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ABSTRACT

Using a simple channel mode! for the multipath mobile
radio channel a nonlinear approach to long-range predic-
tion of fading radio channels is motivated in a scenario with
scatterers close to the mobile station.

The performance of linear and quadratic predictors is
evaluated on wideband (6.4 MHz) measurements in the 1800
MHz band. The predictors are applied on estimated com-
plex channel taps to find practical measures on the achiev-

able prediction gain for different prediction horizons. Quadratic

predictors, in the form of quadratic Volterra filters, is found
to have good modeling properties, but very poor generaliza-
tion properties as compared to linear predictors.

1. INTRODUCTION

Small-scale fading occurs when a mobile station travels through

an interference pattern, generated by scattered and reflected
propagating waves. Within some local area, the scattering
geomelry can be assumed to be time invariant. A geome-
try dependent low-dimensional deterministic mapping may
thus exist from the channel transmission properties mea-
sured at one location to an adjacent location , when the mo-
bile has moved a short distance. In this paper we motivate
the use of linear and nonlinear long-range predictors using
a simple physical model of the channel.

A common linear approach assumes that a large number
of horizontal plane waves with vertical polarization arrive at
the receiver from different directions in a plane [1]. Based
on this assumption a spectral estimation approach [2] to
long-range prediction can be taken. A linear predictor struc-
ture becomes less appropriate when the effect of non-planar
waves are taken into consideration. Neural nets have been
proposed for power prediction in wideband systems {S] and
have been demonstrated to perform better than linear pre-
dictors [6] for 1 ms prediction horizons.

*This work was supported by the Swedish National Board for Indus-
trial and Technical Development, the Swedish Research Council for Engi-
neering Science and the Marie Curie Research Training Grant. We thank
Ericsson Radio Systems AB for supplying measurement data,

0-7803-5435-4/99/310.00 © 1999 IEEE

146

The ability to predict the channel is important for adap-
tive resource allocation and power control but could also
be used for adaptive coding and modulation [3], [4]. For
scheduling and adaptive resource allocation longer predic-
tion horizons, on the order of 5-10 ms are of interest, In
this paper we therefore test linear and quadratic predictors
on complex channel taps of measured channel impulse re-
sponses to find practical measures on the achievable predic-
tion gain (PG) for different prediction intervals.

2. PHYSICAL MODELING OF THE FADING
CHANNEL

The time-varying impulse response ¢(r,t) for a baseband
channel at time ¢ in a multipath environment can be de-
scribed by

c(r,t) =Y en()ed O O=2frel g — (1)), (D)

where f. is the carrier frequency and a, (%) is a time-varying
attenuation factor covering antenna effects, path loss and at-
tenuation due to reflection and scattering for the nth path [7].
The phase shift caused by reflectors and scatterers is de-
scribed by @n(t) and 1, (t) denotes the propagation delay
for the nth path. Let g(-) be a time invariant impulse re-
sponse due to pulse shaping and receiver filtering and let
the symbol interval be T'. The discrete-time channel im-
pulse response can then be described as an FIR-filter with
the kth tap given by [8]

+NT
hi () = fo g(Tk — t)e(r, t)dr

=" g(Tk — Ta(t))an(t)e P =20 lemaltD) - (2)

where NT covers the length of the continuous-time impulse
response. With an effective support of g(-) on the closed in-
terval [—MT, MT), the number of reflectors and scatterers
contributing to the kth tap will be limited to paths with de-
lays in the interval {max(0, T'(k — M}, T(k -+ M)].
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If we just take ray optics into account, omitting the ef-
fects of diffraction and Fresnel optics, a scatterer can be
modeled as a secondary source induced by a wave front
whereas a reflector generates a mirrored image of the emit-
ting source. Scatterers and the mirrored images can be viewed
as secondary sources. The path delay 7, (¢) can be decom-
posed into the sum of a time-varying delay from the sec-
ondary source to the mobile (z¥*()) and a time-invariant
path delay from the base station to produce the secondary
source, 75°. The scatterers and reflectors are assumed to be
fixed. The phase shift due to the time invariant delay can be
included in a complex attenuation factor

k() = g(Th = 7o (£))an (£)el ¥ O-20£TE) (3
The discrete channel (2) can now be expressed as

Pi(t) = an s ()e? ), )
n
where the remaining phase function is

Bult) = 2o (l) = - L@ )

Here x%(t) is a vector in space pointing from the nth sec-
ondary source to the mobile station and X is the wavelength.
The phase is solely a function of the electrical distance to the
secondary source. When the distance changes by as little as
one wavelength the phase ¢, (t) changes by 2x, causing the
effect of small-scale (fast) fading.

