is a discrete optimization problem with cost O(M) per iteration
for each k£ and p.

Detection of Active Propagation Paths: Compute (57(11:,:’1]3 forn=1,...,N, k=1,...K, p=1,2,...,S
as follows

6(14121) =arg max QT3+NK+nKS+(k—1)S+P(
n, ).
P ‘sn,k,pe{oal}

(84)

(1
¢T3+NK+nKS+(k—1)S+p’ ¢( ))’

where QY¢ is given in (81). This is a discrete optimization problem with cost O(2) per iteration for

each (n, k,p).

5 Performance Analysis

5.1 Cramer Rao Lower Bounds

It is well-known that the CRLB specifies the lowest estimation error, in the mean square error sense,
for any unbiased estimator of an unknown random parameter [24]. The mean square error of any

unbiased estimate 0 satisfies the inequality [24]

~

E{(0—0)0—-0)"}>C, (85)
where
B 8%In £(V,6)
C—E {—W} (6)
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Computing C' in Eq. (86) is not straightforward for our given model assumptions. Instead of Eq. (86),
it is a standard practice in the CDMA literature to compute the Fisher Information Matrix (FIM)

assuming that the transmitted data are exactly known [18, 13], i.e.,

P f(Y|M, e)‘M 9}

(87)

FIM(M, 6) = E{ TR

Assuming the data sequence M and the active propagation paths A are known, then the FIM is
given by

. 0?In f(Y|M, A, 0)
FIM(M,A,0) = E {— Ty M,A,0%. (88)

In practice M and A are not known. In this paper, we compute the complete data information

matrix defined as follows

2In f(Y, M, A
Ccom:E{_a nf( Y Y ’0)}'

0000 (89)

The complete data information matrix is related to Eq. (86) as follows (known as the “missing

information principle”) [11]

. Pl fv,0)) . _Inf(Y,M,A,0) 5 _0°In f(M, A]Y,6)
0000 - 0000 0000 '

(90)
The elements of Ceom are given in the appendix.

5.2 Numerical Results

One thousand Monte Carlo simulations have been carried out to evaluate the performance of our
proposed detection and estimation schemes. The errors of the channel estimates were compared
to the computed estimation bounds derived in the previous section. The BER in detecting the
input sequence and the presence of multipaths were compared to results achieved using the Viterbi
algorithm assuming all other parameters known.

The number of users was chosen to be K = 2 and the maximum number of paths for each user
was S = 2. Furthermore, M = 2 and the transmitted data are assumed to be iid, equiprobable
random variables. The signal to noise ratio (SNR) of the first user was fixed at 8 dB, and the
ratio of the second user to the first user was 8 dB. This scenario was investigated in [13]. In [13],
the propagation paths are always present. In our formulation, we consider time varying number of
paths. The transition probability of 4, x, was chosen as

H(k,P) — l 851) 83} ] for k = 1’2, p= 1,2
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The number of chips per symbol was L = 31. The spreading sequences di(l) and the channel
parameters were randomly chosen from one simulation to the next. We assumed uniform prior on
all the parameters and assumed the channel attenuations to be zero mean. Furthermore, E{dg,} =
0.5,Vk € {1,...,K},p={1,...,S}. The algorithms were iterated until convergence (i.e. ¢(+1) =
qﬁ(l)) or up to a maximum number of 20 iterations. All channel parameters were randomly initialized.

In Fig. 5, the root mean square (RMS) estimation errors of the channel coefficients, &, as a
function of the number of bits for each of the three algorithms are depicted. Comparisons with the
lower bounds computed in the previous section were made. Clearly, the performance of Algorithm I
is better than those of Algorithm IT and III. Furthermore, the performance of Algorithm IT and III
are very similar. Next, in Fig. 6, the RMS of the time delays as a function of the number of bits
for each of the three algorithms are depicted. It is clearly shown, that all our proposed detection
and estimation algorithms yield satisfactory channel estimates. In Fig. 7 and Fig. 8, the bit error
rate (BER) of the input sequences and the BER in detecting the presence of different multipaths
are shown, respectively. We compare the results with the BER obtained using a Viterbi algorithm
to compute the transmitted data and active propagation paths, assuming all channel parameters
known. Here, once again Algorithm I outperforms Algorithms II and III. Finally, in Fig. 9, the RMS
of the fractional time delay of Algorithm I is depicted as a function of the SNR of the first user.
Here, the ratio of the second user to the first user was 8 dB and N was fixed to 200. It was observed
that the RMS of £ and the BER of the input sequences and the BER of the detection of multipaths
showed similar results. Algorithms II and III yield similar results.

