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Abstract

Prediction of the coefficients of mobile radio channel is of interest for a range
of applications such as power control, adaptive resource allocation, adaptive
coding and modulation. Power control in e.g. WCDMA requires short-term
prediction over only a small fraction of the distance between two dips in the
short-term fading pattern. Radio resource allocation and planning would
require accurate and more long-term prediction, the longer the better.

The performance of different predictors for the mobile radio channel
are evaluated partly on simulated data, using a spherical wave propagation
model, but mainly on measured broadband channel impulse responses from
a suburban environment. The focus is mainly on adaptive and non-adaptive
linear FIR predictors but quadratic-Volterra and MARS predictors are also
studied.

The received power of a mobile radio channel is predicted as the sum
of the squared magnitudes of the predicted individual complex taps in the
channel impulse response. The linear adaptive iterated subsampled FIR
predictor generally produces excellent predictions of both complex taps and
total power for short ranges, that is up to 0.1 wavelengths. The performance
of power predictors is reduced markedly at ranges over half a wavelengths.
The advantage over using just the average power for prediction then becomes
small, so we can not claim that the investigated predictors are efficient for
these prediction ranges.
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Chapter 1

Introduction

Mobile radio communication makes it possible to communicate with people
on the move. The communication is facilitated by the transmission of radio
signals between a fixed base station and a mobile station, which often is a
mobile phone. The problem with radio communication is that the receiving
condition depends on where you are and changes as you move along. This
is due to that the channel changes depending on the position of the mo-
bile station. The channel and the level of noise (mostly interference from
other transmitters) sets the limit for the amount of information that can be
transmitted between the base station and the mobile station.

Today mobile communication is much more than just talking in a phone.
The extensive use of text messages such as SMS, shows that people actually
are interested in using their mobile phones as information terminals. It is
assumed that, in the near future, there will be a demand for mobile internet
and high bit-rate applications. There is thus a need to send as much data
over a given mobile radio channel as possible. If the channel is known in
advance, then the transmission scheme could be adjusted to fully exploit
the current receiving condition and thus increase the average amount of
transmitted data. This idea could be even further exploited if many users
simultaneously share the same base-station and radio frequency.

1.1 Mobile Radio Channels

There are two different types of variation in the receiving conditions: large-
scale fading and small-scale fading.! This thesis treats the problem of pre-

! Also called slow and fast fading respectively
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dicting the small-scale fading. In both cases it is the environment of scat-
terers that determines the receiving conditions.

Large-scale fading determines the average received power at a geograph-
ical point. It is caused by e.g. shadowing of the transmission from the base
station from buildings or other large objects. Large-scale fading thus re-
mains fairly constant when the mobile station moves a short distance.

Small-scale fading causes dramatic variations in the received power when
the mobile station moves a fraction of a wavelength of the transmitted radio-
wave. The small-scale fading is caused by the multiple paths for the trans-
mitted radio signal. The transmitted signal can travel in indirect paths via
e.g. reflections from, or diffraction around, buildings or other man-made
or natural objects. This causes the transmitted radio signal to arrive at
the receiver with different delays from different directions, an effect called
multipath propagation. The radio waves from the different paths interact
and form constructive and destructive interference, corresponding to high
or low received power at different locations in space. The time variability of
a mobile radio channel is induced by the movement of a mobile transceiver
through a multipath environment. The small-scale fading is thus due to that
the mobile station travels through an interference pattern.

A common approach to describe the channel is to assume that the trans-
mitted radio waves, causing the interference pattern, act as plane wave fronts
from different directions, due to the multipath propagation. A statistical de-
scription of the mobile radio channel has then been given by Jakes [1] and
Clarke [2]. The properties of the channel is deduced from a scattering propa-
gation model which assumes that the field incident to the receiver antenna is
composed of an infinite number of randomly phased azimuthal plane waves
of arbitrary azimuthal angles.

1.2 Prediction

If the number of contributing wave fronts are limited and the plane wave
assumption is valid, then the contribution to the channel from each wave
front can be modeled as a complex sinusoid. This is an approximation with
limited validity, as we will see in Chapter 2. Given that the channel acts as
a sum of sinusoids the phase shift and attenuation of each path can be esti-
mated. Then the prediction can be obtained by propagating the estimated
sinusoids. This is the most common approach to prediction of mobile radio
channels. Proposed approaches to the estimation of the sinusoids are root-
MUSIC [3] and a modified ESPRIT algorithm [4]. A different approach is to
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model the sum of sinusoids as an AR-process. The estimated AR-parameters
are then used to derive a linear predictor [5]. Overviews of these methods
are found in [6] and [7].

The approach presented in this thesis is to use delay embeddings of
measured data for model design, focusing directly on the prediction. The
performance will not be limited by the validity of a theoretical model, but
by the ability of the used predictor to model the dynamical behavior in the
data. Here, as in [5], linear FIR-predictors are used, but nonlinear predictors
are also studied.

The problem of power prediction is closely related to channel prediction
as it is the transmission capability of the channel that limits the received
power. Neural nets have been proposed for power prediction in wideband
systems [8] and have been demonstrated to perform better than linear predic-
tors [9] for 1 ms prediction horizons. Power prediction is desired to achieve
better power control, which is crucial in e.g. a CDMA system.

To be able to exploit the communication link as much as possible it would
be useful to know the receiving conditions in advance. The ability to predict
the channel is thus important for adaptive resource allocation and power
control but could also be of use for adaptive coding and modulation [12], [13].
For scheduling and adaptive resource allocation longer prediction horizouns,
on the order of 5-10 ms are of interest [14].

1.3 Outline of the Thesis

The thesis discusses the problem of predicting the time varying channel
impulse responses of mobile radio channels. The only information used for
the prediction are noisy estimates of past impulse responses.

As mentioned above the channel can be modeled as the sum of complex
sinusoids. In Chapter 2 the approximations leading to this model are dis-
cussed. Relaxing the constraints of constant speed and plane wave fronts by
including circular motion and spherical wave propagation, leads to models
with quadratic terms in the phase functions of the multipath components.
The most critical deviation is due to close scatterers causing spherical waves.
It is in those cases more appropriate to model the channel impulse response
as a weighted sum of complex sinusoids and linear chirps.

The performance of different predictors are evaluated partly on simu-
lated data, using a spherical wave propagation model described in Chap-
ter 2. However, most of the evaluations are performed on measured channel
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impulse responses.? In Chapter 3 the recording and identification of channel
impulse responses are treated. The data base consist of a number of Broad-
band channel-sounder measurements are performed at a number of locations
in a suburban environment. The impulse responses are modeled as FIR fil-
ters which are estimated from the measured data using least squares. It is
demonstrated that the variance of the estimation error can be estimated as
the noise floor in the power delay profile or the Doppler spectrum. To re-
duce the noise on the estimated impulse responses, we propose to use simple
Wiener-smoothers, that give a very small delay.

In Chapter 4 we study the performance of time invariant predictors.
Three predictor structures are examined: a linear FIR-predictor, a quadratic
Volterra-predictor and a MARS predictor. The non-linear predictors show
good modeling properties but poor generalization capabilities.

In Chapter 5 we investigate the extension of the time invariant linear
predictor to the adaptive predictor. An adaptive Kalman filter is used to
estimate the coefficients of the predictor. The Kalman filter uses an AR1I-
hypermodel for the variation of the predictor coefficients. The performance
of the adaptive predictor on measured impulse responses is discussed in
Chapter 6. The linear adaptive iterated subsampled FIR predictor generally
produces excellent predictions of both complex taps and total power for short
ranges, that is up to 0.1 wavelengths. The prediction gain is still good for
0.2-0.3 wavelengths but falls off rapidly with increasing prediction range.

For short ranges the proposed adaptive predictor gives satisfactory pre-
diction accuracy. This thesis does however not provide a viable method for
very long range prediction of mobile radio channels.

*The author is grateful to Ericsson Radio Systems in Kista for providing these mea-
surements.



Chapter 2

Model of the Channel

This chapter begins with an overview of the commonly used continuous-
time and discrete-time models of terrestrial radio communication channels
fore mobile communication. Such models are based on assumptions of pla-
nar wave-fronts, constant vehicle velocity and propagation via reflectors and
scattering objects. The channel is then described as a weighted sum of com-
plex sinusoids with fixed frequencies. The approximations and assumptions
in the derivation of this model are discussed.

From linear systems theory it is known that such a channel can be per-
fectly extrapolated in space and time, i.e. predicted, if the number of sinu-
soids are known and the predictor is properly tuned.

In Section 2.3, the limitations of this simple model is discussed and a
class of models with more general validity is proposed. By taking spheri-
cal wavefronts and non-constant vehicle velocities into account, a model is
obtained in which the sinusoids may have time-varying frequencies, such as
chirps. While it would be unrealistic to expect unbounded predictability in
such scenarios, it is still reasonable to believe that prediction over a large
fraction of a wavelength of the carrier frequency may be attainable. The
rest of this thesis constitutes an initial exploration of methods with which
such long-range predictions might be realized.

We will in the following always refer to the moving transmitter /receiver
as the mobile station. Whether it acts as a receiver or transmitter does
not matter, as the channel is the same in both directions due to reciprocity.
Thus both the up- and down-links are treated.
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2.1 Multipath Propagation via Reflectors and Scat-
terers

In the classical papers by Clarke [2] and Jakes [1], a statistical passband
description of the mobile radio channel is developed. The model treats a
scenario where N plane waves are arriving at the receiver from random di-
rections. The different propagation paths cause the waves to have different
attenuation and phase shifts. In Figure 2.1, a scenario with a mobile re-
ceiving waves from two different directions is depicted. The base-station
antenna acts as a point source emitting a spherical electromagnetic wave.
On large distances from the antenna the spherical waves are locally perceived
as plane waves. In Figure 2.1 we have no line of sight due to the shadow-
ing of a building. The buildings further away will also contribute, although
the longer propagation paths result in a higher path loss. In Figure 2.1

Figure 2.1: Mobile receiving two reflected rays that have the same path
distance.

two buildings act as remote reflectors and the corresponding wave-fronts are
considered to be almost plane at the mobile station. A lamp-post nearby
the mobile would act as a close scatterer. Close scatterers cause spherical
wave-fronts at the mobile station, whereas rays that are scattered around
corners of houses close by cause cylindrical wave-fronts. Further away from
the scatterers and corners the corresponding spherical and cylindrical waves
are locally perceived as plane waves. The characteristic size and distance
of objects that make them behave as reflectors rather than scatterers is
discussed in Appendix 2.A.
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2.2 The Continuous Time Channel for Plane Wave
Fronts

The voltage, V (r,t), which can be measured at an antenna is a function of
the spatial electric field and the antenna properties. The incident field at
the receiver, E(w,r,t), is a function of the angular frequency w, the position
r and time ¢.! We represent a transmitted single-frequency radio signal
as a complex exponential,? e/“!. The open circuit voltage at the receiving
antenna can then be approximated as the product between e/ and a space-
dependent transfer function, H(w,r), such that

V(r,t) = H(w,r)el". (2.1)

The wavefronts contributing to the electric field can be thought of as rays
with different delays coming from different directions. The transfer function
H(w,r) is therefore approximated as the summation of the contributions
from reflectors and scatterers according to

N
H(w,r) =Y ap(r)e!@nE)=hrnr), (2.2)
n=1

Here kry(r) is the (scalar) electrical distance (with k& = 27/A = w/c being
the wave number, where c¢ is the velocity of light) and r,(r) is the phys-
ical distance of path n. The number of contributors N may be arbitrary
large. The effective complex amplitude of contributor n is an(r)ejd’"(r). It
includes, among other things, antenna pattern weighting effects and path
attenuation. The attenuation an(r) and the phase shift 1,(r) depend on
physical parameters such as path distance and the texture of the reflectors.
These parameters are fairly constant over short distances. Therefore we shall
regard a,(r) and 1, (r) as being space independent, at least over distances
of a few wavelengths. Thus we set

an(r) = Qnp, (23)

PYu(r) = . (2.4)

In addition we also assume a, to be independent of w, at least over the
bandwidth of the system around the carrier frequency.

!The origin of the coordinate system for the position is arbitrary.
2The electric and magnetic fields are the real and imaginary parts respectively
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An alternative description of the exponential term of (2.2) uses the scalar
product between the wave-vector of the nth path k,(r), and the position r,

N
H(w,r) = Z ap (r)ed(Pn () ~kn(r)r) (2.5)
n=1

The phase ¢, (r) in (2.2) includes the phase shift due to reflection and/or
scattering just as 1, (r) but ¢,(r) also includes a spatially invariant contri-
bution that depends on the choice of the origin of the coordinate system.
The two expressions (2.2) and (2.5) are fully equivalent but can be used to
illustrate different properties of the channel.

A more detailed description of the exponential term of (2.2) will be
derived next.

The electrical distance and the phase of a received sinusoid
The model (2.1), (2.2) is valid in a local region if the phase, ¥,(r), and
amplitude a,(r), for each scatterer remain constant in that region. Define
a right hand coordinate system with the x-axis along the direction of move-
ment and the y-axis pointing to the left in the plane on which the mobile
station is moving (the z-axis will then point up from the plane). Thus the
position along the direction of movement is z (r = [z, 0, 0]).

The electrical distance between the base station and the mobile along
path n will be a function of z. It can be expressed as

bra(e) = Tra(e) = 0™ = ur, @), (2.6
where r,(z) as before is the location-dependent physical distance between
the base station and the mobile station along path n and 7,(z) is the cor-
responding path delay.

The difference in electrical distance between two points corresponds to
the phase difference for a sinusoid carrier signal. We will below derive an
expression for the difference in electrical distance when the mobile moves a
distance z at an angle 6,, to the direction of the scatterer/reflector which is
causing the incoming wave front. The path distance from the closest point
of reflection will then change from r,(0) to r,(z) according to

r2(x) = r2(0) 4+ 2* — 227, (0) cos(6,,). (2.7

A second-order Taylor expansion of the square root of this expression around
z = 0 gives
z? sin(6),)

rn(z) = 1, (0) — z cos(0y,) + 27 (0)

(2.8)
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r2(0)

Figure 2.2: The change of path distance when moving the mobile. Here
7n(x) is the approximate and r,(x) is the true distance after moving the
distance x.

The corresponding change of electrical distance (the change of phase) from
position 0 to z is thus approximated by

(2.9)

c 2r,(0)

w z? sin? (0,
krn(z) — krn(0) = — <—ac cos(6,) + ¢>

If the last term in (2.8) is disregarded, then the common linear approxima-
tion, cf. Figure 2.2, is obtained as

P (2) = 1 (0) — 2 cos(B). (2.10)

This is the plane wave approximation which is valid if the mobile is moving
over distances which are small in comparison to the distance to the reflector.
For a plane wave the sides in the triangle in Figure 2.2 would be parallel (and
thus not forming a triangle) as in Figure 2.3. The corresponding change of

ky (2) ()
k,

xz R

7 (0)

Figure 2.3: The change of path distance when moving the mobile a distance
z in a plane wave scenario.

electrical distance is then

krp(z) — krp(0) = wrp(z) — w7, (0) = _%s(ﬁn)’ (2.11)



10 Chapter 2: Model of the Channel

where 7,(-) denotes the path delay associated with r,(-). The change of
electrical distance (2.11) can also be easily derived using (2.5) assuming
plane waves, that is constant wave-vectors k,,, as

k,-r(z) —k,-r(0) = %[— cos 0,,sin6,,,0] - [z,0,0] — 0

_ _w:z;cos(@n)’ (2.12)
c
where the position vectors are r(z) = [z,0,0], r(0) = [0,0,0] and the wave-
vector is k;, = %[~ cos0p,sinfy,,0]. The scalar product representation of
the phase is especially handy in the plane wave case.
To summarize, movement of the transceiver will change the phase ac-
cording to (2.9). For plane waves the first order approximation (2.11) will
be valid.

A continuous-time baseband description
A frequency component w of a radio signal with nonzero bandwidth can be
expressed as the baseband frequency, wy, shifted by the carrier frequency, w,

w = wp + we. (2.13)
The antenna voltage (2.1) can then be expressed as
V(r,t) = Hy(wp + we, r)ed @otwelt, (2.14)

where the subindex p on the transfer function denotes that it is the passband
channel. The radio transmission is performed at the high frequencies of the
passband but it is more convenient to do the signal processing on the symbols
in the baseband. The received signal V(r,t) is transfered from the passband
to the baseband by multiplication with e~/“*. The corresponding baseband
signal y(r,t) can be expressed as

y(r,t) = V(r,t)e 7! = Hy(wp+ w,,r)el!
= Hy(wp,r)e/t. (2.15)
The passband channel Hp(wp + we,r) is thus equivalent to the baseband

channel Hy(wp,r) within the band-limits of the system. The model (2.2) for
the passband channel is also a model for the baseband channel,

b(wp, T Z an (r)e? Pr(r)=kra(r)) (2.16)
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For the wave number we obtain

We

k:kb-l-kc:%-l— (2.17)

c
By using the linearization (2.11) of equation (2.9), the electrical distance
can be rewritten as

krn(z) = wern(0) + wpT, (0) — ke cos(6y,)x — ky cos(6y)x, (2.18)

where the dependence of the electrical distance on the local spatial move-
ment is collected in the last two terms. The first term is constant and may
be included in a combined complex attenuation and phase factor «,, that
collects all (nearly) space-independent factors. The second term is similar
to the first term, but since it depends on the baseband frequency we need it
for the transfer function description. The fourth term will be small relative
to the third term if the relative bandwidth is small, i.e., if wp/w, is small.
In an application with a carrier frequency at 1800 MHz and a bandwidth of
5 MHz the relative bandwidth will be less than 0.3% and the fourth term can
thus be neglected. The nearly time-invariant attenuation and phase factors
are collected in a factor «, as

= aped Wn=wemn(0), (2.19)

Thus, the baseband transfer function (2.16) can for planar waves and straight
line motion with constant velocity of the mobile station, be approximated
using (2.18) and (2.19) as

N
H(w,z) = Z el om0+ 5z cos(n)) (2.20)

n=1

where the subscript b is dropped so that w from now on will denote baseband
frequency. The phase shifts described by the exponential terms “2z cos(6;,)
will cause the rapid variation of the channel when moving short distances.
Since w./c = 2wA., these terms are significant already when the traveled
distances is a small fraction of the carrier wavelength.

The parameters a,,, 1, and 8,, are also space dependent but on a different
scale, governed by the overall geometry, the distance to and the structure of
the reflectors. It is reasonable to assume that these parameters will remain
fairly constant over at least a small number of wavelengths, whereas the
channel varies significantly.

As there exists a parameterized description of the process, where z is the
only variable, it is conceivable that there exists a mapping from observations
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of the channel coefficients to the corresponding coefficients at a location
within in a distance of a few wavelengths. Thus, it is likely that the channel
parameters can be predicted reasonably well on this small geometrical scale
of a few wavelengths. The utilized predictor may, but does not have to, rely
on estimates of the parameters a,, ¥, and 6,,.

Time dependent transfer function
We have described how the channel depends on the position of the mobile
station. By introducing the velocity of the mobile station we can also de-
scribe the channel as a function of time. If the vehicle drives straight ahead
along the x-axis, at constant velocity, then the traveled distance depends
on time as x = vt, where v is the speed of the vehicle. This introduces a
rotation of each term in the channel (2.20) with an angular frequency
v cos (6
wp, = wc#, (2.21)
that corresponds to the Doppler-shift of the carrier frequency due to the mo-
tion.? The maximum Doppler shift wp, encountered when driving straight
towards the transceiver, is
v 27
Wp = We— = —. 2.22
D cc A\ ( )
If we introduce any form of acceleration or change of direction, i.e., driving
in a curve, the Doppler shift will become time dependent.
When the Doppler shift is introduced in equation (2.20) the following
time-frequency domain representation is obtained

N
H(w,t) =Y apelemOtwnat), (2.23)
n=1
The time domain equivalent of this baseband description of the continuous-
time channel is [15]

N
h(r,t) = Z an€“Pnts(r — 7,(0)), (2.24)

n=1
where §(7) is Dirac’s delta function and «, is given by (2.19). The time-
varying channel impulse response is thus described as the sum of N complex

3The Doppler shift, wp, , is caused by the movement through the wave pattern. The
wavelength is perceived as shorter (or longer) when traveling towards (or away from) a
wave front.
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sinusoids, with fixed frequencies between plus/minus the maximum Doppler
frequency wp.

It is useful to study the Doppler domain representation of equation
(2.24), defined as

H(r,Q) = /_—:oZaneij“t(s(T —Tn(O))eijtdt
= 21 and(T — 7,(0))6(Q — wp,), (2.25)

where Q is the Doppler frequency (in rad/s). In the Doppler domain not
only the different delays 7,(0) for the incoming waves, as in the impulse
response, but also their Doppler frequency wp, can be studied. Using the
Doppler domain representation (2.25), two rays that arrive with the same
delay 7, from different directions, as in Figure 2.1, can be separated by their
different Doppler frequencies.

Let us recapitulate under what conditions the expressions (2.23)-(2.25)
are valid.

e The channel models obtained in (2.23)-(2.25) are valid only locally,
that is for a few wavelengths and corresponding short times (¢) when
moving the transceiver.

e Narrow relative bandwidth is presupposed. This holds for most mobile
radio systems.

e Under the assumption that the scatterers are fixed and not too close to
the receiver, the linearization (2.8) without the quadratic term, result-
ing in equation (2.23) is valid. This is the plane wave approximation.

e The velocity of the mobile is assumed constant, which excludes curves
and accelerations.

e Furthermore, the models do not take polarization effects into consid-
eration.

The use of a spherical wave propagation model is discussed next.

2.3 Sampled Channel with Time Varying Frequen-
cies
The plane-wave approximation can be justified only at a large distance from

the wave source. The assumption of spherical wave propagation may be
more realistic in the following cases:
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e A relatively close primary source visible via the direct path,

e A relatively close primary source visible via one or multiple reflections,
modeled by the mirror-image of the primary source.

e A secondary source induced by a distant-source wave front impinging
on a close point scatterer (such as a lamp-post).

Using a more elaborate model based on ray-optics including the last term
in (2.8), we will see that in the presence of close scatterers the description
of the channel as a sum of time invariant weighted complex sinusoids is
an oversimplification. This motivates the use of adaptive and nonlinear
predictors.

The sampled channel: Several reflectors may contribute to each
tap

We shall repeat and expand the discussion performed in the last section but
now in the time domain and for sampled channels. Recall equations (2.2)
and (2.17) with w, = w in a base-band formulation. Let the position r
depend on time. Thus we obtain

N
H(w,r(t)) = Z an (r(t))edVnr®)—(wetwlr(r(®)/e) (2.26)
n=1

The nth path delay is 7,,(t) = r,,(t)/c. We can view the expression (2.26) as
a function of time directly by dropping the position r(¢) and just using ¢ as
variable. The time-varying impulse response h(7,t) for a baseband channel
at time t in a multi-path environment can thus be described by

N
hrt) = an (t)e?VrO=wem®)§(r — 7, (1)), (2.27)
n=1

where w, is the carrier frequency (in rad/s) and a,(t) is a time-varying at-
tenuation factor covering antenna effects, path loss and attenuation due to
reflection and scattering for the nth path [15]. The phase shift caused by
reflectors and scatterers is described by 1, (t) whereas 7,,(¢) denotes the prop-
agation delay for the nth path. The expression (2.27) corresponds to (2.24)
without the approximations due to linearization of the change of path dis-
tance and small relative bandwidth that render the Doppler frequency de-
scription of the phase.

Let g(-) be a time invariant impulse response due to pulse shaping and
receiver filtering and let the symbol interval be T'. The discrete-time channel
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impulse response can then be described by an FIR-filter with the kth tap
given by [16]

MT
he(t) = / 9(Tk — T)h(r, t)dr
0
N .
= 3 Tk~ e (IO, (229)
n=1

where MT covers the length of the continuous-time impulse response. Note
that N may be arbitrary large. In an ideal noiseless and lossless environment
the radio waves could be reflected between objects forever, resulting in paths
of unbounded length, requiring an ITR description of the channel. In practice
we can assume that the impulse response h(7,t) will be of finite length, as
the long paths are sufficiently attenuated, through propagation loss and
loss at the reflecting/scattering surfaces, to fall below the background noise
level. With an effective support of g(-) on the closed interval [- KT, KT,
the number of reflectors and scatterers contributing to the kth tap will be
limited to paths with delays in the interval [max(0,7(k — K)),T(k + K)].
The limited number of contributors is an advantage when the tap is to be
predicted.

