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ABSTRACT

A general MMSE decision feedback equalizer (DFE) for multiple
input-multiple output channels is presented. It is derived under the
constraint of realizability, requiring finite smoothing lag and causal
filters both in the forward and feedback link. The proposed DFE,
which provides an optimal structure as well as optimal filter de-
grees, is obtained as an explicit solution in terms of the channel and
noise description. A generalization of the scalar zero-forcing DFE
is also presented. Conditions for the existence of such an equal-
izer are discussed. We argue that when no zero-forcing equalizer
exists, poor near-far resistance of the corresponding optimal mini-
mum mean square error DFE can be expected. A numerical exam-
ple indicates the potential advantages of using a decision feedback
equalizer with appropriate structure. The main improvements are
obtained at moderate to high signal-to-noise ratios.

1. INTRODUCTION

During the last years, communication channels with several inputs
and outputs have received increasing interest. For example, such
channels occur in cellular systems with antenna arrays at the re-
ceiver. A detector employed for this purpose must be able to can-
cel the effect of the dispersive channel as well as the interfering
cross-talk. Multivariable generalizations of equalizers are poten-
tial candidates for such a detector.

One equalizer which has good performance at moderate com-
plexity is the decision feedback equalizer (DFE). Traditionally,
DEFE derivations either results in a DFE with non-causal feedfor-
ward filter [1], or a DFE where the structure is fixed prior to the
design [2]. In the first case, the DFE cannot be accurately real-
ized, whereas in the second case, the structure of the DFE may be
inappropriate for the channel, leading to suboptimal performance.

In this paper we shall use a general multiple input-multiple
output (MIMO) decision feedback equalizer (GDFE) for the de-
tection. In contrast to a conventional MIMO DFE, the GDFE al-
lows for IIR filters in both the feedforward and the feedback link.
We derive closed form expressions for the parameters of a GDFE
which minimizes the mean square error under the constraint of re-
alizability, i.e. under the constraint of finite decision delay and
causal filters. We also derive a general condition for the existence
of a zero-forcing MIMO DFE. It turns out that the existence of a
zero-forcing DFE can be used as an indication of near-far resis-
tance of the corresponding minimum mean square DFE.

In a numerical example, we indicate the potential performance
improvement of the general DFE as compared to a DFE with fixed
structure. For high SNR, the improvement is significant.
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2. MULTIVARIABLE CHANNEL MODELS

2.1. Prerequisites

A communication channel having multiple inputs and multiple out-
puts will be called a multivariable channel or a multiple input-
multiple output (MIMO) channel. Multivariable channels will be
described by rational matrices, i.e. matrices whose elements are
causal rational functions in the unit delay operator ¢~ * (¢~ 'z (k) =
z(k — 1)). In addition, we assume that the channels are time-
invariant and stable.

In some cases, the denominators of all the matrix elements
will be constants, rather than polynomials. In these cases, the
multivariable channel can be described by a polynomial matrix
P(gY)=Po+Piqg~ ! +--- +Pspq~?”. For any polynomial
matrix, we also define

A
P.(q)=Py +P{q+ - +Pipd®", )]

where g represents the forward shift operator. The degree of a
polynomial matrix P(g~!) equals the highest degree of any of its
elements, and is denoted § P.

2.2. Detection using antenna arrays

In cellular systems, multi-element antennas, also known as an-
tenna arrays, are frequently used to reject interference and to re-
duce the effect of fading and noise [3]. The presence of an antenna
array at the receiver leads to a channel model with multiple out-
puts, one for each antenna element.