Consider the simplest mobile dynamics, that is a straight-
line motion at constant velocity v. For notational conve-
nience we denote the initial position by x°(0) = x* with-
out explicit time index, We then have the phase function

2m 2w
8nft) = =@l = -l +vill. ©
Let 8, (t) denote the angle between the position vector x4 (1)
and the velocity vector v and let 8, = 8,{0), v = ||v||,

M5 (t) = ||xM¥(¢}||. Then the phase function at the position
XM5(¢) at time ¢ can be rewritten as

2wl vt vt \2
¢n(t) = — h 1+2ﬁ COSBR 4 ;EA;E: @)

n n

or, with vt/z¥° « 1 and a second-order approximation of
VI+y~1+y/2—y%/8, weobtain

2rzks vt 17wt \? .
dnlt) ~ — 3 |:1 + E cosb, + 5 (;Eg) sin® Hn} .
8

Beyond the linear increase of the phase, duc to the conven-
tional Doppler shift, we obtain a quadratic term originating
from the sphericity of the wave fronts.
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The instantaneous frequency, the time derivative of the
phase function, is given by

; 2r d 2
balt) = =TI @ = = Fvoosbalt), )

or using the approximate expression (8)

Q2

) =27 |vcosty + —— (vsind)?| . (10)
A xS

The instantaneous frequency can thus be described as an

instantaneous Doppler shift depending on the momentary

angle of incidence of the wave (9) or approximately as the

Doppler shift at time £ = 0 and a time dependent correc-
tion (10},

Assuming that the incoming waves are plane, that is

0.{t) = B, and a time invariant attenvation «,, ; in (4),

we obtain the following commonly used approximation [1]

hi(t) =Y o e I2mfont, an
n

with the Doppler frequency fp, = vcos#,/A. This model
has been used as a basis expansion model for blind equaliza-
tion [9] and also for long-range prediction of mobile radio
channels [2]. The maximum deviation from the model (11)
occurs for a transversal vehicle movement at 8, = w/2,
when the velocity vector is orthogonal to the direction of
the incident wave at time t = 0 and the nominal Doppler
shift vanishes. This deviation is accumulated into a phase
error which defines the maximum time interval over which
the linear deterministic model can be used as an approxima-
tion in the present spherical-wave case. Defining this time
interval Ty /7 as the the interval when the phase approxima-
tion error is less than 90°, Aqbn(t)ITM2 | = 7/2, we obtain

AG:MS
=3 @

T?T/? =

For this time span, the above second-order approximation
can be well justified as we have

[ A
=l K1 (13)
t=Ty 2 mes

where the last inequality helds because even a close point
scatterer will be many wavelengths away from the mobile
transceiver.

The path loss for a scattered or reflected path is propor-
tional to the path distance as [10]

an(t) o (223 (t) ® 385(1)) /2 (14

vt

w5
Tn

where z¥5(t), £5%(t) denotes the distance from the nth scat-
terer/reflector to the mobile station and the base station re-
spectively and « is the power aftenuation exponent. In (14)
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5 (t) @ £29(t) denotes 225 (t) - £2%(¢) for scattering and
M5 (L) + 22°(t) for specular reflection. The power attenu-
ation exponent corresponding to path loss in free space is
a = 4. Bven fairly close scatterers will give contributions
with amplitudes on the order of a magnitude lower than the
specular reflections. Thus it is appropriate to use the lin-
ear model (11) in situations where there are direct line of
sight (LOS) or large contributions from specular reflections,
in all other cases the effect of spherical waves introduces a
significant deviation from (11). This can be seen from an
example with a carrier frequency of 1800 MHz where the
vehicle moves at v = 90 km/h past a close point scatterer at
a distance z}° = 10 m, resulting in T /5 = 36ms. Thus,
the linear deterministic model is certainly inadequate for an
estimation window of 150 ms. This is also true for predic-
tion horizons of 10 to 30 ms, when there are close scatter-
ers. However, this problem does not exist for more distant
{primary and reflected) sources, say, at z¥° = 250 m and
beyond where we obtain T j» = 178 ms.

Similar effects with phase functions containing quadratic
terms occur when the vehicle accelerates or makes a turn.