Effective source

If we base our modeling on ray optics and omit the effects of diffraction and
Fresnel optics, a scatterer can be modeled as a secondary effective source
induced by a wave front whereas a reflector generates a secondary effective
source as the mirror image of the emitting source. Thus both scatterers
and the mirror images can be viewed as secondary effective sources emit-
ting spherical wavefronts. Even with this simplification we will encounter
a model where the phases of the rotating channel coefficients are nonlinear
functions of time. Such coefficients can not be predicted accurately by a
linear predictor.

Path delays and phase

To simplify the expression of the phase in (2.28) we separate time-invariant
and time depending factors. The path delay 7,(t) can be decomposed into
the sum of a time-varying delay from the effective source to the mobile
(tM5(t)) and a time-invariant path delay from the base station to produce
the secondary effective source, 7,25 as

To(t) = 725 () + 7,05, (2.29)
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For a scatterer 7.7° is the path delay from the base station to the scatterer
and 7.)'%(t) is the path delay from the scatterer to the mobile station. For a
reflector the secondary source is the mirrored image of the primary source.
The path delay from the secondary source to the mobile station is thus
equal to the path delay from the primary source to the mobile station, that
is T¥(t) = 7,(t). Accordingly is 7,7° = 0 for reflections.

The geometry for the scatterers and reflectors are assumed to be time-

invariant. The phase shift due to the time invariant delay, 77°, can be
included in a complex attenuation factor which is now defined as
k(1) = g(Th — 7(£))an (t)ed Vr O =wer), (2.30)
while the time-varying term
A MS 27[' MS 27[' MS
Blt) 2 —weri®() = - Sor = =@l (231)

remains in the exponential factor of (2.28). Note that a,(t) and 9, (¢) and
thus oy, ;(t) are assumed to be time-varying on a much slower time scale
than ¢, (t). The discrete-time channel (2.28) can thus be expressed as

hi(t) =3 oy o (t)e? o (). (2.32)

In (2.31), r)/*(¢) is a vector in space pointing from the nth effective source to
the mobile station (see Figure 2.4) and ) is the wavelength. Consequently
the norm of r)® is nothing but the physical distance r}*. For spherical
waves the position vector r)* is parallel to the wave vector, k,(¢). The
phase ¢, (t) is thus solely a function of the electrical distance to the effective
source. When the distance changes by as little as one wavelength the phase
¢n(t) changes by 27, causing the effect of small-scale (fast) fading. In the
model based on the plane wave-approximation (2.24) the phase ¢, (t) has
only a linear dependence on time. In the following we will derive how much

the linearized model can deviate from a phase modeled using spherical waves.

Straight-line motion
Consider, as before, the simplest mobile dynamics, a straight-line motion
at constant velocity v. For notational convenience we denote the initial
position by rX$(0) = r)* without explicit time index. We then have the
phase function

27

27
$n(t) = =l Ol = = llen” + vi]. (2.33)
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Wavefronts

Pointsource n

Figure 2.4: The change of path distance, r)**(t), when moving with constant
velocity, v. Here §,(t) is the angle between the velocity vector v and the
wave vector k,,(t), whereas the angle 6,,(t) = m—Q,(t) is the angle between
v and the direction to the effective source at time t (that is —r}*(t)).

Let Q,(¢) denote the angle between the wave vector k,(t) (or equivalently
the position vector r’*(t)) and the velocity vector v, see Figure 2.4. The
angle towards the effective source, also called the angle of incidence, is

On(t) = m — Qp(t).
Furthermore let
On = 0n(0), 75°(0) = [[r35(0)]|, v = [[v[|, r3(t) = |[ea* ().

Then, by using the cosine theorem, the phase function at the position r}*(t)
at time ¢ can be rewritten as

2qrMS vt vt \?
dn(t) = — )\” \/1 —2——=cosf, + (W) . (2.34)
’rn rn

We use a second-order approximation

Vity~1+1y/2—4%/8,
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with y representing the sum of the two last terms under the square root sign
of (2.34). Furthermore, we neglect terms in v¢/r}*® of higher order than two
since vt/r}* < 1 and thus obtain

2mrMs vt 1/ vt \? .
dn(t) = ——=2 [1 ~ s ©08 O0n, + = (TTS) sin? Gn]
n

) 2 \rE
27 }s arMS wt \? |
= - )\" + wp,t — ):L (r75> sin? 6,,, (2.35)
n

with the Doppler frequency wp, = 27v cos(0,)/A asin (2.21). The first term,
the initial phase, is a time invariant phase shift and can be included in the
complex attenuation factor ay (t). The second term represents the phase
rotation at the Doppler frequency, encountered in Section 2.2. Beyond this
linear increase of the phase, we obtain a third, quadratic term originating
from the sphericity of the wave fronts. The quadratic time dependence of the
phase can be interpreted as a chirp, whereas a strict linear time dependence
would represent a complex sinusoid with time-invariant frequency.

2.3.1 The instantaneous frequency

The instantaneous frequency, that is the time derivative of the phase func-
tion, can offer further insights in to the relation between phase and Doppler
frequency. The instantaneous frequency can be derived directly from (2.34)
and will then be expressed in the initial angle 6, speed and time. It can
also be derived by operating on (2.33) to obtain an instantaneous frequency
expressed in the instantaneous angle 6,,(t). In the latter approach the time-
derivative of 7 (¢) is needed. An infinitesimal step in time, A¢, result in a
change of path distance as

St + At) = ||r)5(t) + vAL|. (2.36)
As At is infinitesimally small we can use the approximation (2.10) in (2.36),
roB(t + At) = ri(t) — vcos b, (t) At. (2.37)

The time-derivative of the path-length is thus
drp®(t) lm oS (t + At) — o (t — At)

7th = lim SAL = —vcos O, (). (2.38)
The instantaneous frequency is thus given by
. 2 2
dn(t) =~ L eas (o) = o cos 0,1

= wpcosby(t) =wp,(t), (2.39)
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where wp is the maximum Doppler frequency (2.22) and wp, (t) is the in-
stantaneous Doppler frequency for path n. Using the approximate expres-
sion (2.35), we obtain
(vsinf,)?.
(2.40)
The instantaneous frequency can thus either be described as an instanta-
neous Doppler shift depending on the momentary angle of incidence 6,,(t)
as in (2.39) or approximately by the difference between the Doppler shift at
time ¢ = 0 and a time dependent correction, as in (2.40).

: t
¢n(t) = ~ |vcosby, — —= (v sinf,)?| = wp cos b, —
T

MS

Phase as a function of instantaneous angle of incidence

When comparing the expression (2.39) to (2.40), one can be led to assume
that if the instantaneous Doppler frequency was used instead of the Doppler
frequency corresponding to the angle at ¢ = 0, in (2.35), then there would
be no need of a correction term. This is however not the case as we will
see below. To express the distance r)*(¢) as a function of the instantaneous
angle of incidence 6,,(t), we can by using the cosine theorem to obtain

P52 = (ypt)2 + 725 (4)2 + 2utrS (1) cos O, (t). (2.41)

Solving for r}*(t) we obtain

2
rM8(t) = —tvcos O, (t) + rffs\/l - (:Tts) sin? 0,,(t). (2.42)

n

The phase function at the position r}*(¢) at time ¢ can thus be expressed as

bult) = an(t)t—”:’]l”S\/l—(T%)anwn(t), (2.43)

n

or using the same approximation as in (2.35) as

A MS MS t 2
W;" +an(t)t—|—7ﬂ;’\1 (”TS) sin? 0, (t).  (2.44)
T

n

dn(t) = —

The initial phase is obviously the same as in (2.35). In the second term the
difference lies in that the instantaneous Doppler frequency wp, (t) is used
instead of the initial Doppler frequency wp,. Observe that even though
we use the instantaneous Doppler frequency there is a quadratic correction
term in the phase, in this case involving sin? 6,,(t) instead of sin? 6,,.
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The sine of the instantaneous angle of incidence can however by appli-
cation of the sine and cosine theorem, be expressed in terms of the time and
the initial values of distance and angle, as

MS2
n

M2 4 ()2 — 2rMSut cos By,

MS2

. 20
sin 0, (1) = SR

sin” 0, r

rMs2g)

(2.45)

Using the relation (2.45) we can show that the term (Tﬁfs )2 sin? 0, (t) occur-

ring in the correction terms of (2.43) and (2.44) is bounded:

MS
n

vt \? . 5
0< (=< ) sin®6,(¢) <1 (2.46)
T

Thus the correction term in (2.43) is limited whereas the correction term
in (2.35) grows continuously in magnitude.

2.3.2 Linearized model

Assuming plane incoming waves, that is waves with a constant angle of
incidence 6, (t) = 0y, and a time invariant complex attenuation factor
in (2.32), we obtain the following commonly used approximation [1]

N
hie(t) =D appe’rnt, (2.47)
n=1

This is the sampled version of (2.24). This model has been used as a basis
expansion model for blind equalization [17] and also for long-range prediction
of mobile radio channels by Duel-Hallen and co-workers [5].

As we have seen in (2.44) the Doppler frequencies actually vary, and
therefore a more suitable model is

N
hi(t) = 3 au (t)eln O, (2.48)
n=1

where wp, (t) is the instantaneous Doppler frequency for the nth path and
oy k(t) is the instantaneous complex attenuation. Both these parameters
can be assumed to vary slowly.

Phase error in sinusoid models
The linear phase model, that is the deterministic sinusoid model (2.47) will
accumulate a phase error when used in a situation with close scatterers
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where the plane wave approximation is non-valid. The size of this phase
error defines the maximum time interval over which the linear deterministic
model can be used as an approximation in the spherical-wave case. The
difference in phase can be approximated by the second order term in (2.35)
2
) wpv
— t?sin? 6, = —
Ar}rS " 2r s
The largest deviation of the phase in the model (2.47) relative to (2.34)
occurs for a transversal vehicle movement at 6, = m/2, when the velocity
vector is orthogonal to the direction of the incident wave at time ¢ = 0 and
the nominal Doppler shift vanishes.

t?sin? @,,. (2.49)

A¢n(t) =

Example 2.1

Consider a situation where there is only one path contributing to the chan-
nel and the velocity vector is orthogonal to the direction of the incident
waves at time ¢ = (0. The contribution by the path to the channel tap is a
chirp h(t) = ae?” (with ¢ = —mv?/(Mrys)). The true parameters, o and
¢, at time ¢ = 0 are now used either in the linear sinusoid model (2.47)
or the model (2.32), with the quadratic phase expression (2.34), and the
time is propagated. Two different predictions of h(t) into the future are
then obtained. The phase of h(t) at time ¢ = T is (T2, and this will
also be the result in the model containing the quadratic term. The linear
phase model, with the accumulated phase error of A¢(T'), will predict the
contribution to be

h(t) = ae® = aellCT"+24(D)) (2.50)

The channel tap prediction error, for the predictor using the linear model,
at time t =T is then

e(T) = a(elT? — T AT — ooiCT*+A0(T)/2) (94 sin (A¢2(T)>
and the relative power of the error is
|e(T)P? o Ag(T)
a2 = 4sin? —5 (2.52)

Compare this to the result if we would predict the tap by its mean, h(T") =
0, which would give a relative error of 1 and a prediction gain of 0 dB.
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The time limit for how long the linear model can be used as a predictor,
with better performance than the mean, is obtained by
AP(T
4sm2% <1, (2.53)
that is
|AH(T)| < /3. (2.54)

Thus, predictions based on the extrapolation of a sinusoidal model will
perform better than the zero predictor only up to prediction horizon T
where the accumulated phase error has grown to 7/3.

Based on the above example for a situation with just one path with a tap
acting as a chirp, the time interval 77 /3 denotes the time over which a linear
predictor based on the model (2.47) actually renders predictions better than
using the mean as the prediction. Defining this time interval, T} /3, for the
worst case 0, = 7/2, as the the interval after which the phase approximation
has grown to 60°, | A(;Sn(t)|T7r/3 | = w/3, we obtain

AT.MS
T 13 = n_, 2.55
w/3 302 ( )

For this time span, the above second-order approximation (2.35) can be well

justified as we have
[ A
=1/ 35 <1 (2.56)
t=Ty/3 Tn

where the last inequality holds because even a close point scatterer will be
many wavelengths away from the mobile transceiver in outdoor mobile radio
scenarios.

vt

MS
erL

Example 2.2

A simple scenario including a vehicle driving at 90 km/h past a close point
scatterer, 10 m beside the road, demonstrates the limitations of the linear
model. With a carrier frequency of 1800 MHz the resulting 77 /3 is as short
as 29 ms. Thus, the linear deterministic model is certainly inadequate for
an estimation window of 150 ms. This is the time span we have in our real
world channel measurements, to be presented in the following chapters.
This is also true for prediction horizons of 10 to 30 ms, when there are
close scatterers. However, this problem does not exist for more distant
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(primary and reflected) sources, say, at 7y = 250 m and beyond where
we obtain T /3 = 145 ms.

2.3.3 Statistical description of the linearized model

As the parameters in the model (2.28) are hard to estimate when N is large,
the common approach [1] is instead to use the linearized model (2.47) and
to assume that N is infinite, the damping factors {a,} are mutually uncor-
related and identically distributed, and that the phases {1, } are mutually
uncorrelated with uniform distribution in the interval [0, 27[. The complex
attenuation factor ay,j in (2.47) then has a circular complex Gaussian dis-
tribution.

A snapshot of a complex valued channel coefficient, in a sampled version
of the time domain channel, is thus distributed as

hy(t) ~ CN(0,0%), (2.57)

where CN(-) denotes a circular complex Gaussian distribution. The modu-
lus of h(t) is then Rayleigh distributed.

Furthermore, all angles of incidence are assumed to be time-invariant
and equally probable. That is, the angles 8,, are mutually uncorrelated with
uniform distribution in the interval [0, 27[. The Doppler frequency is given
as wp cosB,. As the probability distribution for cos, has high peaks at
+1, the Doppler frequencies wp, are likely to be close to the limits +wp.
This cause the well known bathtub shape of the Doppler spectrum for a
Rayleigh fading tap shown in Figure 2.5. This theoretical Doppler spectrum
for a Rayleigh fading tap is a good approximation for taps in a narrow-
band channel, when the assumptions of a high number of reflectors are met.
For broad-band channels the spatial resolution is higher and fewer reflectors
contribute to each tap. This cause the Doppler spectra for broad-band
channels to have much more fine structure, as illustrated in Appendix A.

2.3.4 Path loss

The path loss for a scattered or reflected path is proportional to the path
distance as [18]
an(t) o< (ris(t) @ rgs (1) (2.58)

where 7)9(t), r2%(t) denotes the distance from the nth scatterer/reflector
to the mobile station and the base station respectively and +y is the power
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Doppler spectrum
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Figure 2.5: Doppler spectrum for a Rayleigh fading tap. Frequency is
normalized by the Doppler frequency wp and the power is normalized by
the power of the tap. There is no power outside the the bounds set by the
Doppler frequency (£1).

attenuation exponent. In (2.58) 7X5(¢t) @ r2°(t) denotes r}5(t) - r25(t) for
scattering and 7 (t) +75°(t) for specular reflection. The power attenuation
exponent corresponding to the path loss in free space is v = 2. Even fairly
close scatterers will give contributions with amplitudes which are an order
of magnitude weaker than the specular reflections. Thus, it is appropriate
to use the linear model (2.47) in situations where there are direct line of
sight (LOS) or large contributions from specular reflections, that is strong
reflections from large buildings. In all other cases the effect of spherical
waves from nearby scatterers introduces a significant deviation from the
linear model (2.47).

2.3.5 Curves and plane waves

Phase functions containing quadratic terms occur when the vehicle acceler-
ates or makes a turn, even if the plane-wave approximation holds. Assume
that the mobile moves at constant tangential speed v around a circle of
radius R with its center at the origin of the coordinate system such that

lr@®)|] = R, (2.59)

where r(t) denotes the position of mobile station. As the mobile station now
change direction we use a fixed coordinate system as shown in Figure 2.6.
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Plane
wavefronts

Figure 2.6: Plane waves and a vehicle driving with velocity v in a curve
with radius R.

Let (3, be the angle between the constant wave vector k,, (plane wave) and
the initial position vector r(0) as in Figure 2.6. Recall that the phase could
be calculated as the scalar product between wave vector and position vector
added to a time invariant phase factor (2.5). We take ¢, (t) to be the time
varying part of the phase in (2.31). If we initiate ¢(¢) to be zero when the
position vector and the wave vector are orthogonal, then the phase function
at time ¢ is given by

() = —kn-x(t)
= —2%[(:03 Bn,sin By, 0] - R[cos(vt/R), sin(vt/R), 0]

= —%TR cos(vt/R — fp). (2.60)
The phase does not increase as a linear function of time here. Instead the
Doppler shift oscillates (slowly and) symmetrically around 0. The maximum
deviation from a linear phase function occurs at the time instances when
the cosine function has its maximum curvature, which coincide with the
cosine maxima. These are reached when the vehicle moves transversal to the
incident wave, that is when vt/R = f3,, where the instantaneous Doppler
shift vanishes but the corresponding chirp rate has its maximum. Consider
the time interval T’ /3 over which a phase error of /3 is accumulated. To
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this end, a second-order approximation of the cosine function is used around
its maximum, i.e.

on(t) ~ —Q%R [1 - %(’UT/R)Z] : (2.61)
where 7 is relative to the time where the cosine maximum is reached during
the circular motion. Again we have obtained a second-order polynomial
phase behavior. The constant term corresponds to the linear deterministic
model which, for transversal motion, would not show any Doppler shift at
all. The quadratic term represents the deviation from the linear behavior.
Using T’ /3 as the measure for how fast these deviations occur we obtain

/AR
Tojs =\ 5y2- (2.62)

For this time span, the above second-order approximation can be well jus-

tified as we have
[ A
=4 =K1 2.63
T:Tﬂ./3 3R ( )

where the last inequality holds because the minimal turning circle diameter
of any car is orders of magnitudes larger than the radio wavelengths used in
digital mobile communications systems.

vT

R

Example 2.3

We evaluate equation (2.62) for some typical speeds and sizes of curves.
For v =90 km/h and R =100 m we have T /3 =92 ms (2.3 m of traveled
distance) and, for v =20 km/h and R =10 m, T;/3=131 ms (0.73 m of
traveled distance). We conclude that normal deviations from the exact
straight-line motion may result in significant phase errors of the linear
deterministic fading model over estimation time windows of the order of
0.1s.

2.4 Channel Simulation

A simple simulation model including the effects of scatterers in the vicinity
of the mobile station can be derived from (2.32). The path losses are
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modeled as in (2.58) and the phase shifts 1, in (2.30) are taken to be
random variables uniformly distributed in [0, 27]. The time-varying phases
én(t) are calculated as in (2.33).

I nstantaneous frequency

100F: 0 — List

Freg. (Hz)

0 0.2 0.4 0.6 0.8 1
Time (s)
Amplitude

_757 T T =
=-80
=)
|5
< _85

-90- ‘ ‘ ]

0 20 40 ~ 60 80 100 120
Distance in wavelengths (A)

Figure 2.7: The simulated instantaneous frequencies for 3 scatterers and
their amplitudes. The maximum Doppler frequency is 104.4 Hz. The upper
and lower x-axises show time and traveled distance respectively.

The following simulation scenario is studied: A mobile station is passing
three point scatterers which are located 5 m from the road and 5 m apart.
The vehicle speed is 60 km/h and the carrier frequency 1880 MHz, as in the
measurements described in Section 3.1. The wavelength is thus 16 cm and
the maximum Doppler frequency is 104 Hz. No line-of-sight or dominant
reflector is assumed. Figure 2.7 shows the instantaneous frequency for the
different scattered wavefronts and the corresponding amplitudes. When the
mobile passes a scatterer the Doppler shift vanishes. This happens at times
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0 s, 0.3 s and 0.6 s for the different contributing scatterers. At the same
time the corresponding chirp rate has its maximum. For the contribution of
one scatterer at the time for the passage T} 3 is 31 ms.

In Figure 2.8 the accumulated power from the scatterers are shown when
the second scatterer is passed. The interference between the wave fronts
cause fades. The fading dips are spaced roughly one wavelength apart. The
depth and width of the fades vary significantly.

35 40 45 50 55
Distance in wavelengths (A)

Figure 2.8: The received power (the summed contribution from the scatter-
ers), from 0.3 s to 0.5 s. That is when driving past the second scatterer. The
x-axis is scaled in traveled distance measured in wavelengths. At 60 km/h
it takes 9.1 ms to travel one A of 16 cm.

2.5 Conclusion

We have analyzed two deviations from the conventional plane-wave and
constant-velocity model for mobile radio multi-path channels. Each of the
two assumptions of spherical wave propagation and circular motion leads to
a quadratic term in the phase functions of the multi-path components (2.31).

The most critical deviation from the conventional model was found in
spherical wave propagation due to close point scatterers. Over the consid-
ered time intervals, the phase functions can be represented quite accurately
by quadratic polynomials. Thus, the channel impulse response is well mod-
eled as a weighted sum of complex sinusoids and linear chirps.

The quadratic behavior is obtained as approximations, (2.35) and (2.61),
which are justified only for relatively small time intervals. Within the range
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of validity of these approximations, we could verify that the linear determin-
istic model for the fading pattern (i.e., the sum-of-sinusoids model for the
channel parameters (2.47)) incurs phase errors of the order of 7/3 within a
time window that would in practice be required for estimating the model pa-
rameters, that is time windows on the order of 100 ms, or a few wavelengths

in space. This motivates why adaptive linear and/or nonlinear predictors
should be used.
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2.A The Required Size of a Reflector

To classify an object as a reflector or scatterer we need the concept of Fresnel
zones. The first Fresnel zone is defined as the ellipse where the path length

Front of
building

BS

Figure 2.9: A building of width L reflects the waves from the antenna. The
angle of incidence is 8. The ellipse show the first Fresnel zone. The building
acts as a slit of width Lsin 3 for the virtual reflected source.

from the mirror image via a point on the ellipse exceeds the direct path from
the mirrored image to the mobile station by A/2. A reflector can be viewed
as a slit for the mirror image. If the slit opening allows at least the whole
first Fresnel zone through, the object act as an reflector (see Figure 2.9). The
direct path is here the path from the virtual mirror source to the receiver.
The path length is the sum of the distance from the base station rzs (or the
secondary source) to the reflecting object and the distance from the object
to the mobile station r,5. The width of the object L, has thus to be large
enough to let the first Fresnel zone through. The slit is tilted at an angle
B, the angle of incidence, and the effective width of the slit is thus Lsing.
The smallest size for an object to be considered as a reflector is

> 2 Tgs + Tus
sin 8 TBsT ms

L A. (2.64)

Smaller objects will cause noticeable diffraction, spreading energy not only
in the angle of reflection. The diffraction thus cause a similar effect as that
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of a scatterer.

Example 2.4

Consider a scenario with an object acting as a reflector in the nth path.
The carrier frequency is 1880 MHz (the wavelength A is thus 16 cm) and
the object is on a distance of 490 m from the base station and only 10 m
from the mobile station. This object can be no smaller then 2.5 m to act
as a reflector (that is for the most beneficial angle 5 = 7/2 or 90°). For an
angle of reflection of 45° the object has to be at least 3.5 m wide to act as
a reflector. An object further away from the mobile, 400 m from the base
station and 100 m away from the mobile station, at an angle of 45° would
have to be at least 10 m wide. Most objects along a road, as cars, are
thus too small to act as reflectors. A building is often large enough to be
considered as a reflector but most facades are not homogeneous reflecting
surfaces. This causes a blend of reflection, diffraction and scattering from
buildings.
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Chapter 3

Measurements

In this chapter the recording and identification of channel impulse responses
are treated. The data base consist of a number of channel-sounder measure-
ments at different locations. The channel-sounder is a correlation channel-
sounder, transmitting a sequence with good correlation properties to give the
best possible estimated channel impulse responses. The system is shown in
Figure 3.1. The sequence s(t) is sent through a transmitter over the mobile
radio channel h(¢) to the receiver, where the signal y(t) is received. While
no co-channel interference is present in the measurements, some noise n(t)
from the environment and the equipment corrupts the received signal.

n(t)

5(t)—= TRANSMITTER | h(t) »(‘z)» RECEIVER [ ¥(?)

Figure 3.1: Channel sounder. The air interface, h(t), is modeled as a time
varying FIR-filter.