To conclude, the convergence of Algorithm I is definitely better than the convergence of Algo-
rithms IT and ITI. Though, the computational complexity of Algorithms I and II is much higher than
that of Algorithm III. The BER of the detection of multipath sequence is much less for Algorithm I
than it is for Algorithm III and II. If only channel estimates are of interest and it is crucial having low
computational complexity, Algorithm III should preferably be used, otherwise Algorithm I should be

considered.

6 Conclusions

In this paper, we studied the problem of multipath detection and parameter estimation in an asyn-
chronous CDMA system with unknown and time-varying number of multipaths. Three algorithms,
called Algorithm I, IT and III in the paper, were proposed. They were all based on a generalization of
the EM algorithm, known as the SAGE algorithm. The SAGE algorithm combines jointly multiuser
detection and parameter estimation. Depending on the realizations of the SAGE algorithm well-

known state and parameter estimation, such as the HMM smoother, Viterbi algorithm, Yule-Walker
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and Baum-Welch re-estimation formulae, were optimally combined. These three algorithms differed

in the choices of hidden data spaces. Algorithm I computes the MAP parameter estimates as

OMAY — arg max f(0Y) (91)

and by using a hidden Markov model smoother, the MAP estimates of input sequences, M, and the

detection of the active propagation paths, A, were computed as follows

82/’[&5 = argmax Pr ((5n,k,p | GMAF Y) , (92)
n,k,p
et = arg max Pr (mmk | GMAF Y) : (93)

Algorithms II and III, on the other hand, compute the joint MAP data and channel estimates as
follows

MAP __

Algorithms IT and IIT differed in the choice of hidden data spaces. Algorithm II uses the Viterbi
algorithm to achieve estimates of M and A while Algorithm III does it in a much less computationally
expensive way. Algorithm III has a computational cost that grows linearly with the number of users
and propagation paths. Simulation studies, where RMS and BER were compared to theoretical
bounds, showed as expected that Algorithm I outperformed Algorithms IT and III in terms of BER.
The RMS errors of the channel parameter ¢ and the time delay 7 were close to the CRLB for all the
proposed schemes.

As future work we intend to extend our schemes to handle fading stochastically time-varying
multipath channels. Furthermore, future work will also address the case of severe intersymbol inter-

ference (ISI) when the channel impulse response spans more than one symbol period.
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Appendix

A Cramer Rao Lower Bounds

Let 5,12], and f,ﬁ,p, denote the real and imaginary part of & ,, respectively. The elements of Ccom
(Vk, k' e {1,...,K},p,p € {1,...,S}) defined in Eq. (89) are given by
E{ O?In f(Y, M, A, 0)} . E{ 0*In f(Y, M, A, )

b=t - )

8§ 3ka / 85,@ ,6§,€’p
T. 27 o
+ 2 E {Z 5n k' ' Onk,p {pk/ 1 Pk,p COS (M(mnl,k - mnl,k/)) + ng,p’pk,p COSs (M(mnl,k — mn,k’)>
n=1
2 9
#0005 (g s =1 10)) + ol 1 005 (T mns = i) 1. )
0%In f(Y, M, A, 0) N
E n n,k' n HI ; X
{ ONkep O 7 ng { JpOn,k p'En k. n,k' p

2w H
((—CLT(VIc',p/) +a (Vk’ »+ 1)) exp { ——Mp—1 k’} + (—al(Vk',p') + al(yk’,p’ +1))exp {] Hmn,k’}> X

(( a" (Vkp) + a" (vgp + 1) exp{ — 1k} +(— al(uk,p)+al(l/k,p+1))exp{j2ﬂ7rmn,k}>}}, (96)

g { O*In f(Y, M, A, )
Ok p Ok

, , 2w ! ! 2 "
((—a (Vkp) +a" (vep + 1)) exp {] ﬂmn_l,k} + (—a'(vkp) + a'(vp + 1)) exp {] ﬂm”’k}) X

27 2
{ (pk’,p’ exp {] an—l,k:’} + Ok pr €XP {J ﬂmn,k’ }) + {k - E'}{p—p'}x

K S o K S 27
Yn — Z Z 5n,k,p§k,ppk,p €xXp {.7 anl,k} - Z Z 5n,k,p€k,pgk,p €xXp {] ﬂmn,k} ) (97)

k=1p=1 k=1p=1

T N
} B QERG {nZl B {5n,k,p5n,k’,p’§n,kapx

E{_621nf(Y,M,A,0)}:E{Z L Pr{Bp = }} (08)