3. PREDICTORS

Under the assumption that the taps of a channel can be de-
scribed as a weighted sum of complex sinuseids (11), a lin-
car FIR-filter can give perfect predictions [11]. Let ¢ denote
the discrete time index for the channel samples. Assuming
past impulse response taps to be exactly known, the L step
ahead predictor, using p past samples can be expressed as

p—1
hi(t 4+ L) = " bphilt — 7a), (15)
n=0

where the spacing of the delays 7, is a user choice. The
predictor coetficients, b,, can be optimized directly by e.g.
the least squares (LS} methodor from the iterated one step
predictor. The predictor may be sub-sampled, thus 7, may
differ from n. This enables the predictor to use a long mem-
ory and still limit the number of coefficients. With a one
step predictor and no sub-sampling in the predictor the es-
timation of the FIR predictor can be interpreted as spectral
estimation using an AR-model of the process.

If we assume that there are significant contributions to
the channel from close point scaiterers, the linear prediction
approach will render limited performance for long-range
prediction. We study an extension of the linear predictor
to a quadratic Volterra filter [12].

p—1

a+ Z bphi(t — Ta)
n=0

p=1p=—1

+ Y cuhalt — Ta)ha(t — 7).(16)

n=01I=n

h(t+L) =
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The most general quadratic filter for complex signals in-
cludes not only the quadratic terms but also all possible
combinations of conjugate products. In the examples stud-
ied we have found no need for these extra terms.

For both the linear and the quadratic predictor we use
least squares (LS) to estimate the parameters for the predic-
tors. To avoid numerical problems, the data are normalized
so that lincar and quadratic terms are of the same order of
magnitude. Still the covariance matrix for the regressors
may be ill-conditioned, resulting in low numerical accu-
racy and poor generalization capability for the predictor. To
avoid this we regularize the solution [13] by adding small
positive constants to the diagonal of the estimated covari-
ance matrix (diagonal loading) prior to the LS estimation.

As a measure of prediction quality we use the predic-
tion gain (PG), the ratio between the variance of hy (£} and
the power of the resulting prediction error e (f) = hg(t) —
T ().

4. EXPERIMENTS AND RESULTS

4.1, Measurements

Wideband radio channel measurements were performed at
1880 MHz, at distances of 200 to 2000 m from the base
station antenna placed on a high roof-top. The mobile an-
tenna was placed on a car driving in a suburban environment
mostly at non-line of sight. Vehicle speed varied between 30
to 90 km/h. 25 measurement runs were recorded at differ-
ent positions, The measurements consisted of a repeatedly
transmitted sequence of length 109 us, resulting in 156 ms
continuous received signal at each measurement location.
The baseband sampling raie of the receiver was 6.4 MHz.

The impulse response is estimated using a 120 tap FIR-
model, covering 18.75 us, which is fitted by least squares
to each repeated sequence. For the identification, the sig-
nal from a back-to-back measurement is used as reference.
This procedure resulted in 1430 consecutive complex im-
pulse response estimates at each measurement location, The
channel is thus sampled at 9.14 kHz, whereas the highest
Doppler frequency is about 160 Hz.

A rough estimate of the SNR in the measured channel
taps can be obtained from the power density profile (PDP).
The PDP is the time average of the squared amplitude of the
laps. For taps not receiving signal energy, the only contri-
bution to the PDP is the noise, causing a noise floor. The
amplitude of the PDP at delay &k consist of signal power
and noise power approximately of the size of the noise floor
level.

As the process is appreximately band limited to v/},
and we have high oversampling, it is possible to reduce the
noise level. A Butterworth low-pass filter of degree 4 with
the cut of frequency at the Doppler frequency for a vehicle
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speed of 110 kmv/h is a rough approximate model for the dy-
namics of the channel. Using the Butterworth filter together
with the knowledge about the noise level a smoother, with
smoothing lag of 5 samples, is designed according to [14].
In an online application only the last available samples of
the channel witl need shorter smoothing lags.

4.2. Channel Simulator

A simple simulation model for the effects of scatterers in the
vicinity of the mobile station can be derived from (4). The
path losses are modeled as in (14) and the phase shifts ¢,
in (3) are taken to be randomly distributed in [0, 2#]. The
time-varying phases ¢,,(¢) are calculated as in (6).