In Section 3.2 the procedure to identify FIR-channels from the mea-
surements are described. The channels are estimated by the least squares
method. The power delay profile and the effect of measurement noise is cov-
ered in Section 3.2.3. The aim of this chapter is to understand the underly-
ing nature of the measured channel impulse responses as well as developing
methods for distinguishing between the channel dynamics and the noise.

33
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3.1 Radio Channel Database

Measurements

The mobile radio channel data studied in this thesis were recorded in Kista,
a suburb outside Stockholm. Wideband radio channel measurements were
collected at 1880 MHz, at distances of 200 to 2000 m from the base station
antenna placed on the roof of a high building. The mobile antenna was
placed on a car driving in the suburban area mostly without line of sight.
The vehicle velocity varied between 30 and 90 km/h. In total, 25 usable
measurement runs were recorded at different positions. The measurements
consist of 156.4 ms long recordings of the received signal at each measure-
ment location. The transmitted signal consisted of 1430 repetitions of a
sequence of length 109.4 us. As the baseband sampling rate of the receiver
was 6.4 MHz, each transmitted sequence of 109.4 us resulted in 700 recorded
samples.

Channel sampling

The impulse response of the channel is modeled by an FIR-filter, with
parameters estimated by a block based least squares (LS) method. For
each repetition of the transmitted sequence, that is 700 received samples, a
new channel is identified, resulting in 1430 consecutive impulse responses
at each measurement location. The channel sampling frequency is thus
6.4/700 MHz ~ 9.1 kHz. Since the highest Doppler frequency in the mea-
surements, that occurs for velocities around 90 km/h, is about 160 Hz
(fp = fev/c), the channel sampling frequency is sufficient to avoid alias-
ing.

The block identification of the channel coefficients introduces an error,
due to the time variation of the parameters of the channel during the iden-
tification interval, and an error due to the measurement noise. The size of
the error due to time variation of the estimated coeflicients, depends on the
time-frequency (TF) product between the length of the identification inter-
val (the block) and the Doppler frequency. With the chosen block-length the
bias will be negligible. The problem of reducing the noise on the identified
parameters by filtering is treated in Section 3.3.

The time-span covered by the FIR-filter has to encompass all contribut-
ing paths. It was found that 120 taps, thus a time span of 18.75 us, was
sufficient. That is, only paths shorter than 5.6 km were found to contribute
to the measurements. Note that 700 recorded samples are used to identify
120 complex parameters in the FIR-model.

An identification procedure using s(¢) and y(¢) in Figure 3.1 would result
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in an estimate of the channel convolved with the transmitter and receiver
filters. Under the condition that the transmitter and receiver are linear and
that the channel is slowly time varying, the order of the components can be
interchanged as in Figure 3.2. To obtain a reference signal for identification

n(t)

'

RECEIVER

z(t)
5(t)—w TRANSMITTER|» RECEIVER h(t) »é@—» y(t)

Figure 3.2: Equivalent channel sounding system. Used as a model in iden-
tification of the channel, h(t).

of the impulse responses, a back-to-back measurement is performed. The
transmitted sequence, s(t), is then sent through the transmitter directly con-
nected to the receiver with a cable, as in Figure 3.3. On the receiver side the
700 samples of reference signal, z(t), is obtained for the system without the
air-interface. By using the back-to-back measurement for identification we
avoid identifying the transmitter and receiver filters and obtain an estimate
of the impulse response of the air interface.

5(t)—wl TRANSMITTER—» RECEIVER » Z(?)

Figure 3.3: Back-to-back measurement on the channel sounder to obtain
the reference signal x(t).

Span of scales involved
The most important properties of the measurement and the required prop-
erties of the predictors to be constructed are summarized in the Tables 3.1
and 3.2 respectively.

Note the large difference in scale. The entries of Table 3.1 are explained
in the following.

e The carrier frequency is 1880 MHz and the wavelength is 15.9 cm. The
waves will thus interact with objects larger than ~10 cm.

e The baseband sampling rate is 6.4 MHz. That is, we obtain a sample
every 0.156 us, which corresponds to a spatial resolution of 46.6 m.
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Parameter Temporal measure Spatial structure
Carrier frequency 1880 MHz 15.95 cm
Baseband sampling rate 6.4 MHz 46.6 m
Impulse response length 18.75 us 5.6 km
Max delay spread 3 us 900 m
Channel update rate 109us 0.9-2.7 mm

Table 3.1: Table of the parameters governing the measurements of the

impulse responses. The vehicle velocity is 30-90 km/h (roughly 8-25 m/s).
An interval in the spatial properties refers to the different vehicle velocities.

Parameter Temporal measure Spatial structure
Adaption interval 156 ms 1.3-3.9 m
Prediction range 1-10 ms 0.8-25 cm
Prediction memory 15 ms 12.5-37.5 cm

Table 3.2: Table of the parameters governing the prediction of the impulse

responses (see Chapters 4-6).

Thus, the main contribution to each tap comes from reflections with
path distances that differ less than 50 m. Thus, the geometry on the
10 m scale is involved.

e The impulse response length is 18.75 us. This allows path-lengths

from the transmitter to the receiver of 5.6 km. Thus, the estimated
impulse response accounts for reflections over the 103 m scale.

e The measured delay spread is a measure of the average path delay,

which is different at each location. It is less than 3 us in all of the
25 measurements. Thus, the difference in path distances is less than
900 m.

e The channel update rate is 109 ys which corresponds to a new estimate

of the impulse response every 0.9-2.7 mm at vehicle velocities in the
range 30-90 km/h. That is we obtain at least 60 channel samples per
wavelength. Thus we are working on the 1072 m scale. With such
small intervals, stationarity over the channel identification interval is
well justified.

The goal is to predict the channel into the near future. In Table 3.2 three
properties of the predictor are listed and we will discuss how these properties
connect to the scales of the channels.
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e The predictor is trained on a data set, which we shall call the adaption
interval. The adaption interval for the predictors based block meth-
ods, can be selected as the whole measurement, that is 156 ms (or 1430
impulse responses) which corresponds to 1.3-3.9 m of traveled distance
at vehicle velocities in the range 30-90 km/h. In other words it com-
prises 8-25 wavelengths. The geometry of the radio environment, and
the parameters known from Chapter 2, governing the channel evolu-
tion can be assumed to be fairly constant over such a distance, but as
is evident from Section 2.3 there are scenarios where a linear channel
model is unsuitable even for such short intervals. Thus, nonlinear and
adaptive predictors will be investigated.

e The prediction range defines how far ahead we aim to predict the
channel. A prediction range of 1-10 ms, the longer the better, is desired
to perform adaptive resource allocation. In other words, we thus want
to predict 0.8-25 cm ahead, that is, 0.05-1.6 A, or even longer.

e The prediction memory describes how much of the past data that is
used in the prediction. With a memory of 15 ms, channel samples
from the last 12.5-37.5 cm, that is 0.8-2.3 )\, are used for prediction.
Predictors generally perform at their best if the memory contains at
least one full cycle of the dominant oscillation [19] . If we take the
Doppler frequency to be the dominant frequency, the memory should
cover at least one wavelength.

The large separation of scales is a key property that makes it possible to
find valid prediction models for the channel.

3.2 Identification Procedure

In this work, the radio channel is described by a discrete time transfer func-
tion, i.e., a discrete time impulse response. This transfer function, denoted
{hk(t)}, is time varying and the goal of the identification procedure is to es-
timate the time-dependent parameters in {hy(t)} as accurately as possible.
The received signal is described as a convolution between the transmitted
(puls-shaped) signal, z(t), and the impulse response {hy(t)} corrupted by
an additive noise, n(t):

y(t) = i hi(t)x(t — k) + n(t). (3.1)
k=0
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Over short time intervals, the time-varying channel can be approximately
described by short segments of time invariant impulse responses. A further
simplification is to assume that the transfer function, {hx(¢)}, can be de-
scribed by a time invariant finite impulse response (FIR) model of length
M (following the result in (2.28)), in each time interval. Equation (3.1) is
then reduced to

y(t) = 3 hya(t — k) + (), (3.2)
k=0

where M has to be chosen large enough to encompass all significant con-
tributing paths. By expressing (3.2) using in the unit delay operator ¢~
(g 'z(t) = z(t — 1)), we obtain

y(t) = H(g ) (t) +n(t), (3-3)

where H(q ') = ¥ hrg *. This model is valid for short time segments,
where short means in relation to the channel variation'. Here batches of N
data samples are used to obtain a description of the impulse response {hy}
for each batch. The choice of N is a trade off between bias and variance. A
short batch of data results in high time resolution, but as fewer data points
are used, the variance of the estimates will be higher than for a longer batch.
If, on the other hand, a long batch is used, then the channel parameters will
change during the estimated interval, which causes bias.

In this work we advocate the use of short batches to estimate the impulse
response FIR parameters. Thus we obtain practically no bias. Furthermore
we use of filtering of the estimated parameters of the channel, to reduce
the variance (see Section 3.3). In the following sections a few estimation
methods are reviewed.

3.2.1 Empirical Transfer Function Estimate

The convolution in (3.2) can be expressed as a multiplication in the fre-
quency domain, i.e.,

Y(w) = H(w)X (w) + N(w). (3.4)

The empirical transfer function estimate (ETFE) of H(w) is then simply
given as [20]
H(w) =Y (w)/X(w) (3-5)

If the channel is slowly or not at all varying, then the time segments may be long.



3.2. Identification Procedure 39

and the impulse response estimate iLk is given by the inverse Fourier trans-
form of H (w). This method of identification in the frequency domain usually
gives results with unnecessarily high variance but due to its simplicity it is
still worth attention.

The variance in the frequency domain of an estimated transfer function
will depend on signal to noise ratio in the frequency domain [21] . The power
spectrum of the reference signal (from the back-to-back measurement), as
seen in Figure 3.4, shows that the transmitted signal in the measurements
does not excite frequencies beyond 2.5 MHz from the center frequency. This
will result in low accuracy of the estimated channel impulse response for the
highest frequencies, regardless of which identification method is chosen.

Powerspectrum

Normalized amplitude (dB)
|
=
6]

_20,
2 — X

== Average |Y (w)|
_30 L L n

3 2 1 0 1_ 2
Frequency (MH2)

Figure 3.4: Normalized power spectrum of the transmitted signal |X (w)|
and the average normalized power spectrum of the received signals at one
measurement location (real data).

3.2.2 The Least Squares Method

The use of the empirical transfer function estimate would cause an unnec-
essarily high variance on the estimated parameters. The problem is par-
ticularly apparent for taps with low amplitude. To obtain a better overall
estimate of the channels, a least squares estimator [20] will be used.

Write equation (3.2) in vector form as

y(t) = x(t)"h + n(t), (3.6)
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where
x(t) = [z(t) z(t —1)... z(t — M+ 1)]T (3.7

is the vector of transmitted data? and
h=T[ho h1...hp_1]" (3.8)

is the true parameter vector and n(t) is a noise term assumed to have zero

mean and variance o2. The total number of observations in one batch is

N and the number of unknown parameters in h is M. Form the Toeplitz
matrix for the transmitted data

X = [x(1)...x(N)]" (3.9)
and a received data vector
y = [y(1) ... (N[ (3.10)
Similarly let n denote the vector of the N noise samples,
n = [n(1)...n(N)]T. (3.11)
The Equation (3.6) can then for t = 1... N be formulated as
y=Xh+n (3.12)
and the off-line LS estimate of the parameters of the channel is
h=Xy=h+Xn=h+v, (3.13)

where X = (X7 X)X denotes the Moore-Penrose inverse of the matrix
X and (-)¥ denotes complex conjugate transpose.®> The estimation error
will be v = X'n.

Under the assumption that the noise n(t) in (3.6) is independent of
the term x(¢)7h and that h is time invariant, the covariance matrix of the
estimated parameters h is given by

cov(h) = E{(h—h)(h—h)?} = E{vwv}
E{X'nn® X"} = XTR, XTH, (3.14)

2Since the transmitted sequence is repeated, the samples with negative index in x(t)
are simply collected from the end of the preceding transmitted batch.

3The vector X¥y /M is an estimate of the cross-covariance vector, ry;, and X? X /M =
R, is the sample auto-covariance matrix of x(t). The LS solution in (3.13) is thus nothing
but the Wiener-Hopf equations with this particular choice of estimators for the covariances.
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where the noise covariance matrix, R, is defined as
R, = E{nn""}. (3.15)

The average power of the parameter vector, here approximated as the ex-
pectation, .
E{hh?} = E{hbh?} + X'R, XH, (3.16)

is of interest in the following discussion about the power delay profile.
When the noise is white, the noise covariance has the simple form R,, =
021 and the estimated parameter covariance in equation (3.14) reduces to

cov(h) = o2 (XX)~1. (3.17)
An unbiased estimate of o2 for white noise can be found as
62 =elle/(N — M). (3.18)
where € is the equation error:

e=y—Xh=y—-X(h+v)=XXn. (3.19)

3.2.3 Power Delay Profile Estimates

The power delay profile (PDP) is an average measure at one location, for
how the received power is distributed over delays, that is, the time average
of the squared amplitude of the taps. Through the PDP the effective length
of the channel can be observed and it can also be used to measure the delay
spread. Here we will use the PDP to obtain an estimate of the variance of
the estimated parameters of the channel, where estimation errors will act as
noise on the sequence of channel estimates.

The PDP is estimated as the average over one measurement location of
the estimated power in the taps [|hg|? ... |har_1|?]. Assume the channel tap
to be time invariant over the estimation window of length N and assume the
noise to be independent of the regressors. The expected value for the power
in one tap, say tap k, estimated by the LS procedure from data corrupted
by white noise is then obtained by using (3.17) in (3.16):

E{|hi ()"} = on [(X7X) e + E{| (1)1} (3.20)

where (-)gr denotes the element on row and column & and the variance of

the white noise is 02. The noise floor is the power level at those param-

eters that in reality are zero. Thus, if hy(t) = 0,V¢, then E{|h(t)2} =
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o2[(XHX)1]gx. As the PDP is formed through averaging over the avail-
able realizations, in our case 1430 realizations, a rather accurate description
of the noise floor ny, is given by

n; = o2 diag[(X#X)™] (3.21)

where diag(-) forms a column vector from the diagonal elements of a matrix.
The noise floor for tap k will be given by the kth element of this noise floor
vector ny. We cannot expect to obtain any reliable estimates of the taps
close to the noise floor. It could even be beneficial to exclude those delays
from the estimation procedure [22].

Verification of the noise floor for white measurement noise

To verify that the level of the noise floor, and thus the variance of the
estimation error, is as expected we compare a measured PDP with a Monte
Carlo simulated profile. Here we use a dB scale with an arbitrary reference
to display the measured data. This way of presenting measured data will be
used throughout the thesis.

The simulated channel has a PDP formed after a pattern given by the
measured PDP. Some taps in the simulated channel should carry no signal
power, so values in the pattern PDP under an ad hoc chosen threshold is set
to zero. The square root of the measured PDP, with values under a threshold
of -101.4 dB set to zero, is thus used as a pattern for the simulated channel
parameters. The threshold level is chosen a little bit above the observed
noise-floor in Figure 3.5 to include all the visible peaks from the measured
PDP into the pattern.

For each Monte Carlo trial the taps in the channel are taken as the pat-
tern multiplied with normal distributed random complex numbers with zero
mean and variance one. The obtained input channel has independent taps
and the desired PDP. The input signal used in the measurements are trans-
mitted through the simulated channel and the received signal is corrupted
by an additive white Gaussian noise, the measurement noise. The noise has
the same variance as the one estimated from the measurements using equa-
tion (3.18). The simulated channel is then identified using equation (3.13),
just as for the measurements.

A total of 100 Monte Carlo trials are performed with different noises and
channel parameters. In Figure 3.5 and 3.6 the PDPs for one measurement
location and the average result from the 100 Monte Carlo trials are plotted
respectively. In the measured data, Figure 3.5, there is significant deviation
between the noise floor calculated as in (3.21) (dash-dotted curve) and the
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Estimated PDP

-70} — PDP '
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Figure 3.5: The estimated PDP for measurement 23 and the calculated

noise floor under the white noise assumption (3.21). The part of the PDP
under the threshold is set to zero in the simulation.

Simulated PDP with white noise
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Figure 3.6: The simulated PDP with white noise. Measurement 23 is used as
a pattern for generating a set of channels used for Monte Carlo simulations.

average power of the taps with the least power (dotted curve). This is
not the case in the simulated PDP with white noise. As can be seen in
Figure 3.6 the estimated noise floor for the simulated PDP coincides with
the power level for the smallest estimated taps, those that in the pattern are
zero and thus carry no signal power and only noise power, as expected from
the theory. The difference between the result expected from theory and the
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measured PDP (in Figure 3.5) indicates that some assumptions about the
data or the model are wrong. A possible error source could be the presence
of colored measurement noise.

Noise floor for colored noise

To investigate the presence of colored noise we identify the channel using
a prediction error method (PEM) with a more general model structure,
including a noise-filter C'(¢~1)

y(t) = H(g"z(t) + Clg~ o (t) (3.22)

where v(t) is a white noise [21]. In this example we identify a moving
average noise-filter C'(¢~ 1), of degree five. Even though the identified chan-
nel parameters hy(t) showed large variations over the time ¢, the identified
noise-filter parameters were rather stable as can be seen in Figure 3.7.*
The average parameters for the noise coloring filter C(g~!) are [1.0,0.20 +

0.3
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Figure 3.7: Real part of the identified noise-filter parameters from measure-
ment 23. The darker the parameter the smaller the delay. The solid lines
are the means.

0.03¢,—0.2,0.1, —0.08,0.05], a rapidly decaying impulse response resulting
in a weakly colored noise. The assumption of white noise is thus not valid.

The LS estimate h remains unbiased even with colored noise, but the
expected value for the power will change from what is given in equation

4This was somewhat unexpected, as the properties of environmental noise would change
just as fast as the mobile radio channel when the mobile moves. If, on the other hand, the
noise is produced internally, in the receiver, the noise filter could be close to time-invariant.
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(3.20) to
E{|h(®)[*} = [XTRuX gy, + E{| i |*}. (3.23)

The noise floor is then altered to
n; = diag(X'R,X™), (3.24)

where Ry, is the covariance matrix (3.11),(3.15) of n(t) = C(¢~1)v(t).> The
noise floor will be lower for the colored noise than for white noise with the
same variance o2, since the variance of v(t) will then be lower than than the
variance of n(t). To calculate the noise floor as in (3.24) the noise covariance
R, must be estimated.

When an additive colored noise is introduced in the simulations, a similar
effect as for the measured data can be obtained, see Figure 3.8. The simula-
tion is performed in the same manner as previously described, using LS for
estimating the impulse responses, but the noise is now generated as a white
noise filtered by a 40 tap long exponentially decaying noise filter. This is an
ad hoc choice, built on the assumption that the echoes represented by the
noise term decay rapidly. (If there is internal colored noise in the receiver,
there are no echoes. Still the rapidly decaying impulse response is similar to
that observed for the noise filter in measurements.) The taps in the noise-
filter are selected as ¢, = (b, +1)e™*/2 /b, where by, is the absolute value of a
normed normal distributed random variable (zero mean and variance one).
The normalization factor b is selected so that the filter does not change the
variance of the noise, i.e. Y |cg|? = 1. The variance of the colored noise
is the same as for the white noise in the previous simulation. The colored
measurement noise results in a lower noise floor than white noise with the
same variance, when using LS-estimation for the impulse response.

The average parameters for the estimated noise-filter and the variance
estimate from the PEM have been used to estimate the covariance matrix
R, for the colored measurement noise on the measured data. The resulting
noise floor, obtained as in (3.24), is in agreement with the observed noise
floor in the measured PDP (estimated by LS).

From experience with measurements and simulations we can conclude
that the observed lowest levels in the PDP can be used as an estimate of
the channel tap estimation error variance. Thus, an estimated tap can be
modeled as the true value and an estimation error, as

R (t) = Ry (t) + v (t), (3.25)

®The equation (3.20) is just a special case of (3.23) with R,, = o 1.
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Simulated PDP with colored noise
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Figure 3.8: Simulated PDP, estimated by LS, with colored noise. The col-
ored noise has the same variance as estimated from the measurement. The
coloring noise channel impulse response is a rapidly decaying exponential
function.

where the variance of the estimation error vg(t) is given by the noise floor.
There is thus no need to estimate the variance using (3.24). We have also
seen that calculating the noise floor using (3.21) can result in an overesti-
mation of the noise floor. The estimated error variance will be used in the
sequel in a noise-reduction smoother, for filtering of the estimated channel
parameters.

3.2.4 Choice of Identification Procedure

All the tested methods, ETFE, LS and PEM give roughly the same results
for the taps that contain the most energy. To find the best method we look
at the lowest level (the noise floor) in the estimated PDP. As discussed in
Section 3.2.3, the noise floor in the PDP can be linked to the variance of the
estimation error.

The ETFE produced estimated channel impulse responses where the
lowest level in the PDPs are a few dB over the lowest levels produced by the
LS estimation (this level varies from measurement to measurement though).
The PEM, taking the colored noise into account, also results in higher lowest
level in the PDP than the LS-method. This is because PEM estimates more
parameters, which causes a higher variance in the estimates. In addition it
is generally hard to estimate the noise-filter, C(¢g~!) in (3.22), with good
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accuracy from a limited amount of data. Thus, we do not gain anything
in accuracy for the estimated impulse responses by using PEM instead of
LS. As discussed in Section 3.2.3, the lowest level in the PDP can be linked
to the variance of the estimation error. Since both the ETFE and PEM
methods produce estimates with higher variance than LS for the taps with
low amplitude, the LS-method is selected for identification of the channel.

3.3 Reduction of Noise on Estimated Channel Im-
pulse Responses

The LS-estimated channel tap vector forms a time series with sampling rate
109 ps. As outlined in Section 3.2.3, this time series will be corrupted by
noise, with a power indicated by the noise floor of the power delay profile
(PDP). By filtering the sequence of tap estimates the noise level can be
reduced, and the noise floor lowered, as seen in Figure 3.9. The dashed line
is the estimated PDP after that noise reduction is applied to each tap. The
method for noise reduction will be explained in the following.

The same noise floor as in the PDP can be observed in the Doppler
spectrum depicted in Figure 3.10.% It is the average over the Doppler spectra
for the taps, for the same measurement as for the PDP in Figure 3.9. Most
of the power is in the band of 60 Hz, where 60 Hz is the Doppler frequency
v/A = fp. There are also lower peaks around -145 Hz, 30 dB below the
largest peaks. Outside the band [-240,160] Hz the average Doppler spectrum
is close to the level of the noise floor observed in the PDP. This effect could
be caused by white noise on the estimated channel taps.” Still, we can not
say anything about the color of the noise inside the band [-240,160] Hz.

Due to the approximate band limitation to & fp of the frequency content
of a tap and the high oversampling in relation to the Doppler frequency, it
is possible to reduce the noise level. An ideal low-pass filter cutting off all
frequencies outside [—fp fp] would give a large noise reduction [24] but
it would not include the part of the tap energy outside the Doppler band.
It would also be hard to implement without long delays. The best noise
reduction should optimize amplification with regard to the signal power and

5The Doppler spectrum is estimated using a Capon method, (MASC) [23], to avoid
the high side-lobes and low resolution in ordinary Fourier transform estimation of the
spectrum.

"Even though the measurement noise in the 6.4 MHz sampled measurements used for
channel identification was colored, the estimation noise on the consecutive LS-estimated
taps can be close to white.
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Figure 3.9: Power delay profile (PDP) and noise floor for one measurement
location. The noise reduced PDP is estimated from the taps, after the
proposed noise reduction.
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Figure 3.10: Average Doppler spectrum (zoomed to the right) and noise
floor for the same measurement as used in Figure 3.9.

the noise power at each frequency and still be able to retain a low delay. In
the following we will present such a method.

Design of noise reducing Wiener-smoother
To be able to design a smoothing filter that suppresses the noise and lets
the signal through with as little distortion as possible, we need to know how
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the power of the signal is distributed in the frequency domain. By using
crude ARMA models for the channel dynamics, a robust smoother can be
derived.

A channel tap, hg(t), can be modeled as a white noise, e(t), filtered
through a low-pass filter,

B(q™h)
Ag™1)

Here the time index ¢ denotes samples taken at the channel sampling rate
109 ps and not as previously at the symbol rate 6.4 MHz. Even though this
filter cannot produce the fine structure of the power-spectrum of a tap, it is
sufficient for indicating what levels of signal power that could be expected
for different frequencies. Thus, the frequency response of B(qg )4 1(g 1)
scaled by the variance of the driving noise e(t) serve as a model for the
Doppler spectrum of the tap hg(t). Given the filter B(¢~')A~!(¢™!) and
the variance of the tap hy(t), the variance of the driving noise e(t) can be
calculated.