(k.p) 5,4(k.p) (k,p)

for 4,57 € {0,1,..., M — 1}, where Pr{d,, s, = j} is computed as follows
Pr{6nxp =0} ( (k,p) ) Pr{dorp = 0}
(Pefscsr 20 ) = ()" (Brfaeee =3 %9)
and Pr{dg s, = i} is assumed known.
The following can be shown
n (kip) _ (kp) _ 1y _ 1 0 59 1y P — 1y —1 )
k)™ — [ (t1 1)/(too 1) -1 n (ti1 )/ (too 1
(%) ( 1 1 0 (th” +15" —1) 1 1 (100)
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Thus,

(k.p) _ (k) | kp) )"
E{dﬂ,k,p} - E {E{dn,k,pu(()lg,p),tgl?p)}} = F { (to()p 1) (1 ( Oop + tllp 1) ) }Pr{éo,k,p — 0}

k, ka k’ k’
B { (t567 = 1) + (57 — 1) (25" + 57

1) } Pr{So, = 1}. (101)

Assuming uniform prior on ¢ and ¥ it can be shown

1+ (=1
n+1)(n+2

1+ (—1)
Y1) (n+2)

B{6nr,) = % (1 - )> Pr{dos, = 0} + % (1 i ) Pr{dos, = 1}. (102)

Other important results are as follows

2
0 (V) = v 0k (k)| = L= vy,
(05 v10)) " (0) = 0. (05 010))" g+ 1) =,
(af (vkp + 1)) ak(vrp) = di(0)dy (L — 1), (af(vkp + 1)) db (v, +1) =0, (103)

(@ (49))" 04 (Vi + 1) = 0% di(L = m)ds(L == 1),
(ah(vep)) ah(vip+1) = Sui*" ' dy(n)de(n — 1)

Finally, it can be shown that

E{ofl yorp} = 0 (104)
L/3, ifk=Fk,p=p
H _ ) )
E{pkl’plpkap} - { , Otherwise (105)
L/3, ifk=FK,p=yp
H _ ) )
FE { Ok’ p Ok ,p} = { 0, otherwise (106)
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. Choose an index set T C (2.
. Choose an admissible hidden-data space XY for ¢v.

. Expectation step: Compute

Q" (65:6%) 2 B {log (¥, X7, 6, 0) ¥,6).

. Maximization step:
¢ = argmax QT (43 7),
ér

(1+1)

0
T T "

. Optional: Repeat steps 2-4 until convergence.

(107)

(108)

(109)

Figure 1: The SAGE Algorithm.
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Figure 2: The continuous-time channel model for the kth user.
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Figure 3: Sampling at the receiver. The discrete signals at the output of the integrate-and-dump
filter are generated at chip rate. The discrete output vector process y, is generated at bit rate.
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Viterbi algorithm:

1. Initialization:
For iy, jm € {0,1,..., M — 1}¥ and is € {0, 1}%5 set

Cl(imajmaid) = In bgl)(imajmaid) (110)

2. Recursion:
For2<n <N, jm,lm € {0,1,...,. M —1}¥ and j; € {0,1} %5

Cn(]ma lma .76) =In b'ELl) (]ma lma .76)

 max (Gt (s Gims15) + I PE(8, = Galbumy = i5)]  (111)
im € {0,1,...,M —1}¥K
is € {0,1}KS
wn(]ma lma .](5) =
arg max [Crn—1(tms Jms t6) + InPr(d, = Js|0p—1 = 1i5)] (112)
im € {0,1,...,M —1}¥
is € {0,1}KS
3. Termination:
(mN—lamNa 5N)(l+1) = arg max CN(im,jm,ié) (113)
tm,Jm € {0 ..... M- 11K
15 € {071}KS

4. Backtracking:
Forn=N—-1,N—-2,...,2

(mn—la my, 5n)(l+1) = 1/}n—|—1 (mg+1)> mg—tll)a 5§Ll——||——11)) (114)

Figure 4: Joint estimation of input sequence and detection of active propagation paths for Algorithm
II
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Figure 5: Simulated RMS error of the estimated coefficient £ versus the number of samples N.
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Figure 6: Simulated RMS error of the estimated delays 7 versus the number of samples V.
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Figure 7: Simulated BER of the estimated data versus the number of samples N. The solid line
illustrates the BER computed using a Viterbi algorithm assuming the channel parameters are known.
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Figure 8: Simulated BER in detecting the presence of active propagation paths versus the number
of samples N. The solid line illustrates the BER computted using a Viterbi algorithm assuming the
channel parameters are known.
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Figure 9: Algorithm I: Simulated RMS error of the estimated delays v versus the SNR of the first

user.
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