The following simulation scenario is studied: a mobile
station drives past three point scatterers that are 5 m from
the road and 5 m apart, The vehicle speed is 60 km/h, car-
rier frequency and channel sampling are as in the measure-
menis. There is no LOS or dominant reflector. Fig. (1)
shows the instantaneous frequency for the different scat-
tered wavefronts and the corresponding amplitudes.
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Figure 1: The instantaneous frequencies for 3 scatterers and
their amplitudes. The maximum Doppler frequency is 104.4
Hz.

The performance of the noise reduction has been studied
on the simulated data. Noise is added to give an SNR of 10
dB for the channel tap. After the smoothing filter the SNR
has increased to 20 dB. The improvement decreases with
higher SNR, ¢.g. for 30 dB the improvement is only 6 dB,

4.3. Prediction of Channel Parameters

For the simple simulation scenario with only three scatter-
ers we evaluate the performance of a quadratic and linear
predictor. Both uses 9 delayed sample with delays evenly
spaced over the interval [0, 200). This corresponds to a mem-
ory length of 22 ms and a sub-sampling factor of 25. The
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linear predictor uses 9 complex parameters and the quadratic
55. The prediction horizon is L = 50 samples (5.5 ms).
The channel is normalized to have a variance equal to one
and a very low noise, resulting in an SNR of 120 dB, is
added. The first 2000 samples (220 ms) are used to build
the model and the following 500 samples (55 ms) are used
for validation, We use diagonal loading of the covariance
matrix for the regressors with 10~ for the quadratic terms
and 1072 for the linear. On the model set the PG for the
quadratic predictor is 36 dB and for the linear 22 dB. For
the validation set the prediction gains fall dramatically to 6
dB for the quadratic and to 1 dB for the linear predictor. The
quadratic predictor shows high sensitivity to noise and to the
choice of the diagonal loading term. When the noise level
increases the quadratic predictor loses its generalization ca-
pability and fails in the validation. A linear predictor using
a sub-sampling factor of 5 and the same length of memory,
using 41 complex parameters, achieves higher PG both in
the modeling set (38 dB} and in the validation set (12 dB).
The large difference between PG for model and validation
set for the linear predictors is due to the nonlinearity caused
by the quadratic phase terms. The quadratic predictor seems
to be unable to modet this nonlinearity, either.

For the measured impulse responses only those taps with
SNR above 10 dB are used 1o evaluate the performance of
the predictors. The noise level is reduced using a smoothing
filter and, from the previous simulation results, we can as-
sume that the effective SNR is at least 20 dB. The same pre-
dictors as above were used on the measurements, only that
no diagonal loading for the linear terms were used. We vary
the prediction horizon Z, from 25 (o 100 samples (2.7-11
ms). Of the 1430 samples in the time series 10 are lost due
to the smoothing (5 due to the smoothing lag and another 3
due to the convergence time of the filter). Of the remaining
1420 samples the first 1200 4 L are used for modeling and
the remaining 220 — L samples constitute the validation set.

A total of 532 taps are used in the study. We average the
achieved PG (in dB) for all the used taps and compare the
PG for model and validation data in Fig. (2). We see that
even though the quadratic predictor gives a much higher PG
on the modeling set it fails to generalize to the validation
set, whereas the linear predictors loses only 2 dB when go-
ing into the validation set. There 1s no major difference 1n
performance between using 41 or 9 parameters for the linear
prediction. An increase of the memory to 300 samples (33
ms), using subsample factors 5 and 25, does not result in an
improvement of the performance of the linear predictors on
these data sets.

5. DISCUSSION

The LS solution for quadratic filters relie on accurate es-
timates of fourth order moments. This limits the use of
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Figure 2: Average PG for different prediction horizons for
both model and validation set.

quadratic filters in a time-varying environment as the mobile
N N N “ ; 2

radic channel. A single chirped signal () = Seflwt+(t™)

can be modeled by the following deterministic recursion.

2¢ z(t — 1)*

ORI an

z(t) =e
the quadratic Volterra model is thus unsuitable to model this
behaviour.

The rapid fall off of predictability using the linear fil-
ters, losing 5 dB when going from prediction of 25 samples
ahead (2.7 ms) to 50 samples (5.5 ms), indicates that the
performance of block-adaptive linear predictors is limited
for long-range prediction. The small loss in performance
when going from model set to validation set indicates good
generalization properties for the linear predictors. As the in-
crease of the number of linear parameters hardly improves
the performance, even the simple linear predictor exploits
most of the available linear dependencies.

Possible extensions off the current work is to use non-
linear ARMAX models (NARMAX) and adaptive linear fil-
ters.
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