An additive measurement noise (the estimation error), v(t), corrupts the
tap. The Wiener fixed-lag smoother,

hi(t —mlt) = M(hk(t) +(t)) (3.27)
Ro(q 1) ’

is designed to optimally reduce the effect of the measurement noise, at a
given SNR [25]. As the Doppler spectrum is flat outside the Doppler fre-
quency, the noise, v(t) is modeled as white. The estimated level of the
noise floor is used as the variance of the measurement noise v(¢) in (3.27).
The procedure results in an estimate of the tap, delayed with the smooth-
ing lag m, see Figure 3.11.8 The smoother is designed to reduce the noise

hyo(t) = e(?). (3.26)

v(t
Model l Smoother
6(t) B(q_l) hk (t) Qo(q—l) hk(t - m|t)
— 7 A &) Ro(e ) [

Figure 3.11: The model for smoothing design for noise reduction of a tap.

(estimation error) without introducing unnecessary bias.

8In an online application the last available samples of the channel will need smoothing
lags shorter than m.



50 Chapter 3: Measurements

If the model B(q ')A (g ') is a low-pass filter with cut-off frequency
at fp and the noise is white, then the smoother Qo(¢~!)Ry'(¢™*) will be
a low-pass filter that has an approximately flat frequency response with
amplification one, and a linear phase in the passband [—fp fp]. Thus
all frequencies within the passband will be left unchanged whereas power
outside the passband will be attenuated.

Performance of noise reduction on simulated data

The performance of the noise reduction is studied on two different types of
simulated data, all with the maximum Doppler frequency fp = 104.4 Hz
(this corresponds to a vehicle velocity of 60 km/h at a carrier frequency of
1880 MHz) and channel sampling at f; = 9.14 kHz.

The first set of simulated data consist of an approximately Rayleigh
distributed time series formed through a weighted summation of 100 complex
sinusoids with frequencies taken as fp cos#, and where the angle 0, is a
stochastic variable drawn from the uniform distribution [0 27[. The weights
in the summation are complex and Gaussian distributed.

The second set is the simulation set in Section 2.4, modeling a car travel-
ing by three close scatterers. Noise is added to give different SNR conditions
and the SNR improvement after noise reduction is measured for a range of
smoothing-lags. In both cases 6000 data points are used and 100 Monte
Carlo trials are performed with different noise realizations.

The filter B(g7!)A7(¢!) in (3.26) is chosen as a Chebyshev type one
low-pass filter of degree 4 with 4 dB passband ripple and the cut-off fre-
quency at the Doppler frequency fp. The filter serves as the rough approxi-
mate model for the dynamics of the taps. For each SNR and smoothing-lag,
m, a Wiener-smoother is designed according to [25]. In Table 3.3 average
gain in SNR, over both Monte Carlo trials and data sets, is presented.

By increasing the smoothing-lag the performance is improved, but we
increase the delay in the prediction so a longer prediction range will be
needed. Thus, the smoothing-lag should be kept as low as possible. As can
be seen from Table 3.3, there is little to gain by increasing the smoothing-lag
above 5 samples. Actually, for higher SNRs, that is above 10 dB, most of
the gain is already achieved with a smoothing-lag of 3 samples. To increase
the smoothing-lag from 3 to 5 samples increase the gain in SNR about
1 dB. A further increase from 5 to 30 samples, result in less than 3 dB
improvement, which is relatively small when the SNR is around 20 dB. The
SNR gain saturates when the smoothing lag is further increased, since then
all the noise outside the band-limits is suppressed and the remaining noise
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Smoothing-lag

SNR | 0 3 5 7 10 20 30
0 104 116 124 13.1 14.0 15.0 15.1
5 9.2 10.8 11.8 127 13.7 145 14.7
10 81 102 11.5 125 13.5 13.9 143
20 64 9.6 11.2 121 125 13.0 13.6
30 5.0 93 108 11.2 11.3 124 125

Table 3.3: Table over the average gain in SNR (dB) for the two simulation
sets after Wiener smoothing, for different SNR and smoothing lags. The
difference between the two sets was less than £0.1 dB, so the total average
is shown here.

within the band-limits can not be filtered away. To reduce the noise within
the band-limits more involved signal models, taking the fine structure of the
power-spectrum into account, have to be used instead of the simple low-pass
model.

The average gain in SNR differed less than +0.1 dB between the two
data sets. As the results are so similar for two different types of signals,
we can assume that the gain in SNR will be close to those indicated in the
table for most mobile radio channels with fp =104.4 Hz and for channel
sampling at 9.14 kHz. The gain in SNR decreases when the ratio 2fp/fs
decreases as then there is less noise outside the frequency band occupied by
the signal, that can be suppressed. A perfect low-pass filter cutting away
everything outside a perfectly band-limited signal would increase the SNR
by 10log,o(fs/2fp) dB, in this case 16.4 dB.

The properties of a Wiener smoother approaches those of an ideal low-
pass filter when m — oo and when the design is performed for high SNR's.

Noise reduction on estimated channels
To reduce the noise level in the wide-band measurements we use a, Chebyshev
type one low-pass filter of degree 4 with 4 dB passband ripple. The cut-off
frequency is set to the Doppler frequency for a vehicle velocity of 105 km/h,
to encompass all the possible Doppler frequencies in the measurements. (A
Chebyshev filter with high passband ripple has a faster roll-off than a Butter-
worth filter of the same order. As we will see, the ripple shows no significant
effect on the final smoother.)

Using the Chebyshev filter together with the knowledge about the noise
level (from the PDP), a Wiener-smoother, with smoothing lag of 5 samples
(introducing a delay of 0.5 ms), is designed. In the left part of Figure 3.12
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the theoretical power spectrum of the signal B(q ')A !(¢ !)e(t), that is
the frequency response of the Chebyshev filter scaled by the variance of the
driving noise, is plotted together with the Doppler spectrum for the tap
corresponding to the second peak of the PDP in Figure 3.9. The tap is

20 20)
ih)
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Figure 3.12: Power spectrum of the model and the Doppler spectrum for
the tap corresponding to the second peak of the PDP in Figure 3.9, to the
left. To the right the corresponding Doppler spectrum of the tap after noise
reduction using the smoother (with dashed frequency response). The tap
is normalized to have unit variance and the SNR is estimated to be 14 dB.
The full bandwidth is 4.6 kHz out of which the Figure shows £1.8 kHz.

scaled to have unit variance. The right-hand part of Figure 3.12 shows the
Doppler spectrum after noise reduction using the smoother. The smoother
has 0 dB amplification (and close to linear phase) in the passband, even
though the Chebyshev filter has a significant amount of passband ripple,
and it attenuates the out of band power. Thus, the relevant part of the tap
is left unaltered.

The smoother has a slightly broader passband than the Chebyshev filter.
This is due to a trade-off between bandwidth and linearity of the phase in
the passband. For a lower noise level the bandwidth would increase, to
obtain a more linear phase in the passband whereas for a higher noise level
the bandwidth of the smoother would decrease, to diminish the effect of the
noise power. The reduction of bandwidth is done at the cost of a worse
performance of the phase response. A longer smoothing-lag increases the
performance especially for high noise levels.”

9To completely avoid a non-linear phase in the passband, FIR-filters can be used as
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Noise reduction could alternatively be performed by the predictor and
the optimization of the predictor would then include the attainment of suffi-
cient noise reduction. However, there is a clear advantage in separating the
noise reduction from the prediction. In the noise reduction is it possible to
exploit the high oversampling of the channel and to use a simple model for
the dynamics of the taps, to obtain a pre-designed low complexity smoother.
For predictors with a prediction ranges of 5 ms, a long memory, on the order
of at least 10-20 ms, is needed. The predictor is therefore preferably sub-
sampled to keep the complexity low. Such a sub-sampled structure can not
exploit the oversampling for noise reduction. Thus, by separating the noise
reduction from the prediction we keep the complexity low while we can still
use predictors with structures directly designed to suite the dynamics of the
taps.

in [3]. However the FIR-filter requires many more parameters and introduces a longer
delay than does the Wiener-smoother, at a comparable performance.
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3.A Bandwidth Reduction on Measured Channels

Radio frequencies are a scarce resource. To exploit the radio frequencies
as efficiently as possible the signal that is transmitted has to be band-
limited to avoid interference among the frequency bands. In mobile com-
munication systems the bandwidth is generally not as wide as 6.4 MHz.
Lower bandwidth also means lower spatial resolution in the impulse response
which means that more scatterers and reflectors contribute to each tap. To
study the behavior of the channel in a system with a lower bandwidth, the
bandwidth of the measured channel has to be reduced. To create artificial
channel-data with smaller desired bandwidths than in the measured data,
the identified impulse responses are band-limited by filtering and then sub-
sampled.

Due to the band-limiting there is redundancy in the information provided
by the taps. The impulse response of the channel can thus be sub-sampled,
that is, if we reduce the bandwidth a factor K, we only need to use every
Kth tap in the impulse response, without loss of information. The low-pass
filtering is performed over the taps of an estimated channel impulse response.
The corresponding frequency domain transfer function, that originally oc-
cupies the band from -3.2 to 3.2 MHz, is thus band-limited by the filter
to occupy the desired bandwidth. This produced no visible edge effects on
the estimated impulse response when the identified impulse response covers
the time where power is received. That is, outside the range of the impulse
response the power is close to zero.

A more direct approach would be to low-pass filter the transmitted and
received signals prior to identification. As the low-pass filter has a high stop-
band attenuation the signals are close to band-limited. However this opera-
tion can cause numerical problems in the LS estimation of the band-limited
channel. In the LS estimation the inverse of the sample covariance matrix
estimate of the transmitted signall® is used to calculate the LS estimate of
the channel. The sample covariance matrix has approximately a Toeplitz
structure. The eigenvalues of a sequence of Toeplitz matrices constructed
from the autocorrelation of a discrete random process are asymptotically
distributed like the samples of the process’ power spectrum [26]. As the
transmitted signal is band-limited, the power in the stop-band will be very
low in relation to the pass-band. The eigenvalue spread will thus be high
and the covariance matrix will be ill conditioned. This causes numerical
problems in the LS estimation.!?

VR, = X¥X/M is a maximum likelihood estimate of the covariance matrix for z(t)
"The problem can be avoided by sub-sampling of the signals after filtering to widen the
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To avoid numerical problems and to simplify the calculations we have
chosen to perform the band-limiting filtering on the estimated channel im-
pulse responses instead of prior to the estimation.

The band-limiting filters are 10th order Bessel-filters with the 3dB band-
width specified to 5, 2.5 and 1.25 MHz. In communication applications fil-
ters with much more rapid roll off than those used here (see Figure 3.13) are
used. A common requirement is that the filter gain has to be below -70dB
outside the specified bandwidth. With this definition the bandwidths are
roughly 6, 5 and 4 MHz respectively.

Filter responses

Filter gain (dB)

5MHz
2.5MHz
1.25 MHz

3 2 -1 o0 1
Frequency (MHz)

Figure 3.13: Filter gain for the Bessel-filters used for band limiting.

pass-band to cover the whole band. This would limit the possible choices of bandwidths
to 6.4/K MHz where K =1,2,....
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Chapter 4

Block Prediction Methods

The estimated impulse responses of the mobile radio channel are noisy ob-
servations of an underlying physical reality. In this work we are interested
in the prediction of the impulse response, given previous observations of it.
The taps of the impulse response can be treated as continuous time signals
that are sampled through the estimation procedure, where the samples of
the channel are corrupted by noise. It is the underlying noiseless channel
that determines the conditions of transmission and reception. Using the
techniques presented in Chapter 3 we reduce the effect of the noise in the
estimated channel impulse responses. This results in a discrete time series
of estimated taps in the impulse response, with only small deviations from
the parameters of the underlying channel, at the sampling instances. This
discrete time series of taps is then used for prediction of the channel.

In prediction of a discrete time series y(t), the values of y(t + L) are
forecasted using present and past values. When the predictor is limited to
work with a finite time window 7" and a finite number of measurements p of
the time series, the input to the predictor can be represented by the vector

y(t) = [yt —m)...y(t —7)]" (4.1)

The delays [7; ... 7,] may be chosen in any manner over the finite interval
T. With the delays in ascending order, the effective length of the memory
is 7, < T. The representation in (4.1) can be regarded as the outcome
of a subsampling of the acquired data. It enables the predictor to use a
long memory, yet using a limited number of coeflicients. For notational
convenience (and without loss of generality) we define 71 = 0.

Assume that y(¢ + L) can be described by the regression model

y(t+ L) = f(y(t) +€(t), (4.2)

o7
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where €(t) represents the part of the signal y(¢+L) which cannot be described
by the regression of data up to time ¢. If the function f(-) is time-invariant or
slowly varying, an estimate of the function based on a block of observations,
could serve as a predictor. A predictor estimate of y(¢ + L) would then be

9t + L) = f(y(®)), (4.3)

where f(-) is the predictor function.

In this chapter a number of different predictors, with structures that
might make them suitable for prediction of the mobile radio channel, are
presented, together with some design issues.

The linear FIR-predictor introduced in Section 4.2 is closely related to
the AR-spectrum of the channel taps and can perfectly predict weighted
sums of complex exponentials.

If close scatterers or other causes of deviation from the exponential
model (2.47) are to be taken into account, then we have to include non-
linearities in the predictor. The simplest extension from linear to nonlinear
predictors is to include quadratic terms in the regressor. The quadratic pre-
dictor, or truncated Volterra series, is introduced in Section 4.3. It is found
to be unsuitable as it is hard to obtain estimates of the parameters that have
good generalizing properties. The reason is that quadratic nonlinearity is in
many applications too strong.

Two other alternatives are neural nets and MARS (multivariate adaptive
regression splines) [10]. MARS is a structure for fitting of nonlinear func-
tions. It can be interpreted as a gain-scheduling algorithm, where different
regions of the regression space has its own simple model. We have here, in
Section 4.4, chosen to use and investigate MARS instead of neural nets, as
MARS has been demonstrated to perform comparably well on small train-
ing sets and can produce good models with fewer parameters than neural
nets [27]. However, it will turn out that the MARS predictor, as well as the
quadratic predictor, shows poor generalization properties in the prediction
of mobile radio channels.

4.1 An Upper Bound on the Prediction Gain

A question that arises when trying to predict a time series is whether the
signal is predictable at all. If the time series is stationary and generated
by a linear process then the auto-covariance gives a good indication of the
ability to predict the signal. If the signal is generated by a nonlinear process,
then the auto-covariance is insufficient as an indicator. However information
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theory offers the mutual information measure, a measure on the time series
that can be viewed as a generalized covariance. This will provide limits for
the predictability of the time series.

The prediction error of the predictor in (4.3) is given as

e(t+L)=y(t+ L) —y(t+ Lt), (4.4)

where §(t + L|t) denotes the predicted value at time ¢, given data up to time
t. To quantify the prediction quality we introduce the term prediction gain.
The prediction gain G(L), which is measured in dB, is defined as the ratio
of the variance of y(t) to the power of the resulting prediction error £(t)

G(L) = 101og,, 2 {ggl (;)r;f' b (4.5)

where
my = E{y(t)}. (4.6)

Under the assumption that the time series {y(¢)} is stationary, an upper
bound on G(L) for any unbiased predictor is given by Bernhard in [28]

G(L) < Gmaa(L) = 6.02[I(y(t + L); ¥ (1)) + Al (4.7)

where
A = 3 logy(2reB(ly(t) —my ) — H(y() (48)

is the difference between the differential entropy of a Gaussian variable with
the same variance as y(t) and the first-order entropy, H (y(t)). Here I(y(t+
L);y(t)) denotes the mutual information, which is a measure of how much
information the vector y(¢) contains about the value to be predicted, that
is y(t + L) [29]. The constant 6.02 (or exact 20log;y(2)) is just a scaling
factor from bits to dB and e is the natural base. Gpq.(L) is an upper bound
on the prediction gain for any predictor forecasting y(¢ + L) based on y(?).
It does not imply that there actually exist a predictor that can achieve the
bound.

The mutual information between two processes X and Y is defined as

I(X;Y) = //px,y(a:,y) log, %daﬂy, (4.9)

where the functions px v (z,y),px (z),py (y) are, respectively, the joint prob-
ability density of (X,Y’) and the marginal densities of X and Y.
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Both the differential entropy, H(y(t)), and the mutual information, I(y(t + L);y(t)),
can be estimated from a single realization of a stationary ergodic process
using the fast algorithm described in [30]. To obtain accurate estimates
often requires large amounts of data. The upper bound on mutual informa-
tion (4.7) does not help us to find the optimal predictor. Instead its main
use is as a generalized correlation analysis, to indicate the predictability of
the signal.
A simple example of the advantage of using the mutual information
instead of correlation analysis is given in [31].

Example 4.1

Let an input signal z(¢) and a noise n(t) be independent and generated
by white, zero mean, Gaussian processes with variances o2 and o2 respec-

tively. Consider a nonlinear channel where the received signal is given
by

y(t) = alz(t)]| + n(t). (4.10)
The cross correlation function
rye(T) = E{y(t + 7)z(t)} =0, (4.11)

will be zero for all 7. On the other hand the mutual information function
will measure the full dependence between the signals. We can use equa-
tion (4.9) and argue as follows: The information not contained in the input
signal z(t) about the output signal y(t) is contained in the noise, n(t). If
we calculate the auto-mutual information I(y(¢);y(t)), that is the total in-
formation content of y(t), and subtract the information of the noise, what
remains is the mutual information between z(¢) and y(¢). This can be
formalized as

I(a(t);y(t + 7)) = I(y(@); y(t + 7)) — I(n(t);n(t + 7))

o
B { — [ py (u) logy py (u)du— L log, (2mec?) 7 =0
- -0

0 , otherwise.

Here py(y) is the marginal probability density function of the received
signal. Only relying on linear correlation analysis, which is blind to non-
linearities, would give the false impression that no knowledge about y()
can be obtained from knowledge about z(¢). Mutual information analysis
on the other hand, detects the connection and tells us how much informa-
tion the input signal z(t) contains about the received signal y(t).
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The predictor' that achieves the bound for the prediction gain for
estimating y(t) given z(t) is a|z(t)|. However, it does not exist a predictor
for z(t) given y(t) that achieves the bound. It is only possible to predict
the envelope of z(t).

4.1.1 Predictability of Received Power in the Mobile Radio
Channel

To get an estimate of how predictable the received power is from the obtained
measurements, the mutual information between the power at time ¢+ L and
two delayed measurements of the power y(t) = [y(t), y(t — 7)] is estimated
for the measured powers from all locations. The reason to use only two
delays is to keep the accuracy of the mutual information estimate high in our
limited data sets and yet have the extra structural information offered by the
second delay. Using equation (4.7), an upper bound on the prediction gain
for any predictor using two lagged variables is estimated. The measurements
in the database presented in Section 3.1 are used.

To see how the length of the memory affects the prediction, we vary the
delay spacing. (As we use only two delayed variables the memory length is
the same as the delay spacing.) All different delay spacings in the range 7 =
[1,15] ms (with steps of 1 ms) are evaluated and we select the delay spacing
7 which gives the highest prediction gain bound. In Figure 4.1, the average
over all measurements of the optimal delay spacing is presented for the
different bandwidths and prediction intervals. Even though the prediction
interval increases from 1 ms to 30 ms, the average delay spacing, giving the
highest prediction gain, increases less than 5 ms. Thus, when the prediction
interval is increased the memory size does not have to increase proportionaly.

The average of the upper prediction gain bounds is presented in Fig-
ure 4.2. For predictors using two lagged variables, estimated through the
mutual information, the upper bound on the prediction gain first drops 3-4
dB when the prediction interval is increased from 1 to 4 ms and then re-
mains fairly constant. This indicates that when the dynamics are known it
would be possible to increase the prediction interval with only a small loss of
accuracy. The high bound for the prediction gain for long ranges can be an
effect of a hidden determinism in the time series. Thus, it can be worth the

! As the time index for y(t) and z(t) are the same we would in the strict sense perform
estimation, not prediction, of one of the signals given the other.
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Figure 4.1: Average delay spacing T in y(t) = [y(t),y(t — 7)], over all mea-
surements giving the upper prediction gain bound for the power, estimated
with the mutual information algorithm.

effort to look for good predictors. The drop in the prediction gain bound

PG bound for received power
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Figure 4.2: Upper bound on the prediction gain for received power at dif-
ferent bandwidths.

when reducing the bandwidth is due to the deeper fades and more rapid
changes for lower bandwidths.

The received power is the sum of the contributions from many taps. Ex-
periments indicate that it is easier to predict the power by prediction of the
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complex taps and then summing the squared envelopes of the predictions,
than to predict the power directly. Unfortunately is it not possible to per-
form a study of the mutual information between the complex taps and the
total power on the data at hand. This is due to that, even using only two
delayed samples, the number of variables in the analysis would be to high for
the method to obtain a reasonable estimate of the bound for the prediction
gain. If as few as ten taps contribute to the received power, then there are
ten complex values and thus 20 real values that influence the power. With
two delays this corresponds to an X, in (4.9), of 40 variables. Here Y is just
the received power. It is not feasible to estimate the mutual information for
that many variables, with data sets of a length on the order of 103.

To summarize, the mutual information determines an upper bound on
the prediction gain. However it is important to remember that there might
not exist any realizable predictor that achieves this bound.

4.2 Linear FIR Filter Predictors

A linear FIR prediction of a zero mean complex-valued time series y(t),
based on measured data confined by (4.1) can be expressed as

JE+L)=fly®) = Y bay(t—7n) (4.12)
= bly(t), (4.13)

where b = [b; ...b,]T are the complex-valued weights for the different de-

layed measurements. In the following we will discuss how to estimate b from
y(t). For time series with nonzero mean, such as the received power in our
case, we estimate the mean separately and work on the detrended data.

4.2.1 FIR filters minimizing the MSE

Under the assumption that the taps of the radio channel can be described
by a weighted sum of complex exponentials (2.47), a linear FIR-filter can
give perfect predictions [32]. The linear FIR filter of a pre-specified length,
that minimizes the mean square of the prediction error is given by the LS
solution, similar to the one described in Section 3.2.2. Assume that the time
series actually can be described by the regression model

y(t + L) = by y(t) + €(t), (4.14)
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where €(t) is uncorrelated with y(¢) and represents the part of y(¢ + L) that
cannot be described by a linear regression. The relation between the FIR-
predictor and the ordinary AR-model A(q~1)y(t) = €(t), is straightforward.
The predictor can be expressed as the polynomial filter B(¢g™!) given as

D
Blg )= bug ™, (4.15)
n=1

with 7, expressed in samples. As before ¢™ is the shift operator shifting a
sequence m steps forward. Equation (4.14) can then be written as

g y(t) = Blg )y(t) + €(t). (4.16)

Multiply both sides with ¢~ and collect the y(t) components on the left
hand side to obtain

(1—q "B ))y(t) = Alg " )y(t) = ¢ e(t) = ea(t), (4.17)

where we introduced e4(t) = g L¢(t), to remove the irrelevant time shift in
the innovation noise.

The one step ahead predictor, based on all the samples in the available
memory, can thus be interpreted as a Doppler spectrum estimator where the
spectrum is modeled by

2

0.2

H(w) = ——, (4.18)
= e
with o2 being a positive scalar and where A(w) is the polynomial

Aw) = 1 — b 94D il D) (4.19)

The AR equation, A(¢~")y(t) = ea(t) in (4.17), is able to model signals
having spectra with narrow peaks by placing some zeros of the polynomial
A(g™!) close to the unit circle [32]. Since the Doppler spectrum of a tap in a
mobile radio channel often has a rather peaky structure, as each wave front
is distinguished by its Doppler frequency, the linear AR-structure might be
pertinent for designing a predictor.

Thus, there exist a close relationship between the Doppler spectrum of
a tap and the corresponding predictor coefficients. This relation has been
used for prediction on simulated data, for sums of complex exponentials,
in [5].

In our context it is crucial that the number of predictor coefficients, p,
is large enough to model the main peaks occurring in the Doppler spec-
trum. Using an LS estimate of the FIR-predictor taps, no prior knowledge
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of Doppler frequencies and amplitudes has to be assumed. If, on the other
hand, such information is available, then it can be advantageous to choose
a predictor structure taking advantage of it. The approaches of [4], [3] and
[6] are based on prior estimation of the peaks.