When several users transmit simultaneously, we can explicitly
incorporate multiple users into the model. Assuming that d; (k)
is the symbol sequence transmitted from user j, y: (k) is the sig-
nal received at antenna i, and v; (k) represents the additive noise
received at the same antenna, we define

d(k) = (di(k) da(k) dny(k))” (22)
y(k)E (1 (k) w2 (k) Yny (K))” (2b)
v(k)2 (ni(k) wa(k) va, (K)7 . (2c)

We also denote the scalar channel from transmitter j to receiver
antenna i as #;; (¢~ ') and define the rational matrix

Hu(g™") Hing(¢7)
HH)= : : 6)
Hay1(g™") Hayna(a™")
Using (2a), (2b), (2¢) and (3), we can now express the signal re-
ceived at the antenna array by the MIMO model

y(k) = H(g~")d(k) + v(k) . )



Winters [4] used this model to design a detector, which simultane-
ously detects the signals from all users.

The channel model (4) can also be used to describe fractionally
spaced sampling [5] in which a scalar received signal is sampled
several times during a symbol period.

2.3. Multiuser detection in DS-CDMA

In direct sequence code division multiple access (DS-CDMA) sys-
tems, the different users will interfere with each other, since the
spreading sequences used to multiplex the signals cannot be cho-
sen completely orthogonal, The magnitude of this multiple access
interference (MAI) is determined by the cross-correlation between
the spreading sequences of the different users. The presence of
MAI implies that we can formulate a multivariable model to de-
scribe this scenario [6]:

y(k) = R(1)Wd(k) + R(O)Wd(k — 1)
+R(-1)Wd(k — 2) + v(k). (5)

In (5), the matrices R(m) contain partial cross-correlations be-
tween the spreading sequences s;(t):

T+,

I R N ]

Ti

where s;(t) = 0 outside ¢t € {0, T,[; = € [0, T,[ is the propaga-
tion delay of user ¢ with T, and (-)* denoting the symbol period
and complex conjugate, respectively. The elements of the diagonal
matrix W represent the energies and phase shifts of the respective
users. The output y(k) of the channel model is the sampled out-
put from the correlators used to despread the received signal, and
v(k) constitutes noise. Obviously this model can be expressed by
means of (4).

Design of multiuser detectors for DS-CDMA based on the
model (5) has been studied extensively over the last decade, see
e.g [71.

3. PROBLEM STATEMENT
Consider the received sequence of measurement vectors y(k). As-
sume that each vector can be described as a sum of the output
from a dispersive, multivariable channel and a multivariate noise
term as depicted in Fig. 1. Both the channel and the noise model
v(k)

}

k)~ A~'B ﬁé—*y(k)

Figure 1: The multivariable system model.

are parameterized by left matrix fraction descriptions (MFD:s):
y(k) = A7 (g™ 1)B(g 1 )d(k) + N~ g~ )M (g~ v(k) . (6)

The polynomial matrix B(g~!) has n, rows and nq columns,
whereas A(g™!), M(q™') and N(g™") are square polynomial
matrices of dimension ny. These three matrices are assumed to be

stably invertible, i.e. the roots of det A(z7') = 0,det M (z7}) =
0 and det N(2~!) = 0 all lie inside the unit circle |z| = 1.

We assume that the leading matrix coefficient of M(q™?)
is non-singular and that the denominator matrices A(g™') and
N(g™*!) are assumed monic. To simplify the presentation and
the design equations, A(g™!) and N(g~?) are also assumed to
be diagonal. The polynomial elements in the matrices may have
complex coefficients, and are assumed to be correctly estimated.

Each element in the vector d(k) is taken from a finite set of
values, the so-called symbol alphabet. Each d; (k) is considered to
be a stochastic variable with zero mean, which is uncorrelated with
the disturbance vector v(k). Finally, we assume that the transmit-
ted symbol vectors are white with covariance matrix

Ed(k)d" (k) = M. )

The noise vector v(k) in (6) has ny elements. It is a possi-
bly complex-valued, white stochastic process with zero mean and
covariance matrix

Bk (k)] = 1. ®
For future reference, we also define
A Ay

P=30" ®

Our primary goal is to reconstruct the sequence of symbol vec-
tors d(k) from the measurements of y(k). For this purpose, we in-
troduce the general MIMO-decision feedback equalizer (GDFE):

d(k — k) = R(g")y(k) - F(g (k- £-1)
d(k — &) = £(d(k — fk)) .