In [33] and [34] the introduction of feedback loops in a low order FIR-
predictor is proposed to obtain a trade off between a low noise gain and
a fast step response. This gives the predictor a faster response to changes.
How this would affect the long term predictions is a topic for future research.

4.2.2 Complex exponential modeling using FIR filters

One approach to the prediction of future tap values is to first estimate the
coefficients of the parameterization of hy(t) in equation (2.47) at time ¢ and
then use these coefficients to calculate a prediction of hg(t + L). In the
Doppler spectrum associated with hg(t) there will be peaks at the Doppler
frequencies corresponding to the incoming wave fronts. This approach, but
for prediction in the frequency domain, was investigated by Bach-Andersen
in [4] using ESPRIT and by Hwang and Winters [3] using MUSIC.

In the following we present a method with least squares estimates of the
weight coefficients, based on the assumption that all the Doppler frequencies
are known. This condition will later be relaxed with the introduction of
orthogonal basis functions. The procedure has an interpretation as a pre-
designed linear filter and is thus, as we shall see below, deemed to have
worse performance than a predictor using the direct least squares estimate
of the predictor coefficients. The only benefit is that of lower complexity.
Prediction using the pre-designed linear filters can also be interpreted as
phase advance of parts of the DFT spectrum.

Assume that a tap, here denoted y(t), can be modeled as in (2.47) with
an additive noise as

N
y(t) = Z anelnt £ n(t). (4.20)
n=1
Assuming that the frequencies {wy, } are known, then (4.20) is a weighted sum
of known basis functions. When a signal is generated by known functions of
time, corrupted by additive noise, is it possible to estimate the weights for
these functions and then use the estimate for prediction.
The basis functions can be collected in the vector

£(t) = [elort . eont] (4.21)
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and with the weights also ordered in a vector

o=|o...ay]T, (4.22)

we can write the sum in (4.20) as the vector multiplication
y(t) = f(t)a + n(t). (4.23)

Form the matrix of basis functions at p + 1 time instances

£(2)
F(t) = £ . b : (4.24)
f(t—p+1)

where p > N. If we use all the samples in the memory, that is no subsam-
pling, then the data vector (4.1) is given by

y(t) = [y(t),y(t —1) ...yt —p+1)]" (4.25)

and
y(t) = F(t)a + n(?). (4.26)

The least squares estimate of a using the p latest samples, stacked in y(¢),
is readily obtained as
& = Fi(t)y(t). (4.27)

The corresponding L step ahead predictor is
gt+ L) =f(t+ L)& (4.28)

To be able to evaluate the performance of this prediction procedure we
reformulate it as a linear filtering problem.

Theorem 4.1 Consider the tap model (4.20)-(4.23) with complex exponen-
tials as basis functions. The least squares estimation (4.27) of the coeffi-
cients a, in a data window of length p, followed by prediction using (4.28)
is then equivalent to the linear filtering

gt + L) =by(1),
with the time invariant filter

b! = £(L)F(0). (4.29)
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Proof 4.1 See Appendiz 4.A.1.

The sensitivity of the filter to broadband noise is given by the noise
gain. For an FIR-filter the noise gain is given by the sum of the squared
amplitudes of the filter coefficients, i.e.,

NG = b"b. (4.30)

It is preferable that the noise gain is low as the predictor will then be in-
sensitive to additive noise. As seen in the following Example 4.2, the use
of basis functions with frequencies that cause the basis functions to be non-
orthogonal to each other cause a high noise gain. If instead we constrain
the frequencies, in the filter design, to only take certain discrete values

2wk,
Wp, = N

(4.31)

then the basis functions will be orthogonal over the estimation interval, that
is

FIF =1, (4.32)
which also can be expressed as
p—1 )
Z e wnkeiumk — 5 Vn,m. (4.33)
k=0

We can, instead of the true frequencies, use the frequencies corresponding
to orthogonal basis functions. The chosen frequencies belong to [—wp wp],
where wp is the maximal Doppler frequency, as most of the energy ap-
pear in that band. The choice of frequencies, forming an orthogonal basis,
corresponds to those of the discrete Fourier transform (DFT). The whole
procedure can be interpreted as taking the DFT of a window of data and
then phase advancing the complex exponentials in the spectrum for a subset
of frequencies (see Appendix 4.A.1).

This method uses least square estimates of the coefficients for the basis
functions. The estimated coefficients are optimal in the MSE sense in that
they give the best model for the data in the memory. However, what we
really want are predictors that minimize the prediction error and not the
model error so this is a sub-optimal approach.
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Example 4.2

Mobile radio data

Figure 4.3 shows the Doppler spectrum for the largest tap hg(t), in one
measurement. Each peak in the spectrum corresponds to a complex expo-
nential at that frequency. We can construct a simplified model of the time
series hy(t) as the sum of the contribution of only the largest peaks in the
spectrum. The time series hy(t) of 1430 samples, shown in Figure 4.4, can
be reconstructed from the DFT.

Spectrum

0 -
@ 20}
RS)
2
g -40f
o
[
>
‘"B -60
T
14

-80
-0.1 -0.05 0 0.05 0.1
Frequency (Hz)

Figure 4.3: The power spectral density of the tap depicted in Figure 4.4.
The sampling frequency is normalized to 1 Hz. Here 0.1 Hz (normalized
frequency) corresponds to the Doppler frequency 457 Hz.

If using only the frequencies corresponding to the 20 largest values
in the spectrum, then the normalized reconstruction error is as small as
-19 dB. (Using 25 frequencies only gives a minor improvement of 2 dB.)
Thus we can expect a rather good performance of linear predictors, as
they rely on the property that a few complex exponentials can describe
the tap.

The 20 frequencies are used in a predictive filter design (see Sec-
tion 4.A.1 in Appendix 4.A) with a single sided Hamming window for
the data. Two filter lengths are considered, N = 1024 and N = 512, both
with L = 9 samples (i.e., 1 ms). The performance of these predictors are
compared to those designed using orthogonal basis functions based on 20
frequencies as close as possible to the estimated frequencies and a short
(N = 137) filter designed using least squares directly on the predictor co-
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Figure 4.4: The real(solid line) and imaginary (dashed line) part of the tap
in Example 4.2. The channel sampling period is 109 us.

efficients to minimize the prediction error over the whole data set. The
results are shown in Table 4.1. Of the pre-designed filters, only the long

Design method Filter length NG [dB] PG [dB]

Nonorthogonal basis 512 12.8 -10
Nonorthogonal basis 1024 4.2 3.1
Orthogonal basis 512 -15 3.8
Orthogonal basis 1024 -15 10.7
LS FIR predictor 137 3.9 28.8

Table 4.1: Performance of different linear predictors on one tap. Noise
gain (NG) and prediction gain (PG) for different designs and filter lengths.
Prediction 9 samples (1 ms) ahead.

(N = 1024) using orthogonal basis functions gives a reasonable prediction
performance, still far below that of the short filter, designed using least
squares directly on the predictor coefficients.

The poor performance of even the best linear predictor based on basis
functions is due to minimization of the wrong criterion. In the basis func-
tion method the modeling error is minimized as opposed to the LS FIR
predictor which minimizes the prediction error.
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4.3 Truncated Volterra Series

If we assume that there are significant contributions to the channel from
close point scatterers, the performance of the linear prediction approach
will be inadequate, cf. Section 2.3. This is a motivation for investigating
an extension of the linear predictor. Assuming that the nonlinear function
governing the time evolution of the channel is smooth, then a truncated
Taylor series expansion of the function might be sufficient to achieve the
desired prediction gain. This Taylor expansion can be obtained by using
Volterra series [35]. The quadratic Volterra system is described by

yt+L)=a+ > byt —7m)+ DY cuylt — )yt —7).  (4.34)
n=1 k=11=k

This structure is from here on referred to as a quadratic filter.

The most general quadratic filter for complex signals includes not only
the quadratic terms of (4.34) but also all possible combinations of conjugate
products. However in the examples studied we have found no need for the
conjugate products.

To include quadratic terms increase the complexity of the predictor. A
linear predictor with the same subsampling as the quadratic, has p coeffi-
cients, whereas the quadratic predictor has 1 + %p + %pQ coefficients that
have to be estimated.

For both the linear and the quadratic predictor we use the LS method
to estimate the parameters of the predictors. To avoid numerical problems,
the data is normalized so that linear and quadratic terms are of the same
order of magnitude. This is done by dividing the signal by its standard
deviation. (It is always preferable to work on normalized signals in applica-
tions where calculations are made with a limited number of bits.) Still, the
covariance matrix for the regressors may be ill-conditioned. This is a com-
mon problem with quadratic filters, resulting in low numerical accuracy and
poor generalization capability for the predictor. To avoid this we regularize
the solution [21] by adding small positive constants to the diagonal of the
estimated covariance matrix (diagonal loading) prior to the LS estimation.

The LS solution for quadratic filters relies on accurate estimates of fourth
order moments. This can limit the use of quadratic filters in a noisy time-
varying environment such as a mobile radio channel.
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Example 4.3

Mobile radio data

Here we use a quadratic filter for prediction of one complex tap taken from
a measured channel with a bandwidth of 6.4 MHz. Let the memory (7')
be 25 ms (229 samples) and the prediction range be 10 ms (91 samples).
Six delayed samples evenly spaced in the memory are used to form the
regression variables, that is p = 6. Only the quadratic terms (not the
conjugated) and the linear terms are used. A constant 1 is also appended
to the regression variables to estimate the coefficient a in equation (4.34).
A total of 28 complex coefficients are used in the Volterra filter. All the
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Figure 4.5: True and predicted squared magnitude (prediction gain is 12.8
dB) for the largest tap in one measurement at 5 MHz bandwidth. The
predicted power is calculated from the complex tap, predicted 10 ms (91
samples) ahead with a Volterra predictor. The memory (x-x solid line) and
prediction interval (x-x gray line) are indicated in the lower right corner.
The prediction is only evaluated on the training data.

available 1430 data samples are used for estimating the coefficients for the
predictor. The modeling performance is then evaluated on the training
data.

The method performs worse when the memory is reduced from 25 to 15
ms (229 to 137 samples). An LS optimized linear FIR-filter, designed using
all the samples in the memory, which requires 229 complex parameters,
achieves a prediction gain of only 1.3 dB for the squared magnitude of the
tap. On the other hand the quadratic predictor achieves a prediction gain
of 12.8 dB. In both cases the prediction of the squared magnitude of the
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tap was calculated by first predicting the complex tap and then taking the
square of the absolute value of the prediction value.

Based on the modeling performance, exemplified above, the quadratic
predictor is a candidate for further investigation and comparative evalua-
tion in Section 4.5. Even though the quadratic predictor shows good mod-
eling properties, the generalization properties are poor as will be seen in
Section 4.5.2.

4.4 MARS Modeling

Multivariate Adaptive Regression Splines (MARS) have been proposed by
Friedman [10] to build models of the relationships between a scalar response
variable and multiple regression variables. Lewis and Stevens [36] used
MARS for nonlinear threshold modeling of time series. For a predictor,
the response variable is chosen as y(t + L) and the regression variables are
delayed values of the time series, y(t) = [y(t — 1) ...y(t — 7,)]T. To build
the MARS model, the multi-dimensional regression variable space is parti-
tioned into subregions by recursive one-dimensional splits, where each split
is associated with a one-dimensional, linear spline function.

Unlike set-theoretic partitions [37], the subregions may overlap due to
their specific (suboptimal) iterative construction: At each iteration step, all
available subregions are split along all dimensions (one at a time) but only
the refinement that provides the greatest increase in regression accuracy is
retained. The basis function for a subregion is formed by multiplication of
all the associated splines.

In mathematical terms the model is described as below. Assume that
y(t + L) can be described by the regression model

y(t+ L) = f(y(?)) + €(?). (4.35)
The MARS estimate of the unknown function f(y(¢)) is then

A~

M
Fly(®) =ao+ Y amBn(y(?) (4.36)

where f(y(t)) is a sum of weighted basis functions, {By,}, associated with
subregions {m}. A basis function is formed by multiplication of the ba-
sis function of the parent region Bp(m)(y(t)) and a truncated linear spline
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function T, (y(t)),
B (y(t) = Bpm) (y(t)) X Tn(y(t))- (4.37)

The level of interaction K,, of region m describes how many truncated
splines are used to build B,,. A child has one level of interaction higher
than its parent, that is Km = Kp@n) + 1. Each truncated linear spline
function 7}, works along one dimension only (that is one delay 7,) and has
a partitioning point in the parent region at y(t — 7,) = pp(m),, partitioning
the regression variable space as

Tn(y(#) = [sm(y(t = ) = PP(m) )]+ (4.38)

where [-]1 denotes the half-wave rectifier function, i.e. it takes the value of
the argument if it is positive and is zero otherwise. In (4.38), s, = (—=1)™
gives the left or right side of the threshold pp(s);. The index [ on the
threshold denotes which partition of parent region P(m) that result in the
child m. For s,, = +1, T, (y(t)) is positive for y(t — 7,) — pp(m); > 0 and
zero otherwise. For s, = —1 the inequality is turned the other way.

The MARS algorithm builds up the model structure iteratively (by en-
larging the set of subregions while proceeding to higher levels of interaction
among regression variables) and adjusts the thresholds (pp(,),) and weight-
ing coefficients (ay,) to fit the data, while minimizing the mean square error.
How a MARS model structure might look is illustrated in Figure 4.6.

Example 4.4

Basis function in a MARS model.

To illustrate how basis functions in MARS can look like we evaluate the
basis function Bi;(x) in Figure 4.6. Region 11 is a child of region 8 and it
corresponds to the left hand side of the first (and only) partition of region
8. Using (4.37) and (4.38) we can write the basis function as

Bii(x) = Bs(x) x [ps,1 — 3] (4.39)

If we expand Bg(x) and evaluate the half-wave rectifier we then can write
the basis functions as

Bi1(x) = [71—po3]+ X [ps1 — z3]4

_ D8,1T1 + P0,3T3 — T1T3 — P0,3P8,1 , T1 > P03, T3 < P81
0 , otherwise.
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The basis function consist of linear terms and a product between two
variables, thus the level of interaction is equal to two. Only for Bg(x) and
Bio(x) the level of interaction is three. We can from the partitioning tree
see that x3 is of less importance to the model than x; and z2, as only the
last partition uses x3.

BQ BlO

Figure 4.6: MARS model structure for three dimensional input x =
(z1,22,23), where x,(t) = y(t — 7,,), defined over the domain By. The
level of interaction is K = 3 and the number of basis functions is M = 12.
The model has six thresholds, pp(m),i-

The models are continuous input-output maps and can handle linear
systems as well as nonlinear systems with more complex behavior such as
limit cycles etc. MARS models are more efficient than neural networks, such
as the standard multi-layer perceptron trained with back-propagation, for
several reasons: They include a bottom-up strategy to build up the model
structure until a certain level of accuracy is achieved (with ‘optimal’ interac-
tion of inputs rather than pruning a highly redundant, fully interconnected
neural net) and they are good at approximating (locally) linear mappings.

Furthermore their digital implementation are very simple and compu-
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tationally efficient (only hard thresholds, multiplications and additions, no
sigmoids involving transcendental functions). A predictor based on a MARS
model with the highest level of interaction set to K and no more than M
basis functions requires at most M (K + 1) + 1 additions, M (K + 1) multi-
plications, M K threshold operations, and uses no more than M (K +1)+1
parameters.

Example 4.5

Prediction of a mobile radio channel tap using a MARS model.
For MARS modeling of the complex taps, two models have to be built;
one for the real and one for the imaginary part. Both models use the same
input of 6 delayed measurements of a single complex tap, separated in real
and imaginary parts, resulting in 12 inputs. The 6 delays are uniformly
spaced over the memory. The maximum number of basis functions are 20
and the level of interaction 2, allowing for multiplicative interactions. The
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Figure 4.7: True and predicted squared magnitude (prediction gain is
5.8 dB) for the largest tap in one measurement at 5§ MHz bandwidth. The
predicted power is calculated from the complex tap, predicted 10 ms (91
samples) ahead with a MARS predictor. The memory (solid line x-x) and

prediction interval (gray line x-x) are indicated in the lower right corner.
The predictor is evaluated on the data it is trained on.

MARS prediction captures the fading pattern in Figure 4.7 even though
the prediction interval is as long as 10 ms, which is more than the typical
duration of a fade. The same data as in Figure 4.5 is used and as there,
the modeling performance is evaluated on the training data.
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The MARS model offers a very flexible structure for prediction. However,
on mobile radio data, as in the example above, over-fitting often occurs. This
leads to good modeling with few parameters but the validation fails.

4.5 Prediction of a Channel Tap

Each tap of the sampled channel impulse response can approximately be de-
scribed by the model (2.32) as a sum of complex sinusoids with time varying
frequency and amplitude. The prediction of the value of individual complex
taps can be of interest in some equalizers, but often only the power, i.e.,
the squared absolute value, is of interest. As the complex tap contains more
information than the power signal, it will be more suitable for prediction. In
the subsequent subsections the presented predictors are tested on individ-
ual complex taps. First a small simulation study is conducted to illustrate
some inherent problems of prediction. Then a combined modeling and vali-
dation study on measured channel impulse responses demonstrates the poor
generalization properties of the quadratic predictors. The generalization
properties for the MARS predictor, not shown here, are equally poor.

4.5.1 Simulation

For the simple simulation scenario in Section 2.4, with a mobile station driv-
ing past three close scatterers at 60 km/h, the performance of a quadratic
and two linear predictors are evaluated. The quadratic predictors use differ-
ent numbers of delayed samples with delays evenly spaced over the interval
[—200 0] as seen in Figure 4.8. This corresponds to a memory length of
22 ms, as the channel sampling period is 109 us. With a sub-sampling fac-
tor of 25 the used delays [7i,...,7,] are [0, 25,50, 75,100, 125, 150, 175, 200].
The prediction range is L = 50 samples (5.5 ms). The channel is normal-
ized to have a variance equal to one and a very small noise term is added,
resulting in an SNR of 120 dB. The first 2000 samples (219 ms) of the data
record are used to build the models and the following 500 samples (55 ms)
are used for validation.

To improve the numerical accuracy and generalization capability of the
predictors, we use diagonal loading of the covariance matrix for the re-
gressors. In the quadratic predictor the coefficients corresponding to the
quadratic terms need more regularization than those corresponding to the
linear terms. This can be achieved by using different loading in different
parts of the estimated covariance matrix. Here we add 10> to the diagonal
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-200 -150 -100 -50 0 50
Samples

Figure 4.8: Short segment of a simulated tap time series. The ’x’s denotes
the samples used by the predictor and the o’ the predicted sample. Here
the samples used for the predictor are spaced 25 samples apart, thus a
sub-sampling factor of 25 is used.

elements corresponding to quadratic terms and 10 for the linear. The
same diagonal loading as for the linear terms in the quadratic predictor is
used when estimating the coefficients for the linear predictors.

The different predictor structures and their performance are summarized
in Table 4.2.

Predictor Subsampling # param. PG mod. [dB] PG val. [dB]

Quad. 25 55 36 6
Linear 25 9 22 1
Linear 5 41 38 12

Table 4.2: Table of the results for the different predictors on the simulated
data with an SNR of 120 dB. The prediction range is 50 samples.

To use the quadratic predictor with a sub-sampling factor of 5 is not
feasible as it would result in a predictor with over 900 coefficients. Our ex-
perience is that the quadratic predictor shows a high sensitivity to noise and
to the choice of the diagonal loading terms. When the noise level increases
the quadratic predictor loses its generalization capability and fails in the
validation.

The large difference between the prediction gain for the model and the
validation set for the linear predictors is due to the nonlinearity caused by
the quadratic phase terms, cf. (2.32, 2.35). As can be seen in Figure 2.7,
both the amplitudes and the instantaneous Doppler frequencies of the three
contributing paths change significantly from the training set (the first 0.22 s)
to the validation set (from 0.22 s to 0.27 s). The linear predictors perform
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best when the Doppler frequencies are constant. Neither the linear nor the
quadratic predictor seems to be able to model this nonlinearity. Still, the
linear predictor with the lower sub-sampling seems more robust than the
quadratic predictor.

4.5.2 Prediction of Estimated Channels

In the following the result of prediction of the channel coefficient-estimates
from the data base of measured broadband data at 1880 MHz, with 6.4 MHz
bandwidth, is presented for different prediction ranges. Noise reduction, as
described in Section 3.3, is applied to the estimated impulse responses prior
to prediction. In the noise reduction the model for the dynamics is a 4:th
order Butterworth filter, with a cut-off frequency corresponding to a speed
of 110km/h, to assure that pass-band is wide enough to encompass the whole
interesting range of Doppler frequencies.

For the measured impulse responses, only those taps with SNR above
10 dB are used to evaluate the performance of the predictors. As the noise
level is reduced using a smoothing filter we can assume, relying on the
simulation results in Section 3.3, that the effective SNR is at least 20 dB.
The same predictors as in Section 4.5.1 were used on the measurements,
except that no diagonal loading was used when estimating the linear terms
of the quadratic and linear predictors. The memory thus consist of 201
samples.

In prediction the memory should contain at least one full cycle of the
dominant oscillation to obtain the best prediction performance [19]. With
the chosen memory length the traveled distance, during the length of a
window, should be at least one wavelength. Thus the length corresponds to
at least one oscillation period at the maximum Doppler frequency. (For a
Rayleigh fading channel the maximum Doppler frequency is the frequency
of the dominant oscillation.)

We vary the prediction range L from 25 to 100 samples, that is 2.7-11 ms.
Of the 1430 samples available for each tap in a measured impulse response,
10 samples are lost due to the smoothing (5 due to the smoothing lag and
another 5 due to the initialization of the smoothing-filter). Of the remaining
1420 samples the first 1200 + L are used for modeling and the remaining
220 — L samples constitute the validation set. The need for a long training
set result in a very short validation set, but the amount of validation data
is sufficient to show the poor generalization performance of the quadratic
predictor.

A total of 532 taps, from 25 estimated channel impulse responses, are
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used in the study. The achieved prediction gain is averaged (in dB) for all the
used taps. The prediction gain for the model and validation data is shown
in Figure 4.9. Even though the quadratic predictor gives a much higher

Model set Validation set

207 — Quad. |
—- Lin. 25
e Lin. 5

4 6 8 10 4 6 8 10
Pred. horizon (ms) Pred. horizon (ms)

Figure 4.9: Average prediction gain for different prediction ranges for both
model and validation set with sub-sampling factor 25 and 5 respectively.
The quadratic predictor has sub-sampling factor 25.

prediction gain on the modeling set it fails to generalize to the validation
set, whereas the linear predictors loose only 2 dB.

There is no major difference in performance between using 41 or 9 param-
eters (sub-sampling factor 5 instead of 25) for the linear prediction. Neither
does an increase of the memory to 300 samples (33 ms), using subsample
factors 5 and 25, result in a significant improvement of the performance of
the linear predictors on these data sets.

Noise reduction

The noise reduction reduces the bandwidth of a single tap and it might
clean the signal from features that actually are interesting. To evaluate the
effect of noise reduction on prediction performance, we compare a predictor
trained on data after noise reduction with a predictor trained on the noisy
data set. Both predictors are evaluated on the original noisy data set. If
the predictor performs better when optimized based on noise reduced data
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in the regressors as compared to using noisy data, then there is no structure
in the removed “noise” that the predictor can use.

Example 4.6

Two taps from one of the measurements are here used to demonstrate the
properties of the noise reduction combined with prediction. The two taps
have an estimated SNR of 20 dB and 10 dB and the prediction gain for
two prediction ranges, L =50 and L =10 samples (that is 5.5 and 1.1 ms),
are evaluated.

The interesting property is the increase in prediction gain, APG, that
the use of noise reduced regressors give in prediction of the noisy taps.
The noise is reduced in the same manner as for the validation study above.
For the linear filters the noise gain (NG)?, defined as the squared sum of
the filter coefficients, shows how sensitive the predictor is to noise. The
difference in noise gain between a linear predictor designed based on noise
reduced data and the same predictor designed based on noisy data is ANG.

The results are presented in Table 4.3. The noise gain for a quadratic
predictor is signal dependent and can thus not be calculated from the
coefficients of the predictor. For the tap with an SNR of 20 dB the predic-

Quad. Lin. sub.25 [dB] Lin. sub.5 [dB]

SNR [dB] L | APG [dB] | APG ANG | APG ANG
20 50 3.8 2.0 46 1.7 99
10 2.5 2.5 2.3 1.9 107
10 50 1.7 11 8.3 07 98
10 1.4 1.5 5.2 0.9 8.8

Table 4.3: Table of the results for the prediction in Example 4.6. The gain,
using noise reduced data to predict noisy data, as compared to using nosy
data for the prediction, for all the predictors is tabulated. The noise gain
is also included for the linear predictor. (As NG is not defined for the
quadratic predictor, only APG is displayed.)

tion gain increases the most, when using noise reduced regressors in the
predictors as compared to using the noisy data. For the noisier tap this
improvement is about half as large (in dB). The improvement is higher

2The noise gain is the increase of variance for a white noise signal, run through the
predictor.
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for the quadratic predictor than for the linear, which is natural as the
quadratic terms result in high noise sensitivity.

The linear filter can use its coeflicients to achieve noise reduction, which
result in a low noise gain. If the noise is already reduced, then the linear
filter can use it coefficients to achieve better prediction gain and the noise
gain increases, as seen in Table 4.3. For the linear predictor using 41
coefficients (sub-sampling by a factor of five), the increase in noise gain is
high but the improvement of prediction gain is smaller than for the linear
predictor using 9 coefficients (sub-sampling by a factor of 25). With 41
coefficients the linear filter can both predict and reduce noise, whereas 9
coefficients are sufficient only for prediction of the linear dependencies in
the tap when there are small amounts of noise.

As can bee seen from the example, the noise reduction actually increases
the predictability of the noisy data. It is thus beneficial to first reduce the
amount of noise and then apply the predictors.

4.5.3 Modeling

In the previous section it was demonstrated that the generalization proper-
ties for the studied quadratic predictors are poor. The same holds for the
MARS predictor. In this section we address only the ability of the differ-
ent predictor structures to mimic the dynamics of a given data set and not
their feasibility as predictors. We obtain a measure for how well the channel
coefficients could have been predicted, using the best possible setting of the
parameters in the predictors.

A predictor using a small number of parameters and still achieving a low
modeling error (i.e., good prediction gain), has the potential to efficiently
model the dynamics of the system. A structure that has poor modeling
capabilities is also a poor predictor.

The bandwidth of the channels is syntheticly reduced, as described in
Chapter 3.A, to 5 MHz. No noise reduction is applied. Instead only the
nine largest taps are used to obtain a high SNR. The predictors are then
trained and evaluated on each tap. A total of 225 taps, from 25 different
estimated channel impulse responses, are evaluated. The prediction range
varies from L =1 ms (9 samples) up to L =10 ms (91 samples), to cover the
range from short to long prediction ranges. The prediction is made on the
complex taps and the prediction gain (in dB) is averaged over the 225 taps.
The average performance of the predictors are displayed in Figure 4.10. All
the predictors use a memory of 15 ms (137 samples).
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However, the results are deceptive as they do not describe how good
the predictors would work on successive validation data. We know from
Section 4.5.2 that the validation properties are poor for the nonlinear pre-
dictors.

PG for complex taps, 5 MHz bandwidth.

X —— MARS
A —+- Quadratic
\
20 N -x_Linear
__15
m
=)
& 10}
5,
0

2 4 6 8 10
Prediction horizon [ms]

Figure 4.10: Average PG for the different predictors proposed in the previ-
ous section. All the predictors use the same memory length (137 samples
or 15 ms).

The MARS and the quadratic predictor use only six delayed samples
in the memory whereas the linear predictor uses all the 137 samples. The
MARS model has the level of interaction equal to 2 and uses no more than
20 basis functions. As the MARS model used here only allows for quadratic
interaction it can be interpreted as a gain-scheduled sparse quadratic pre-
dictor® (see Section 4.4).

Dependence on the prediction range

For short prediction ranges the linear predictor performs better than all the
other predictors. As the linear predictor is not sub-sampled, as the other
predictors, it is more suitable to model local smoothness as the parameters
vary slowly. On a longer time scale the slow dynamics of the system becomes
the more important factor. The nonlinear predictors model this dynamics
better than the linear predictor and thus perform better on the training set.

3With sparse we mean that not all quadratic interactions are used, just an efficient
subset.
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The effect of noise

The estimated channel impulse responses are treated as if they were noise
free and the only cause to change of a tap is due to the interference pattern.
Still, there is noise in the measurements and a tap with a low power level
is more affected by this noise than one with a high level. The noise on the
estimated channel coefficients is propagated from the received data to the
coefficients by the identification procedure as described in Section 3.2.3. A
high noise level degrades the performance of the predictors, especially the
ones that work only on a few delayed samples, as the averaging effect is then
reduced.

The quadratic predictor shows only a minor improvement in modeling
performance as compared to the linear on these data. This was not the case
for the models in Section 4.5.2, where the difference is large. This is due to
the high sensitivity to noise of the quadratic predictor, as no noise reduction
was performed on the data here.

4.6 Concluding Remarks
There are two main causes for failure of a predictor.
1. Noise.
2. The predictor is unable to model the dynamics of the process.

The first cause can be addressed by applying noise reduction to the data
and to choose a predictor that is robust against noise. To avoid the second
problem we need to use a structure that either is tailored for the problem
or is general enough to model the dynamics.

A linear filter can be given a design that is robust against noise and it has
a close connection to the linearized model of the channel dynamics (2.47).
The studied nonlinear predictors, on the other hand, are sensitive to noise
and have more general structures. Even though the nonlinear predictors,
with few parameters, give good models for a given data set the validation
demonstrates that the studied nonlinear structures are of limited use for
prediction of mobile radio channels. The LS solution for quadratic filters
relies on accurate estimates of fourth order moments. This limits the use
of quadratic filters in a noisy time-varying environment such as a mobile
radio channel. Longer blocks, for identification of the prediction parameters,
generally improve the performance of the predictors but can not be obtained
as the environment does not stay stationary over very long periods of time.
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A better approach than to use blocks of data to estimate the coefficients
for the predictor, would be to introduce adaptive predictors, as in Chapter 5
and 6. The able performance of the linear block predictors points to the use
of linear adaptive predictors to obtain reasonable prediction performance at
low computational complexity.

The rapid fall off of predictability for the complex taps using the lin-
ear filters that can be seen in Figure 4.9 and 4.10, losing 5 dB when going
from prediction of 25 samples ahead (2.7 ms) to 50 samples (5.5 ms), indi-
cates that the performance of block-adaptive linear predictors is limited for
long-range prediction. However, the small loss in performance when going
from the model set to the validation set, as seen in Figure 4.9, indicates
good generalization properties for the linear predictors. As the increase of
the number of linear parameters hardly improves the performance, we can
conclude that even the simple linear predictor exploits most of the available
linear dependencies for the complex taps.
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4.A Linear Prediction of Signals with Known Ba-
sis Functions

When a signal is generated by a known function of time and corrupted by
additive noise, is it possible to estimate the parameters of the function and
use the function estimate for prediction. We will in the following show that
for certain choices of basis functions, as exponentials and polynomials, this
can be interpreted as linear prediction using a time invariant linear filter.

Assume that the signal to be predicted can be modeled as a sum of
weighted basis functions:

N
y(t) =D awfi(t) +n(t), (4.40)
k=1

where fi(t) denote the functions and oy the parameters. This can be refor-
mulated as a vector multiplication

aq
y(t) = [1(t) . @] | 1 | +nl) = £B)a +n(t). (4.41)
an

If the parameters o are slowly time varying it can be advantageous to do
the identification of the parameters a block-wise within a sliding window of
length p. To obtain a unique solution for the parameters the length of the
window has to be larger than than the number of basis functions (p > N).
The model (4.40) can, in a matrix formulation, be expressed as

y(t) £(¢) n(t)
ve-1 | _ f(t:—l) s n(t:—l) e

| y(t—.p—l-l) | f(t—;)—l-l) | | n(t—.p+1) |
y(t) F(t) n(t)

A least squares (LS) estimate of e using the p latest samples, stacked in
y(t), is readily obtained as

& =Fi(t)y(t). (4.43)

A predictor for y(t + L) using the estimated & in equation (4.41) with the
basis functions evaluated at time ¢ + L, would then be

gt + L) = f(t + L)& = £(t + L)F 1)y (). (4.44)
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The noise n(t + L) is uncorrelated with y(¢) only if n(¢) is an MA-process
of degree lower than L. Here the unpredictable measurement noise n(t + L)
is disregarded.

If the time shifted basis functions f(¢ + L) can be described by a linear
combination of the basis functions at time L weighted by time dependent
coefficients, then the time dependence and the shift dependence can be sep-
arated. The LS fit of basis functions to data and extrapolation into the
future can then be expressed as filtering with a time invariant linear FIR
filter.

Theorem 4.2 If the basis functions can be decomposed as
f(t+ L) =£(L)B(t), (4.45)

where B(t) is an invertible quadratic matriz, then the predictor (4.44) can
be expressed as the filter operation

§(t+ L) = £(t + L)F 1)y (t) = cy(b), (4.46)
where the time invariant FIR-filter ¢ is
¢ = f(L)FH(0). (4.47)

Proof 4.2 With the condition (4.45) fulfilled the matriz of basis functions
can be decomposed as
F(t+ L) = F(L)B(t), (4.48)

and the relation (4.42), with L =0, can be written as
y(t) = F(0)B(t)a + n(t). (4.49)
The LS estimate (4.43) of a using the p latest samples is then
a = (FO)B()'y()

= ( TR (0)F(0)B(t)) "' B (t)F7 (0)y(t)
= B '(H)F(0)y(®). (4.50)

Using (4.45) and (4.50) in (4.44) the L step ahead predictor can be written
as
git+L) = f(t+ L)a=f(L)B(t)B 1 (t)F(0)y(t)
(4.51)
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where the time dependent part cancels out so we obtain the time invariant

exPression
§(t+ L) = £(L)F1(0)y (¢) = ey (1), (4.52)

where ¢ is a time invariant linear FIR-filter whose design equation is given
by

c = f(L)F(0).

The filter ¢ is a time invariant linear FIR filter consisting of p taps,
designed to predict §(¢ + L) assuming the model (4.40). The FIR filtering
prediction, using the described filter, can be interpreted as first making
an LS estimate of the weights of the basis functions (B~ (¢)F(0)y(¢)) and
then make a deterministic step in time using these parameters with the basis
functions evaluated at time ¢ + L (multiplication with £f(L)B(t¢)). The time
series is not limited to be stationary. The optimization criterion used in the
design is not to minimize the prediction error but to minimize the model
error for the basis function on a window of data. As the method does not
take the color of the noise into consideration, as well as it optimizes the
wrong property, it can not be the best linear predictor.

Weighting
Weighting of the N data used by the filter can be performed through a
positive definite weighting matrix Q [20] that enters the filter expression in
equation (4.47) as:

c=f(L)(FIQF)"'FIQ. (4.53)

The time index 0 for F(0) is dropped for notational convenience. In the
simplest case @ is just a diagonal matrix with a window function on the
diagonal.

Orthogonal basis

In some cases the basis is numerically unsuitable for the filter equation
(4.47). It can then be advantageous to design an orthonormal basis. Let the
inner product between two basis functions be defined as:

p—1
< i fi >= 2" fH (=i ful(—5) = F{ Ry, (4.54)
3=0

where Fj, denotes the k:th column of F. With orthonormal basis functions
< fx, fi >= 63 the columns of F will be orthonormal. Then F#F = I where
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I is the identity matrix. To obtain an orthonormal base, the Gram-Schmidt
orthogonalization procedure can be used on the original basis. With an
orthonormal basis the filter equation (4.47) reduces to:

c =f(L)FE. (4.55)

The resulting filter remains the same but the numerical problems that can
occur in the inversion of FEF are avoided.

Noise gain

The sensitivity of the filter to broadband noise is given by the noise gain
(NG). For an FIR filter C(¢') = 0~ ckg~*, the noise gain is the sum of
the squared amplitude of the filter coeflicients:

N
NG =>"|¢f* = cc". (4.56)
=1

For the FIR filter in equation (4.47) the noise gain is

NG = f(L)FTFHEfH (L) = £(L)(FEF)~LEH(L). (4.57)
For non-orthogonal basis functions the matrix F¥F might be poorly condi-
tioned, resulting in a high noise gain.
4.A.1 Exponential Signal

Assume that the signal to be predicted can be modeled as a sum of weighted
exponentials.

N
Y(O) = 3 aup R () (4.58)
k=1
The matrix representation in equation (4.42) becomes
0 1o
y(t _ 1) p—(a'1—|—iUJ1) p—(O'N+in)
= X
y(t—p+1) plortiw)p=1) ... H=(on+iwy)(p—1)
y(t) F
p(01—|—z'w1)t 0

. a+n(t) (459)
0 p(0N+in)t

B(t)
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In this case the basis functions are
£(t) = [plotiont . plowtion)y, (4.60)

where the frequencies wy and exponents o are assumed to be known. This
basis fulfills the conditions (4.45) with B(¢) being a diagonal matrix with
ploetiwk)t a5 the (k,k):th element. The linear filter ¢ is as before given
by (4.47) ¢ = f(L)F!. In the following we will assume that o = 0,Vk,
which result in basis functions with oscillating output. Furtermore the basis
p is taken to be the natural basis e. The filter (4.47) is then similar to
that given in [33], where this filter is derived for the real valued case, using
another method.

Connection with the DFT
If we constrain the frequencies to only take certain discrete values

ok
Tn ke €109, kn # kmV 1 £ m (4.61)

Wp =

and constrain us to the the case with o, = 0,Vk, then the basis functions
will be orthogonal (but not orthonormal). That means that the matrix
FAF = pIis diagonal and Ff = (FAF)~'FH# = F¥ /p. The equation (4.52)
then reduces to

G+ L) = f(L)F?y(t) (4.62)

Let us focus on row n of the latter part of the product:
FH 1 p—1
l ] Z y(t — k)eton® (4.63)
n

H . .
[F—y(t)] eln(r=1) Zy —p+14De ot =Y (w,). (4.64)
n

Here Y(wy) is the p point discrete Fourier transform of y(7) at frequency
wnp, where T goes from ¢ — p + 1 to t. The discrete Fourier transform gives
the amplitude and phase for a complex exponential with frequency w, at
time 7 = 0, that is t —p+1. The term ¢™»®~1) phase advances the complex
exponential to time ¢. The corresponding component in f(L) gives a further
phase shift to t+ L. Thus the linear filtering procedure described in equation
(4.62) is equivalent to taking a p samples long discrete Fourier transform of
the data and then phase advance the chosen frequencies.
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If all the discrete frequencies are used, that is, k = 0,...,p — 1, then the
resulting filter just copies the sample y(t — p + L) to obtain §(¢ + L). This
is because the time series is treated as periodic with period p in the Fourier
transform. To obtain reasonable results in the prediction, the filter has to
be long to give high frequency resolution and if the signal has a low-pass
structure then the higher frequency components must be dropped to avoid
the copy effect.

Noise gain
For an FIR filter designed for complex exponentials, as described here, the
noise gain in equation (4.57) is

_2N

NG = f(L)(FEF)1fH(L) 5

, (4.65)

where the approximation is valid for p > 1. For frequencies fulfilling the
relationship in equation (4.61) the approximation is exact. The noise gain
is thus independent of the prediction horizon L when the filter is long but
grows with the numbers of estimated complex exponentials NV in the signal.

4.A.2 Polynomial Signal
It is common to locally approximate a function with a polynomial,
y(t) = a1 + aot + ...+ ant™ L. (4.66)
The basis functions can then be selected as the powers of the time,
f(t) =[1t 2.V ). (4.67)

This basis fulfills the condition (4.45):

(10t L. tP—1 1
0 1 2t 32 ... (N—-1)tN!

f(t+ L) =f(L) 001 3’1t ' ' (4.68)
L0 0 1 |
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The weights in the columns of B(t) are given by the numbers in Pascal’s
triangle.

1 2 1 (4.69)

1 4 6 4 1

In [38] a similare derivation of the polynomial filter is used to derived a
smoothing filter.

An evident problem with this straight forward polynomial basis is the
poor condition number of F in the filter design equation. Having p = 100 and
N = 2 (constant and linear basis function), the two-norm condition number
for F is 114. For N = 3,4 and 5 the condition number increases rapidly to
1.3-10% 1.4 - 10 and 1.5 - 108. This numerical problem limits the degree
of the polynomial that can be predicted and the length of the filter. The
problem can be avoided by using orthonormal polynomial basis functions
as in [38]. The poor generalization properties of higher order polynomials
remain a problem in predictive filtering.

Smoother to detrend data

As polynomial filters of higher order have poor generalization properties,
the corresponding filters ¢ are preferably used as smoothers. This is accom-
plished by choosing L as a smoothing lag, i.e., a negative number in the filter
design equation (4.47). The polynomial smoother can be used to design a
detrending smoother cp, as

cp=[0...010...07 —¢, (4.70)

with the 1 in possition 1 — L where L < 0. This smoother locally takes away
any polynomial trend of a given order.
4.A.3 Summary

Under the assumption that the data can be described by the model (4.40),
where the parameters may be slowly time varying, the following procedure
for prediction can be used.

e Take a data window of length p.

e For the data window, estimate the weights of the basis functions using
the LS method.
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e Use the estimated weights to calculate a prediction of the data at a
time ¢ + L as in equation (4.71):

N
+L:§: kfie(t+ L). (4.71)

If the basis fulfills the condition (4.45) then this procedure can be expressed
as linear filtering of the data,

G(t+ L) = E:qyt— ) = Clg Hy(t) (4.72)

with a time invariant linear filter C(¢~!). How this filter can be designed
directly from the basis functions is described in the previous sections.
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Adaptive Predictors

As the physical environment changes when moving, the parameters of the
predictor have to change accordingly to maintain the prediction perfor-
mance. An adaptive predictor constantly tunes its parameters to achieve
the best prediction of the channel coefficients at the current conditions. It
thus differs from the block predictor, where it is assumed that the parame-
ters of the predictor are constant over the time span of the block and that
estimated prediction parameters are valid also outside this block.

In a time-varying environment the regression model in equation (4.2)
should be replaced by the time-varying regression

y(t+L) = fr(t,y(t) +(t). (5.1)
As before the predictor estimates y(t + L) as
gt + L) = fu(ty (1)), (5:2)

where f1(,-) is the time-varying L-step predictor function, which is an
estimate of f(,-) at time ¢. The adaptive predictor adjusts the parameters
of f 1.(t,-) based on data up to time ¢ and then applies the estimated predictor
on new data to predict §(t + L). There is thus no need for a separate
validation data set as was the case for the block predictors.

In this Chapter we will present an adaptive Kalman predictor based
on a simple model for the coefficient variation. Both direct prediction and
iterated prediction will be treated. In a direct approach the coefficients for
an L-step predictor are adapted and used for prediction. In an indirect
approach the coefficients for an m-step predictor, where m = L/k and k €
[2,3,... L], are adapted. The adapted m-step predictor is then iterated k
times to obtain an L-step predictor. The iterated predictor is mainly of

93
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interest due to that only one predictor needs to be adapted to cover a large
interval of prediction ranges.

5.1 State Space Model

5.1.1 Model for the change of predictor coefficients

The following linear regression will be used for prediction,

gt + L) = fut,y() = (t)"e(t + L), (5-3)
y(t) = p(t — L) c(t) +0(t), (5-4)
9(t)

where v(t) is the estimation error, ¢(t) is a column vector containing M
time-varying coefficients and where ¢(¢) is the regressor vector consisting
of terms of the time series y(¢) up to time ¢. The elements of ¢(t) may be
nonlinear transformations of data. If we for example use the regressor vector

e(t) = [y(t) y(t —m)...y(t — (M - )m)]", (5.5)

then (5.4) is a linear FIR-filter with sub-sampling factor m.

Even though the mobile radio channel shows dramatic changes over short
traveled distances the parameterization of the amplitude and phase, see
e.g. (2.48), is slowly time varying. We can thus assume that the optimal
predictor coefficients change slowly and without abrupt changes. In the
following, the M predictor coefficients in the vector c(t) are assumed to
vary, without abrupt changes, on a slower time scale than the variations of
the time series y(%).

5.1.2 ARI1I models

In the following subsection we shall design an adaptive Kalman filter that
tracks the time varying coefficients of the predictor under the assumption
that the prediction coefficients behave as filtered random walks. The filtered
random walk model is used because it is the simplest model that describes
smooth changes of the coefficients and that includes integration.! Let the
predictor coefficients have increments Ac(t)

c(t+1) =c(t) + Ac(t). (5.6)

Tntegration in the model is desired because then the corresponding Kalman filter can
estimate time-invariant parameters without bias.
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As there should be no abrupt changes, we may model Ac(t) as a stochastic
process with low-pass properties. The simplest model of this type is the first
order autoregressive model

Ac(t) 7"1_172

= < 1 .
L), 0<p< (5.7)

where e(t) is a vector of complex-valued white noises with zero mean and
constant or slowly time varying covariance matrix R.. The factor /1 — p?
in the numerator is used to normalize the the variance of Ac(¢ + 1), which
becomes independent of p. The equation (5.7) corresponds to the vector
difference equation

Ac(t +1) = pAc(t) + /1 —p? e(t + 1). (5.8)
The predictor coefficients can then be modeled as

( e NG (5.9
G = €; :
' Q-g¢Hl-pgh)"
V1 — p?
= e;(t), 5.10

1—(14p)gt+pg? i(t) (5.10)
where the pole of the model filter 0 < p < 1 is chosen to give good tracking
abilities. If the predictor coefficients are expected to have noisy increments
then p has to be small whereas if the coefficients vary smoothly then p is
chosen close to one. Dependencies between the coefficients can be modeled
by introducing non-zero off-diagonal elements in the covariance matrix of
e(t). One can also use individual p values for each coefficient to better
model differences between the coefficients.

It is possible to use higher order model filters, like an AR2I-model. In
experiments on mobile radio channel data, the AR2I-model have given only
minor improvements of the performance as compared to the proposed AR1I-
model.

5.1.3 State Space Model

The predictor coefficients and their increments, modeled as the AR1I pro-
cess (5.10), can conveniently be expressed in a state space form as

cl(t+1) . 1 1 Cz(t) 0
(Aci(t—i—l)) - (0 p)(Aci(t))+< 1_p2)6i(t—|—1).

~ -

A xi(t) B
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at) = (1 0)xi(). (5.11)

The state space models (5.11) for each component of ¢(t) are used as building
blocks for the pertinent state space model representing the time varying
prediction coefficients, with the regression model (5.4) as the measurement

equation. Let the states x(t) = [x?(¢)...x%,(#)]T represent all predictor
coefficients and their increments. The total model for all coefficients is then
x1(t+1) A 0 x1(t)
xp(t+1) 0 A xp ()
x(t+1) F (1)
B 0 er(t+1)
+ : (5.12)
0 B em(t+1)
) G Ty
v 0
c(t) = x(t) (5.13)
0 gl
_ﬁ_/
or
x(t+1) = Fx(t)+ Ge(t+1) (5.14)
c(t) = Hx(t) (5.15)
y(t) = (t— L) c(t) +v(t). (5.16)

The M elements of the regressor ¢(t) consist of delayed samples of the
time series y(¢) up to time ¢, either in direct or transformed form. The
measurement noise term v(t) represents the L-step prediction error. In the
Kalman design, v(t) is assumed to be zero mean white noise with variance
o2. The time variability of the predictor coefficients is parameterized by F,
G and H.

5.2 The Kalman Filter and Predictor

The best linear state estimator given the state space model (5.14-5.16) is
the Kalman filter [39]. It is a state observer with a gain matrix obtained via
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the solution to a Riccati difference equation [40]. The Kalman filter for the
states and the corresponding prediction of the predictor coefficients is given
as

e(t) = y(t) —p(t—L)"e(tlt 1) (5.17)
Kp(t) = K(t)p(t—-L) (5.18)
x(tlt) = Fx(t— 1t —1) +Kye(t) (5.19)
et +k[t) = HF*%(tt). (5.20)

where €(t) are the scalar output innovations, or the prediction errors, and
K((t) is the Kalman filter gain. The one step prediction of the predictor
coefficients is required in (5.17). The matrix K(¢) depends on the variance of
the innovations, denoted o2(t), and on the state estimation error covariance
matrix S(¢|t — 1), which are updated by the Riccati difference equation

S(t|t —1) = FS(t—1|t—1)F¥ + GR.G? (5.21)
P(tt—1) = HS(t\t - 1)HA (5.22)
o2(t) = o2+ (t— L) P(t|t — 1)e(t — L) (5.23)
K(t) = —(ﬂ;(:))ﬂ (5.24)
S(tt) = S(tit—1) - KK (1) o?(t) (5.25)

The Riccati equation describes the evolution of the state estimation error
covariances S(t|t—1) and S(¢|t). The matrix P(¢|t—1) is the estimated error
covariance matrix for the predictor coefficients ¢(¢|t —1). The measurement
noise, v(t), and the process noises, €(t), are as before assumed to be white
and mutually uncorrelated noises with variance o2 and covariance matrix
R respectively.

Initialization

Unless there exists prior knowledge about the states x(1|0), these are ini-
tialized to zero. If the initial states are totally unknown, then the state
estimation error covariance matrix must be large. The covariance S(0,0)
can be initialized as a diagonal matrix with large values on the diagonal.
This forces the Kalman filter to have a high initial gain, until it obtains rea-
sonable estimates of the states, and thus increases the speed of convergence.
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Prediction of coefficients

In an online situation the prediction error €(¢) for y(t), based on the regres-
sors ¢(t — L) is used at time ¢ to modify Z(¢|t) via (5.19), and to obtain
corresponding extrapolated é(¢t + L|t) via (5.20). This estimate of the pre-
dictor coefficients is then used together with ¢(t), which is available at time
t, to predict y(t) L steps ahead:

git+ L) = o@t)Te+ Ljt). (5.27)

The corresponding prediction error? is
€t+L) = y(t+L)—g(t+L). (5.28)

The matrix HF¥ is built from blocks of yA* which is

~AF = ( 1 Skolpn ) = ( 1 ) (5.29)

The predicted coefficient ¢;(t + k|t) is thus obtained as the k-step ahead
extrapolation of the coefficient at time ¢, that is ¢;(¢|t), with the sum of the
expected changes added as

k—1
Gt +kt) = &tlt)+ ) p"Aci(tft)

n=0

. 1-p
= Ci(t|t) + 1-p Aci(t|t) (530)

with the unknown process noise set to zero. When p approaches one (the
double integrator) this corresponds to an extrapolation of the present esti-
mate & (t + k|t) by a linear trend with slope Ac;(t]t).

5.2.1 Tuning parameters

If the process noise elements, e;(t), are uncorrelated to each other and have
the same variance, then the covariance matrix R, is a diagonal matrix with
entries 02, that is R, = 02I. The product with R, in (5.21) can then be
simplified as

GR.G" = 02GG", (5.31)

>This prediction error, &t + L), will differ from e(t + L) obtained from (5.17), since the
estimate &(t + L|t + L) is used when computing that error. The error €(t) is almost white,
wheras €(t) often is colored.
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The variance of the process noise o2 and the variance of the measurement
noise 012, can be treated as two tuning parameters. If the predictor coefficients
vary fast, then o2 has to be large. If the measurements are noisy, then o2
has to be large. These two variances can be combined into one single tuning
parameter. To this end the Riccati equations are normalized by o2 > 0.

This results in a scaling of the covariances S(-), P(-) and o2(-) as

S,() = (5.32)

P,() = 1;(2') (5.33)
o?(-

ors() = 0(2) (5.34)

The involved equations in the iteration (5.21)-(5.20) are then changed to

S,(tlt—1) = FS,(t—1lt—1)F? + GGH (5.35)
P,(tlt —1) = HS,(t|t — 1)H? (5.36)
) = Bt e P+ 1) (537

_ Sy(tlt—-1HT  S(tjt - 1)HE
KO = "am = a2 (5:38)
Ss(tlt) = Ss(tlt —1) =K (6K (t)Ta? ,(t) (5.39)

The scaling does not affect the Kalman filter solution as seen when equa-
tion (5.24) and (5.38) are compared, as the scaling cancels out. As can be
seen in equation (5.37) the parameters o2 and 2 do not affect the Kalman
gain independently. Only the ratio is important.

We thus have only two design parameters, the noise ratio 02/0? and
the position p of the pole in the filter of (5.10). The tuning parameter
02/c?, which only appears in equation (5.37), determines how much we
trust the measurements versus the model. The adaption becomes slower
when 02 /02 is increased. The Kalman filter gain K(¢) in (5.18) is then
reduced, due to an assumed higher noise level in the measurement y(t). If
the measurement noise increases then the parameter o2 /02 has to increase
accordingly. The pole p, appearing in the F and G matrixes, determines
the assumed smoothness of the predictor coefficients.

Tuning parameters with p close to one
For p close to one, there is actually only one tuning parameter. Instead of
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using a p dependent G matrix, the factor 1 — p? appearing in GG could
be included in the variance of the process noise. Then the tuning parameter
o2 /a2 is replaced by

1
T 2
The remaining p dependence in matrix A, the building block for F, can for
p close to one be dropped

11 11
- (3)=(3 1) s

The relative approximation error on the state estimation error covariance
matrix is of order 1 — p.

Thus for p close to one there is only one tuning parameter and different
choices of p and 02 /02 give the same performance of the Kalman filter as
long as (5.40) is constant.

(5.40)

MRS

Example 5.1

If the variance ratio is increased a factor of p then a corresponding change
of p? from p? to p3, which keeps the performance constant, is given by

p3=1-p+ppi. (5.42)

5.3 Iterative Prediction
There are mainly two reasons for using iterative predictors.

e Complexity reduction. Only one predictor has to be adapted for any
prediction range.

e Less sensitivity to errors in the assumptions made in the model filter.

The first reason is obvious. The second will be demonstrated in Example 5.2
and will be explained in the following.

A predictor in linear regression form uses a regressor with samples from
a T samples long memory, thus a window that stretches from ¢ back to
t —T + 1, to predict L steps into the future. With a direct approach, the
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predictor f(t,y(t)) in equation (5.2) is adapted to minimize the L-step
output innovations. For the linear predictor in Section 5.2 this means that
we adapt using (5.17)

e(t) = y(t) — p(t — L)Te(t]t — 1)
but we predict using (5.27)
G(t + L) = p(t)T et + L|t).

As only samples up to time ¢ are available, the regressor used to obtain the
last available adaption of the predictor is ¢(t — L). Instead of the desired
predictor &é(t+ L|t + L) a prediction of the predictor, &(¢ + L|t), is used. For
a linear predictor with a correct model for the coefficient dynamics in the
Kalman-filter, this is a not a problem as we will see in Example 5.2.

The extrapolation of coefficients imposes higher demands on the accu-
racy of the model filter in the adaptive Kalman algorithm than the tracking
of the coefficients does. If the model is not fully correct, then the extrapola-
tion of the predictor coefficients will suffer from errors in the L-step predic-
tion (as demonstrated in Example 5.2). A shorter prediction range result in
a smaller error. This is especially evident in a situation where the prediction
range L is large, as compared to how fast the prediction coefficients should
change. Then it is a drawback, if only regressors up to time t — L can be
used in the adaption of the predictor.

5.3.1 Iterated FIR-predictor

To decrease the range for prediction of the predictor coefficients, iterations
can be used. The L-step predictor can also be obtained as an iterated m-
step predictor, where the integer m should be a divisor of L. In the iterative
approach the prediction ¢(t + m) from the m-step prediction is used as a
substitute for y(¢ + m). The subsampled memory is thus extended into
the future using predicted values. We can define a regressor that contains
predicted and measured values as

0p(t + kmlt) = [§(t + km|t) ... Gt +mlt) y(t) ...yt + T — km)]7. (5.43)

For ¢,(t + m|t) only the first element of the vector is predicted, the rest
are measured. For ¢,(t 4+ 2m|t) the two first are predicted and so on until
@p(t + T'|t) where the whole regressor is filled with predicted values.
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Time varying FIR predictor

For a time varying system the predictor coefficients will be time varying. As
the Kalman-filter produces predictions of the future coefficients, the iterated
one-step predictor is

gt +mlt) = @) em(t+mlt)
Gt +2mlt) = @p(t+mlt)Eem(t + 2m]t)
Gt +Lit) = @p(t+L—m|t)7e,(t+ Lt), (5.44)

where @, (t + km|t) is defined as in (5.43). Here &,,(t + km|t) is an m-step
predictor with coeffcients extrapolated km steps ahead.

The coefficients of a predictor for a shorter prediction range vary slower
than those for a predictor for a longer prediction range. This is because the
changes that are needed are accumulated in the iterations. A very simple
model for the coefficient variation, like an AR1I-model, is therefore better
suited for short prediction ranges than for long ranges.

Time invariant AR-system

For a linear FIR-predictor the iteration procedure can be interpreted as a
new filter, that can be directly calculated from the parameters of the m-
step predictor [41]. This is the approach that we will follow in Chapter 6
whenever iterated predictors are used.

If we assume that a time-invariant AR-process is an appropriate descrip-
tion of y(t), which we argued for in Section 4.2, then the time series y(t) is
described by

A(gy() = v(b), (5.45)
where A(g~!) is a polynomial of degree M + 1. (The filter is derived for the
non-subsampled case but it is straight forward to generalize the derivation to
the subsampled predictor.) The linear minimum variance one-step predictor
is given by

Gt +1]t) = (1 — A(g )y(t) 2 Cilg Yy (). (5.46)

The minimum variance k-step linear predictor is given by
9(t+ klt) = Ce(g™My(), (5.47)

where the FIR filter Ci(g™!) is given as the M degree polynomial solution
to
1=AlgHF(@™") +q *Cr(a™) (5.48)
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with F(¢~') and ¢ *Cj(¢™!) as the quotient and remainder respectively,
when dividing 1 (the left hand side of (5.48)) by A(g™!) [41]. If we identify
the coefficients of the one-step FIR-predictor we obtain the AR-model as
A(g™Y)) = 1 — C1(¢g71) and the k-step predictor Cy(g™?!) is obtained by
solving (5.48). Thus, given the minimum-variance one-step FIR predictor of
order M, the minimum-variance FIR predictor of order M for all prediction
horizons can be derived.

To use the minimum variance k-step FIR-predictor Cy (g ') is equivalent
to k iterations of the one-step predictor (5.46). The k-step predictor is thus
formed by a cascade of k one-step predictors, where predicted values replace
the unknown future values in the predictor.

Iteration using &, (t+m|t), estimated by the Kalman filter, and assuming
that the coeflicients do not change over the prediction range result in

gt +mlt) = @) en(t+mlt)
Gt +2mlt) = @p(t +mlt)E et +mlt)
gt + Llt) = @p(t+L—mt)e,(t+mlt). (5.49)

This differ from (5.44) in that the coefficients are assumed to be constant
and that only m-step extrapolation of the coefficients is performed. This is
suboptimal but makes the predictor less sensitive to errors in the model filter.
The same prediction is obtained if, at each time instance ¢, the coefficients
of &, (t + m|t) are used in C;(¢ !) and the k-step predictor Cy(q 1), with
k = L/m, is calculated as in (5.48). Then the coefficients of Cj,(¢~!) can be
used in the L-step predictor €;zer(t),

Gt +Lit) = @p(t+L—mlt) e, (t +mt),
P(t)" Citer (t).
Thus, the iteration process using &,,(t + m|t) k times corresponds to one

step with €., (t). This interpretation makes it possible to perform analysis
of the frequency gain and noise gain for the iterated predictor.

5.3.2 Simulation

The following example illustrates the drawback of designing the L-step pre-
dictor directly as compared to iterating the m-step predictor.
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Example 5.2

In this example we compare the predictor coefficient estimates for a pre-
dictor that uses just one delayed sample. We compare a direct ten-step
adaptive predictor, a ten times iterated adaptive one-step predictor and
the optimal time varying coeflicient. The test signal is a single chirp cor-
rupted by an additive white noise

y(t) = e (=2 4 y(). (5.50)

The SNR is 30 dB and the length of the data series is N = 512 samples.
This chirp spans half of the frequency band, that is from 0.25 Hz to -
0.25 Hz (normalized frequency with the sampling frequency set to 1 Hz).
The time varying L-step predictor that perfectly predicts y(¢t — L) from
y(t) in a noiseless case is

L-—N

gt + Llt) = e(t)y(t) = ¥ (H5)y (1), (5.51)

Thus the prediction coefficient is time varying and oscillates with L/2N Hz.
Note that the oscilative frequency is proportional to the prediction range
L. The time varying prediction coefficient is given by ¢(t) = y(t+ L)/y(¢).
For the high SNR 30 dB, the optimal coefficient for the L step predictor
is approximately given by ¢(t) in equation (5.51) and the prediction gain
will be equal to the SNR.

Two adaptive predictors are used for estimating this coefficient for
L=10. Both method use the state space model (5.12)-(5.13) and the adap-
tive Kalman filter. The parameters p and 02/0? are tuned separately for
the direct ten-step predictor and the iterated one-step predictor to opti-
mize their prediction performance. The iterated predictor uses the product
of the predicted coefficients ¢ (¢ + 1|t) up to éi (¢t + L|t) as in (5.44) for a
filter with one coefficient,

gt + Lit) = et + 1t)er (E+ 2t) - - - é1(¢ + Lt)y(t). (5.52)
whereas the direct predictor uses the predicted coefficient as in (5.27)
g(t+ Ljt) = ep(t + Lt)y(t), (5.53)

The ten times iterated one-step predictor achieves a prediction gain, mea-
sured after the initial transient, of 19 dB whereas the direct ten-step predic-
tor only achieves 10 dB. If instead of the predicted coefficients the filtered
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coefficients ¢, (¢/t)* and ér(¢[t) would have been used for the iterated and
direct prediction respectively, then the prediction gain would have been
only 9 dB and 4 dB respectively.

Re(c(t)

! — True coefficient
\ A - - lterated predicted
-1 Rt i ---- Direct predicted

280 300 320 340 360 380
Sample

Figure 5.1: Comparison of the optimal predictor coefficient for 10 step
prediction, to the coefficients of the iterated adaptive one-step predictor as
in (5.52) and the direct adaptive 10-step prediction as in (5.53) of a chirp.

The reason for the relatively poor performance of the direct predictor,
even with predicted coeflicients, is that the model in the Kalman-filter is
wrong. The oscillative behavior of the prediction coefficient is not well
modeled by the AR1I model. The iterative predictor is less sensitive to
this error in the model, as the one-step predictor coefficient oscillates with
0.98 mHz, ten times slower than the 9.8 mHz of the 10-step predictor
coefficient and thus better resembles the trend anticipated by the ARI1I
model. This can be seen in Figure 5.1 where the direct coefficient predicted
L steps ahead results in an overshoot at the peaks, as the coefficient is
assumed to continue along the pressent trend.

With an AR2I model, tuned to the frequency of the oscillation of the
coefficient, the iterated predictor achieves a prediction gain of 27 dB while
29 dB is obtained for the direct predictor. Thus the use of an AR1I model,
as compared to the correct AR2I, results in a loss of performance that is
much higher for the direct predictor than for the iterated.

The example above illustrates an important point also valid for mobile
radio data. The coefficients for a one-step predictor vary slower than the
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coefficients of an L-step predictor. The use of an L-step predictor thus places
higher demands on the accuracy of the model used in the Kalman-filter.

The iterated predictor is not always to prefer. When the coefficients
change slowly it is preferable to use the direct estimate as it minimizes the
correct criterion.

In the following example we will see that the iterated approach is com-
petitive, as compared to the direct prediction approach, on a simulated tap.
A comparison to the FIR block prediction approach of Chapter 4 is also
made. We clearly see that for a scenario with close scatterers the adaptive
approach is well motivated.

Example 5.3

For the simple simulation scenario in Section 2.4, with a mobile station
driving past three close scatterers at 60 km/h, the performances of the
direct and iterated adaptive FIR predictors and an FIR block predictor
are compared. The SNR is set to 30 dB, a realistic value also for measured
and Wiener-smoothed data. (In Subsection 4.5.1 the SNR is 120 dB.)

All of the predictors have the same FIR structure and use the same
regressors. As in Section 4.5.1 we use a sub-sampled regressor with the
delays [0, 25,50, 75,100, 125,150, 175,200]. The length of the window is
thus 22 ms, or 201 samples. As the sub-sampling factor is m =25, a
one-step ahead predictor actually predicts 25 samples ahead. Predictions
for longer ranges are obtained either by iterating the predictor for L = 25
(iterated) or by tuning a predictor for the desired range. Kalman adaption
algorithms with coefficient prediction (5.20) are used. The predictors are
tuned, by full search over a grid of tuning parameters, to give their best
performance for the different prediction ranges.

The prediction gain of the predictors is evaluated on the noise free data
using noisy regressors. The initial transients of the adaptive predictors
are not included in the performance evaluation. We thus evaluate the
prediction gain on the last 1300 samples only, also for the block predictor.

In Table 5.1 the results are presented. As can be seen in Table 5.1, the
block predictor simply can not compete with the adaptive predictors. As
p is almost one, similar performance is achieved for a range of settings as
was shown by equation (5.42). Thus the tuning parameters p = 0.999995,
02/02 = 10? can be replaced by p = 0.9995, 02 /0? = 10* with almost the
same performance.
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Horizon L Predictor PG [dB] NG [dB] % P

25 Direct 27.5 0.0 102 0.999995
Block 16.7 11.0

50 Direct 22.6 -1.9 102 0.999995
Tterated 24.3 -0.8 3-10% 0.999995
Block 9.2 16.0

100 Direct 15.8 -1.2 102 0.999995
Tterated 16.9 -1.6 10*  0.9995
Block 6.7 9.5

Table 5.1: Table of the results in Example 5.3 for the different predictors
on the simulated data. For L = 25 the direct and iterated approach are the

Same.

5.4 Nonlinear Terms in the Regressor

It is possible to extend the regressor ¢(¢) with nonlinear combinations of
the samples in the memory. The main idea is to find nonlinear terms that
reflect the dynamics of the system and that require almost time invariant
predictor coefficients. We can expect the coefficients for the nonlinear terms

to be treated successfully only if they are slowly time varying.

If we focus on the chirp, we obtain a candidate for such a nonlinear

extension of the regressor. A single chirped signal
; 2
y(t) = Be @it
can be modeled by the following deterministic recursion

o Y1)
y(t+1) = eQCm,

and for time steps of length L we obtain

wr2c Y1)

y(t+L)=e€ —_
-+ 1) y(t— L)
Thus for an L-step predictor the use of a nonlinearity of the form
2
y= (1)
@i(t) =

Syt - L)

(5.54)

(5.55)

(5.56)

(5.57)
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in the regressor might result in improved performance of the predictor.

A drawback with many nonlinear regressors is their amplification of ad-
ditive noise. In Appendix 5.A it is shown that the nonlinear regressor (5.57)
result in a 7 dB noise amplification when used on a chirp, whereas linear
terms in the regressor, like y(t), gives 0 dB noise amplification.

In a fading signal the amplitude of y(¢) will occasionally be very low.
This causes the term 1/y(t — L) to grow without bound in the fading dips.
To avoid this, the term can be regularized as

(1) Wy (- I)
vt~ L)+ oyt —L)  |y(t-L)F +p

pi(t) = (5.58)
The regularization constant p limits the magnitude and eliminates discon-
tinuities of this regressor. As can be seen in (5.58) the regularization is
smaller when |y(¢t — L)| is far from zero, that is when it is not needed and
larger when |y(¢ — L)| is small. The following bound holds

1 1
ly(t — L) + p/y*(t — L)| < 2\/p’

(5.59)

Example 5.4

In Example 5.2 with a single chirp the use of the nonlinear term with
y2(t)/y(t — L) renders a PG of 22.9 dB, almost 7 dB below the limit
set by the SNR, due to the noise amplification. When this nonlinearly
transformed regressor is introduced, the associated prediction parameter
will not be time varying. The performance is better than the iterated
adaptive linear predictor using an AR1I model (19 dB) but worse than the
direct predictor using the AR2I model (27 dB). Although the nonlinear
term is tailored for prediction of chirps, the best linear adaptive predictor is
superior. This is mainly due to the lower noise gain of the linear predictor.

Example 5.5

In Example 5.3 the three contributing reflections cause chirps in the re-
sulting channel. In spite of this, the inclusion of two nonlinear terms does
not improve the performance of the prediction. The same performance
could be achieved without the nonlinear terms in the regressor.
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The two nonlinear terms are y?(t)y*(t — m)/(ly(t — m)|?> + p) and
v (t)y*(t — L)/(Jy(t — L)|? + p). Here m is the subsampling factor and L
is the prediction horizon. The terms had to be regularized with a p > 0.1
to avoid that the prediction performance was degraded. (Without regu-
larization of the nonlinear term the performance is highly degraded.)

5.5 Conclusion

The Kalman adapted predictor is clearly to prefer to the block predictor
in situations with dominant near scatterers, as illustrated in Example 5.3.
The AR1I-model for the parameter variation is sufficient to describe the
parameter variations in this case. The pole p of the AR1I-model has to be
placed close to the unit circle (z = 1) to give good tracking and prediction
of the predictor coefficients. The iterated predictor is found to give equal
or better performance, as compared to direct predictin, on the simulated
channel with close scatterers.

Use of the proposed nonlinear term (5.57) does not result in increased
performance for prediction of a chirp signal, as compared to a Kalman
adapted linear predictor with the proper choice of hyper-model for the co-
efficient variation.

The examples indicate that the Kalman adapted linear FIR predictor
can predict the type of signals that are anticipated in a time varying mobile
radio channel.
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5.A Noise Amplification of the Proposed Nonlin-
ear Regressor Term

A single chirped signal is given as
y(t) = Belwt+it”), (5.60)

We want to express y(t + L) in terms of observations up to time ¢. To this
end we look at the phase of the signal for different times,

Ly(t) = wt+(t? (5.61)
[yt —L) = w(t—L)+((t—L)? = /ly(t) — 2Lt +CL*  (5.62)
[y(t+ L) = wlt+L)+(t+ L)%= Ly(t)+ 2Lt +CL?  (5.63)

= 2/y(t) — /y(t — L) + 2¢ L2 (5.64)
The phase of y(t + L) can be expressed as a wheighted sum of the phases

for y(t), y(t — L) and a time invariant factor. The summation of phases
corresponds to multiplication and division of the corresponding signals as

2
orr2 Ye(T
y(t + L) = EZQCL WE)II), (565)
which thus is motivates the choise of the nonlinear element of the regressor
2
y*(t)
pi(t) = JE—L) (5.66)

To analyze the sensitivity to noise of the nonlinearity (5.66) we add a
white Gaussian noise n(t), with variance o2, to the time series y(¢). The
time series y(t) is assumed to be independent of the additive noise n(t). The
proposed term (5.66) is then corrupted as

y*(t) + 2y(t)n(t) + n?(t)

pi(t) = W —I) +n(t—I) (5.67)
The deviation of (5.67) from (5.66) is given by
@ = PO PO+ 200 +n7(0) 5.5

y(t — L) y(t — L) +n(t— L)

where e(t) is the error term of the nonlinear regressor. If the noise is small
relative to the magnitude of the signal we can approximate the inverse of
y(t — L) with additive noise as

: L (j_nli=D
y(t—L)+n(t—L)  y(t—L) (1 y(t_L)>- (5.69)
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In (5.69) we used a Taylor expansion of 1/(1+z), with z = n(t—L)/y(t—L).
For a single chirp and high SNR this is a valid approximation but for sums of
chirps, the signal y(¢) will have zero crossings which would further increase
the effect of the noise. The present analysis thus describes a best case
scenario. If we use the approximation (5.69) in (5.68), the error on the
regressor can be approximated as

y*()n(t — L) — 2y(t) +n(t))(y(t — L) — n(t — L))n(t)

e(t) ~ 1) . (5.70)

The power of the error is

ly(®)|*on + 4ly@®)[*ly(t — L)]*|og + O(op)
ly(t — L)[* ’

where the average is taken with respect to n(t) and where O(o?) includes
all the terms with higher order moments for the noise. These higher order
moment are assumed to be comparably small and will be disregarded in the
following calculations.

For a single chirp, |y(¢)| is constant for all ¢ and we thus obtain

P, = E{le(t)]’} =

(5.71)

P, ~ 502. (5.72)

The noise power is thus amplified five times by the nonlinear term. With a
second order term included in the approximation of the inverse of y(t — L)+
n(t—L) and keeping higher order moments up to order four, the approximate
error can be shown to be

P, ~ (5+802)02. (5.73)

The noise is thus further amplified when the variance of the additive noise
is increased.

If we instead assume that there is a change of phase and magnitude
between the samples as

y(t) = r(t, L)e* Byt — L), (5.74)
then we can write the expected power of the error as
P.(t) =~ r2(t,L)(4 + r2(t,L))o>. (5.75)

As the studied signal is close to band-limited there will be no abrupt changes
and for short horizons L, r(t, L) will be close to one. We can thus conclude
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that using a nonlinear term of the type (5.66) results in a noise amplification
of about 5 times, that is 7 dB, in the best cases (no zero crossings). When
there occur zero crossings in y(t), r(¢,L) can grow without bounds and
the noise is highly amplified. This limits the use of this nonlinear term to
situations with high SNR and no zero crossings.

5.A.1 Regularization

To avoid the large noise amplification and to limit the output at zero cross-
ings we can regularize the term as

y2(t) Pyt - L)

y(t—L)+p/y*(t—L) |yt —L)|2+p (5.76)

pi(t) =

The important property of the regularized denominator is that the out-
put becomes bounded when the input is bounded. To demonstrate this we
find the maximum value of the magnitude of the regularized term, when
y(t — L) change, as a function of the regularization parameter p. Set the
derivative of the magnitude of the regularized term to zero as

dlei(®)|  _ d v (R)y*(t — L)
dly(t — L) dly(t —L)| |ly(t = L)* +p
|y(t)|2 p— |y(t — L)|2 —0. (577)

(ly(t = D) +p)*
The solution to equation (5.77) corresponding to the maximum of |p;()| is
1yt — Dl = V5. (5.78)

The magnitude of the term (5.76) will thus be limited by

2 2
i (t)] < ‘yfot)i;/’_) = “;(\t/);l . (5.79)

Thus, if y(¢) is bounded, then the output will be bounded. The quadratic
term y?(t) will never be amplified by more than 1/(2,/p).




Chapter 6

Results for Adaptive
Predictors

In the following we will see how the adaptive predictors, presented in Chap-
ter 5, perform on the channel coefficient-estimates from the data base of
measured broadband data at 1880 MHz, with 6.4 MHz bandwidth, described
in Chapter 3. Noise reduction, is performed with Wiener smoothers on each
tap, as in Section 4.5.2, for the block prediction evaluation.

As opposed to the block prediction methods the adaptive methods do
not need a separate validation set. The adaptive predictors have been tuned
so that their initial transients are completed within 78 ms, which is half of
the length of the time series. The prediction performance is then measured
over the remaining 78 ms intervals.

Even though the prediction is performed on a time series, the change of
the channel coefficients is due to movement in space (see Section 2.2). By
converting the results from prediction in time to prediction over distance, we
obtain a velocity independent measure of the obtained prediction gain. The
conversion factor from range measured in samples (time) to range measured
in wavelengths (distance) is given by the Doppler frequency, fp, divided by
the channel sampling frequency, which is f; =9.14 kHz in the measurements
treated here. That is, one sample corresponds to fp/fs wavelengths of
traveled distance. The Doppler frequency is estimated as half the width of
the Doppler spectrum, as indecated by the region where the fall-off in dB
is highest. This estimate of the Doppler frequency will thus not be affected
by any frequency offset in the receiver that may displace the spectrum, as
in Figure A.18.

As the time series of a tap is approximately band-limited it can be sub-

113
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sampled, almost without loss of information, as long as aliasing is avoided.
To use a subsampled predictor on a time series which is not subsampled, re-
sults in a larger available training set as compared to using a non-susbsampled
predictor on a subsampled time series. As both predictors would have the
same number of coefficients, the subsampled predictor has a faster response
to changes of the underlying dynamics of the channel and a faster conver-
gence, as it can use more observations of the time series. We will therefore
use subsampled predictors on time series which are not subsampled.

6.1 Prediction of a Tap

In the following the Kalman adapted predictors described in Section 5.1
and the iterated predictor described in Section 5.3 are evaluated on mea-
sured channel impulse responses. The predictors are linear FIR-predictors
where the variation of the coefficients of the predictor are modeled as AR1I
processes.

The adaptive linear filter is quite similar to the time invariant block
predictor. The length of the memory should encompass at least one full os-
cillation of the dominant frequency. The subsampling factor for the memory
must be low enough to avoid aliasing, that is the sampling frequency divided
by the subsampling factor has to be at lest twice as large as the Doppler
frequency. If the dominant frequency is the Doppler frequency, then the
memory should correspond to a traveled distance of one wavelength. If
most of the energy comes from reflections from the side, then the dominant
frequency is lower and a longer memory is needed. This is the case in the
example below.

Example 6.1

Concider channel A, presented in Appendix A. The vehicle drives at
roughly 90 km/h and there are strong wavefronts coming in from the
side, as can be seen in the average Doppler spectrum in Figure A.6. The
Doppler frequency is 157 Hz, so the subsampling factor has to be below
fs/2fp =9143/2/157 = 29. A memory length corresponding to a traveled
distance of one wavelength, that is fs/fp = 58 samples, result in a poor
predictor.

Most of the power is collected in one tap as seen in the PDP in Fig-
ure A.4 in Appendix A. The strongest tap and the second strongest tap
are shown in Figure 6.1. The two taps are very different. The second
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Figure 6.1: The strongest tap (upper plot) and second strongest tap (lower
plot) of channel A in Example 6.1. Strong wafronts from the side cause the
slow oscilations for the stronger tap. Real part is denoted by solid line and
imaginary part by dash-dotted line.

strongest tap does not contain the dominating slow oscillating compo-
nent, corresponding to wavefronts coming from the side, that is apparent
in the strongest tap.

An adaptive predictor with 251 samples in the memory and a subsam-
pling factor of 10, is used for prediction of the strongest tap. The length of
the memory is 27.5 ms, which still is shorter than the period for the slow
oscilations observed in Figure 6.1. (The memory is chosen short to reduce
the number of adapted coefficients for the predictor. There will always be
a trade off between the number of coefficients on one hand and the length
on the memory on the other.)

To find the best choice for the tuning parameters, o2 /o2 and p, the pre-
diction gain is evaluated for a grid of different tuning parameters. A search
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over the tuning parameters reveals that there are two different choices of
tuning parameters, resulting in either agile or slow change of the predic-
tion coefficients, that give similar performance. Other choises give lower
performance.

Prediction horizon L PG NG

Samp. [ms] A Predictor [dB] [dB] % P

10 1.1 0.17 Direct agile 27 -3 1072 0.99
Direct slow 24 13 10 0.0

30 3.3 0.51 Direct agile 8 -3 1072 0.99
Direct slow 8 24 102 0.0
Iterated agile 8 -5 1072 0.97
Iterated slow 9 24 102 0.0

Table 6.1: Table of the results for the different predictors on the strongest
tap. For L = 10 the direct and iterated approach are the same.

Prediction horizon L PG NG

Samp. [ms] A Predictor [dB] [dB] % p

10 1.1 0.17 Direct agile 21 -3 1072 0.99
Direct slow 18 15 102 0.0

30 3.3 0.51 Direct agile 2 -3 1072 0.99
Direct slow 3 23 102 0.0
Iterated agile 2 -3 1072 0.99
Iterated slow 3 23 102 0.0

Table 6.2: Table of the results for the different predictors on the second
strongest tap. For L = 10 the direct and iterated approach are the same.
The performance is about 6 dB worse than for the largest tap.

In Tables 6.1 and 6.2 the PG and the corresponding tuning parameters
are listed for the strongest and second strongest tap respectively. For pre-
diction 10 samples ahead p is best chosen close to 1 and 02/0? small. This
result in an agile high-gain Kalman afilter with large variations for the pre-
dictor coefficients. For prediction of 30 samples the difference between the
agile and slow predictors are smaller. The best prediction gain is achived
with iterated predictor with p chosen as 0 and 02/0? huge, that is the
process noise is assumed to be small. This results in a Kalman estimator
that behaves like an RLS estimator [42], with a forgetting factor close to
one. The prediction coeflicients hardly change after the initial transient.
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Even though the noise gain becomes high the prediction performance is
still good.

Frequency responce for the predictors
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Figure 6.2: Average frequency responses of the direct 10-step ahead predic-
tors on the strongest tap in Example 6.1. The predictor with slowly varying
coefficients (dash-dotted) has a higher high-frequency gain than the agile
predictor (solid). The gray line is the Doppler spectrum of the strongest
tap, with normalized power.

The average frequency response of the agile and slow predictor is shown
in Figure 6.2. The slow predictor behaves like a predictor for a time-
invariant band-limited processes [43]. It amplifies high frequencies, for
which the power in the signal is low, and in the passband the amplification
is 0 dB. In contrat, the time varying agile predictor on average suppresses
high frequencies, which is reflected in the low noise gain values pressented
in Table 6.1.

6.1.1 Evaluation of the PG of the complex taps on the mea-
surements

From each of the 25 measurements, the taps that account for at least 90% of
the total power in the channel, are used in a prediction study. The number of
used taps from each channel is in the range of 1-15, on average seven taps are
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used. The predictor is the Kalman adapted iterative FIR predictor, based
on ARI1I models, pressented in Section 5.2. The same length of the memory,
T = 251 samples, and subsampling factor, m = 10, are used for prediction
of all taps. The FIR predictor has 26 coeflicients, so the Kalman filter has
52 states. The tuning parameters are chosen to give a slow variation of
coefficients, that is p=0 and 02/02 = 10'2. This is not an optimal choice of
either memory length, subsampling factor or tuning parameters, but it is a
set of parameters that works reasonably well on most observed channels.

The predictor is adapted to predict ten samples ahead. Then the pre-
dictor is iterated as in Section 5.3.1, in steps of ten samples, up to a range
of 100 samples. In the iteration the predictor coefficients are assumed to be
time invariant. The performance of the predictor is evaluated at every range,
on the last half of the data set (710 samples). Thus, we do not include the
trancient behaviour in the first half of the data set. The range, in samples,
is then expressed in distance measured in wavelengths. The scatter plot in
Figure 6.3 shows all the achieved prediction gains for all the 175 taps and all
ranges. The local average of the prediction gain in dB, that is the gray line,
is calculated for every 100 distance points. The performance can also be pre-
sented as the obtained NMSE, as in Figure 6.4. (The averaging over NMSE
values gives a different result as compared to averaging prediction gain on a
dB scale. Bad predictions tend to dominate the NMSE average.) There is a
large variation in how good the taps can be predicted by the adaptive FIR
predictor. However, there is a clear trend that the predictability falls off as
the logarithm of the range increases. Better performance can be achieved
with individual tuning of the parameters of the adaptive predictor, for each
tap.

6.2 Power Prediction

To see how well a whole channel can be predicted we look at predictions of
the total received power. The complex taps contain the information about
the phase of the complex sinusoids (multipath components) they consist of,
whereas the power is just the sum of the squared envelopes. It is the phase
that governs when a fading dip occurs. The time-series of received power
lacks this extra information. It is thus advantageous to use predictions of the
complex taps to obtain predictions of the power as the sum of the squared
magnitude of the predictions of the M taps

M
P(t+L)=3"|hk(t+ L) (6.1)
k=1
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Figure 6.3: Scatter plot of the prediction gain (PG) for the complex taps,
as a function of prediction range measured in wavelengths. (Each point

corresponds to one tap.) The gray line is the local average PG, taken over
100 points.

It should be noted that it is not always the predictor that also achieves the
best PG for the complex channel that achieves the lowest NMSE for the
power. For example, a rotation of the predicted complex tap causes a high
NMSE for the complex tap but does not affect the power prediction.

The important property in prediction of the power is the relative error.
That is the accuracy of the prediction on the dB scale

E4p(t) = 10log,y P(t) — 101og,, P(t). (6.2)

A measure of performance is how large portion of time the prediction is
within a certain performance bound relative to the true power. That is, for
how large portion of the time is

|Eas(t)| < B, (6.3)

where B is the bound measured in dB. In the following we will investigate
both the NMSE for the predicted power for different prediction ranges and
the measures of time within performance bounds.

In receivers that use only a subset of the taps, as in many proposed
RAKE-receivers, the available power would then be the sum over this subset
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NMSE for complex taps
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Figure 6.4: Scatter plot of the normalized means square error (NMSE) for
the complex taps as a function of prediction range. The gray line is the
local average NMSE, taken over 100 points.

of the taps, whereas the other taps act as noise. Here we take the taps
accounting for 90% of the received power as our subset. In the following
we investigate how well the total power of this subset is predicted. The
predictions of the complex taps described in Subsection 6.1.1 are used to
obtain estimates of the power for each channel. The adaptive predictor is
applied to the data set of noise reduced 1420 samples of the data from each
measurement. The performance is evaluated on the last half of the data, to
avoid the influence of transient behavior.

The obtained results for the adaptive predictor are compared with the
two simplest forms of prediction. The first approach is prediction using the
last available sample of the power, thus assuming that the power remains
constant after the latest observation. The second approach is prediction
using the average power.

In Figure 6.5 the average NMSE for all the 25 channels, in the mea-
surements, for the different methods are compared. The scatter plot is the
NMSE for all the channels using the adaptive predictor. As was the case for
the individual taps, the NMSE for the power prediction varies from channel
to channel. On average the adaptive prediction of the power is better than
using the average power as predictor, only up to a prediction range of less
than half a wavelength. But as the individual spread is so large, the average
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Figure 6.5: The average NMSE. The scatter plot is the NMSE for each
channel and range from the adaptive predictor. The solid lines are averages
using 30 points.

NMSE is an incomplete indicator.

If we measure the time the prediction is within a certain performance
bound (in dB) we obtain a slightly different result. The power predicted by
the adaptive predictors is within 1 dB of the power for 95% of the time for
prediction ranges below 0.1\, as seen in Figure 6.6. For half a wavelength
it is within the 1 dB bound (that is within 26% from the true power) for
50% of the time. This should be compared to using the average power as
predictor, that is within the 1 dB bound less than 40% of the time at all
prediction ranges. At a vehicle speed of 90 km /h, 0.1\ corresponds to 0.6 ms
whereas 0.5 is 3.2 m/s. Thus for short range prediction of the power the
adaptive predictor does well.

If the bound is expanded to 3 dB, as shown in Figure 6.7 the adaptive
prediction is within the bound 95% of the time for ranges up to a quarter
of a wavelength.

Due to the large spread in the results among the channels the average
can be misleading. Instead, we may look at the number of channels, out
of the 25 measurements, for which a given performance of the prediction is
achieved. The result is collected in Table 6.3. The power could be predicted
with an error of less than 1 dB for 99% of the time up to ranges of a quarter
of a wavelength, in 9 out of the 25 measured channels. The corresponding
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Figure 6.6: Scatter plot for the adaptive prediction of power, showing % of
time within 1 dB of the true power. The lines indicates local averages over
30 points for different methods.

number for the 3 dB bound and half a wavelength is 8 channels. Thus,
for at least 30% of the measurements at hand, the power can be accurately
predicted at least up to a quarter of a wavelength ahead and fairly well up
to half a wavelength.

No. of channels within the bound
this amount of time
Range Bound | 90% 95% 99%
A/4 1dB 17 (68%) 14 (56%) 9 (36%)
A/2 3 dB 16 (64%) 15 (60%) 8 (32%)

Table 6.3: Table for the number of channels for which the prediction of the
power is within the 1 dB bound for a prediction range up to a quarter of a
wavelength and within 3 dB up to half a wavelength, for 90, 95 and 99% of
the time. The total number of channels is 25 and the percentage of channels
is within parentheses.
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Figure 6.7: Scatter plot for the adaptive prediction of power, showing % of
time within 3 dB of the true power. The lines indicates local averages over
30 points for different methods.

6.3 Conclusion

The linear adaptive iterated subsampled FIR predictor generally produces
excellent predictions of both complex taps and total power for short ranges,
that is up to 0.1 wavelengths. For some measurement the good results are
valid up to ranges of at least a quarter of a wavelength. As was the case
for the nonadaptive linear FIR predictors in Section 4.5, the prediction gain
rapidly falls off when the prediction range increases.

At a carrier frequency of 1880 MHz the wavelength is 16 cm. In most
of the measurements, acceptable prediction performance is achieved up to a
prediction range of a quarter of a wavelength, which corresponds to 4 cm.
At the moderate speed of 10 m/s, that is 36 km/h, this corresponds to a
range of 4 ms. The performance of power predictors is reduced markedly at
ranges over half a wavelengths, or over 8 ms. The advantage over using just
the average power for prediction then becomes small, so we can not claim
that the investigated adaptive predictors are efficient for these prediction
ranges.

To develop better predictors is a topic for future research.
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Chapter 7

Applications

In future packet based wireless communication systems, transmission in the
downlink will often dominate the traffic load. High bit-rate applications
like WWW-browsing, file transfer, and full motion video will impose strong
requirements on the system capacity. An obstacle in this context is the time-
variability of the channel: For mobile users, frequently occurring fading dips
will cause unnecessary, and capacity degrading, retransmissions.

To achieve a high throughput also over fading channels, adaptive meth-
ods for adjustment of e.g. the modulation alphabet, and the coding com-
plexity, can be used. The idea is to make efficient use of the bits: Whenever
channel conditions are adequate, transmission of redundant bits should be
avoided.

Fading channels confront us with the problem of lost packets and the
need for frequent retransmissions. One strategy to combat time-variability
is to use averaging: Spread-spectrum signalling can average out variations
of the noise and interference level, while coding and interleaving can com-
pensate for the temporary loss of signal strength due to fading dips. Such
strategies can combat bad signalling conditions, but are inefficient when
conditions are good. A complement to the averaging strategy would be
to estimate the time-variations of the channel, due to short-term fading,
and adapt the signalling scheme accordingly. We can exploit temporarily
good transmission conditions to obtain higher throughput, while reducing
the demands on the channel when its condition is bad. Assuming a system
making use of either Frequency Division Duplex (FDD) or Time Division
Duplex (TDD), with separate (ideal) control channels, the current channel
parameters can be estimated and predictions about their future evolutions
can be stored for subsequent transmission in the control channel. The bit-
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rate can be tailored to the current channel conditions by e.g. adjusting the
modulation complexity, while keeping the transmitted symbol energy at a
constant level. The further into the future the terminal can perform accu-
rate predictions of the channel parameters, the more flexible and efficient
the selection of the modulation alphabet will be. Moreover, the traffic on
the control channel can be efficiently planned to minimize the signalling
overhead. Such approaches have been proposed by Ericsson [14], Sampei,
Goldsmith, and their co-writers in [13] and [12].

For a predicted value of the signal to noise ratio (SNR) of the channel, the
modulation level is maximized under the constraint of a certain probability
of symbol error, for example, Py; < 107°. If no modulation level attains
the required probability of symbol error, the transmission is deferred until
later when the SNR is higher, thus avoiding retransmissions. The reason for
using this strategy is that it will stabilize the error probability, thus keeping
the retransmission rate at a low and constant level. The averaging strategies
mentioned above do not have this feature. On the contrary, they would yield
a higher traffic load when conditions are bad, since the increasing error rate
would increase the requests for retransmissions.

In a Time Division Multiple Access (TDMA) multi-user scenario it would
be possible to schedule the transmissions time-slots to the mobiles with the
momentary best receiving conditions. Transmission in deep fades would be
avoided and system throughput could be maximized [14].
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Future Work

To achieve accurate prediction over long ranges we will study indirect adap-
tion of the predictors, i.e., adaption of the channel models followed by cal-
culation of the corresponding predictors. A time varying model, e.g. an AR
model, of the channel variation can be estimated using an adaptive algo-
rithm, as for the iterated predictor in this work. This model can then be
used in a Kalman predictor to predict the channel coefficient. A similar
approach, but for equalization of fast fading channels, was presented in [44].
An alternative approach is to use the estimated time varying model to design
a Wiener predictor for the channel estimates.

For efficient adaptation of a model for the dynamics of a tap, low-
complexity adaptive algorithms for AR processes are needed. To this end
we will work on a generalization to AR processes of the tracker for MA
processes presented in [42].

Further attention will be given to the problem of choosing the delays in
the predictors, the length of the memory and the number of used samples.
Possible links between these entities and e.g. Doppler spread and bandwidth
will be examined.

The current work is solely focused on prediction of the channel in the
time domain. An extension of this work to investigations of prediction of
the frequency response of the channel will also be an interesting direction.
Predictions of the frequency response can be used in e.g. OFDM systems.

A thorough study of the noise on the estimated channel will be per-
formed. We will study how the time variability of the channel affect the
estimation error in least squares estimation of the channel.
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Appendix A

Visualized Channels

To further understand the mobile radio channel, visualization of a number of
different aspects of the measured impulse responses is of great importance.
In the following the estimated channels from three different measurements
will be described and following properties will be illustrated.

Received power

The total received power changes as a function of time. When the power
decrease rapidly, this is called a fade. The received power depends on the
channel as

P@t)=>_|h(r, 1> (A.1)

Frequency response
The instantaneous value of the time-varying channel has a frequency re-
sponse. That is a discretized version of the frequency responses in equation
(2.23). The fading is thus frequency selective. A fade in the received power
corresponds to a situation with many frequencies or taps fading simultane-
ously.

H(w,t) = F{h(r,t)}. (A.2)

Power delay profile
The power delay profile is the power as a function of the delay 7 of the
impulse response, averaged over the time t for a time-varying response,

P(r) = 223 Inr, o) (A.3)
t
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The power delay profile shows how the received power is distributed over the
delays. A peak in the PDP corresponds to a path with the corresponding
delay 7.

Doppler spectra
The Fourier transform of the complex taps described in equation (2.25) gives
the Doppler shift for the different contributing rays.

H(r,Q) = Fi{h(r,t)} (A.4)

The Doppler spectrum thus shows the frequency distribution of the oscilla-
tions of the individual taps. It is plotted as a power spectrum, |H (7, Q)2
To increase the resolution, a MASC spectral estimator [23] is used instead
of the Fourier transform. The Doppler spectrum gives information about
the direction of the incident waves. A peak in the Doppler spectrum close
to fp corresponds to a wave coming from the direction of motion. In the
same way a peak close to —fp is a wave coming from behind the vehicle.
Waves from the side correspond to peaks close to 0 Hz.

The key features of the three exemplified channels are listed in Table A.1.

A B C
Velocity [m/s] 25 14 10
Delay spread [us] 04 03 0.8
Doppler spread [Hz] 56 43 35

3 dB coherence bandwidth [Hz] 4.9 2.3 0.6

Table A.1: Table of the key features for the displayed channels.
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Channel A
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Figure A.1: The fading pattern of channel A changes a lot over time.
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Figure A.2: Frequency response |H (w,t)| of the estimated channel A. Dark
coloring denotes fades. The dynamic range (black-white) is 40 dB. All
frequencies fade simultaneously due to that mainly one tap contributes to
the power.
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Average frequency response
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Figure A.3: The average frequency response of channel A is almost flat.
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Figure A.4: The PDP of channel A shows that the power comes mainly
from one tap. The noise floor is the power of the estimation error.
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Doppler spectra
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Figure A.5: The Doppler spectra for all the taps of channel A.
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Figure A.6: Average Doppler spectrum of channel A. The strongest wave-
fronts come from the side as there are peaks close to 0 Hz. Note the small
but significant power at frequencies above the Doppler frequency.
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Channel B
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Figure A.7: The the estimated power of channel B. The power decrease
when performing noise reduction.
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Figure A.8: Frequency response |H(w,t)| of the estimated channel B. Dark
coloring denotes fades and the dynamic range (black-white) is 40 dB.
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Figure A.9: The average frequency response of channel B is not flat. Noise
reduction modifies the estimated frequency response especially at frequen-

cies close to the band-limit.

PDP
_70 T
- - Measured
—80- — Noisereduced ||
--- Noisefloor

Relative power [dB]

Figure A.10: The PDP of channel B shows that the power mainly comes
from a few taps. Noise reduction is very efficient on this channel.
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Doppler spectra
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Figure A.11: The Doppler spectra for all the taps of channel B.
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Figure A.12: Average Doppler spectrum of channel B. The strongest wave-
fronts come from the front.
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Channel C
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Figure A.13: The fades are not so deep in channel C due to the large delay
spread.
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Figure A.14: Frequency response |H (w,t)| of the estimated channel. Dark
coloring denotes fades and the dynamic range (black-white) is 40 dB. The
coherence bandwidth is small as the frequencies fade almost independent of
each other.
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Average frequency response
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Figure A.15: The average frequency response of channel C.
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Figure A.16: The PDP of channel C shows that many taps contribute to
the total power.
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Doppler spectra
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Figure A.17: The Doppler spectra for all the taps of channel C.
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Figure A.18: Average Doppler spectrum of channel C.
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