See Fig. 2. The feedforward filter R(g™') and the feedback filter
F(q™!) are stable and causal rational matrices. The design vari-
able £ is the smoothing lag, i.e. the number of future measurements
used to estimate the current symbol. The function f(-) constitutes
the decision non-linearity, which maps the estimate d; (k — £|k) to
the closest point in the symbol constellation. The vector d(k — £)
thus constitutes the decision made on the estimate d(k — €|k).

(10)

d(k—~tlk)

v~ R(g™Y) () £()

d(k - €)

g 'F(g™)

Figure 2: The general IIR decision feedback equalizer (GDFE).

It is important to note that the GDFE (10) is required to be re-
alizable. This constraint implies that the smoothing lag £ must be
finite, and the filters must be causal and stable. In [5], it is illus-
trated what happens when the constraint of realizability is relaxed.

Given the received sequence of symbol vectors y(k) and the
channel model (6), we want to find the stable and causal rational
matrices {R(g~!), F(g~ ')} which minimize the estimation error
covariance matrix !

P2 Ee(k— ) (k- 0) an

'The covariance matrix is minimized in the sense that any other ad-
missible choice of {R(g™!), F(g~!)} will result in an estimation error
covariance matrix P such that P — P is positive definite.
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where the estimation error e(k — £) is defined as
e(k—0)2dk -8 —d(k ~ £k) . (12)

We are also interested in finding the conditions under which a
zero-forcing solution to the equalization problem exists. While a
scalar zero-forcing equalizer removes all intersymbol interference
from the symbol estimate, a natural extension to the multivariable
case would be to require that both the intersymbol interference and
the co-channel interference can be removed [8]. A multivariable
zero forcing (ZF) equalizer can then be defined accordingly:

Definition 1 Consider the channel model (6) and a multivariable
equalizer which forms the estimate d(k — £|k) of a transmitted
symbol vector d(k — £). If

d(k — elk) = d(k — €) — e(k — €) (13)

where e(k — £) is uncorrelated with all transmitted symbol vectors
d(m) V m, then the equalizer is said to be zero-forcing.

To obtain a closed form expression for the parameters of the
optimal GDFE, we adopt the usual assumption that all decisions
affecting the current estimate are correct.

4. OPTIMUM GENERAL DECISION FEEDBACK
EQUALIZERS

4.1. The optimum MMSE GDFE

Introduce the polynomial matrices
r(g)2 A M) (14a)
(g )EN(@)B@E™). (14b)

and define T'(g~!) and 7(g~!) by the coprime factorization
- — ~=1, _ - - -
Fg I (@) =T"¢N7@™") as)

where #(g~ )" (g~?) constitutes an irreducible MFD.
The general MMSE DFE is then given by the following theo-
rem:

Theorem 1 Assume that a multivariable channel can be described
by (6), and that the transmitted data and the noise are described
by (7) and (8) respectively. Assuming correct past decisions, the
general multivariable DFE (10) minimizes the estimation error co-
variance matrix (11) if and only if

R(g™) =S@HM (g )N(g™?) (16a)
F@) =QgHE(¢7h). (16b)

Above, S and Q, together with the polynomial matrices L1 and
L2 satisfy the two coupled polynomial matrix equations

[ -¢'S7+¢7'Q=L.u.T (17a)
¢ ‘Li.T. — pST. =qL,. (17b)
where the degrees of the unknown polynomials satisfy

5S=¢,
6Ly = ¢,

8Q = max(dT,67) — 1

18
6Ly = max(dr,6C) - 1. as)

Proof: See [S]. | |

The presented MMSE solution provides an optimal DFE struc-
ture with optimal filter degrees. On the other hand, the conven-
tional DFE structure, where both the feedforward and the feed-
back filters have finite impulse responses, is optimal only when
A =M ") =L

In addition to providing an optimal DFE structure and optimal
filter degrees, Theorem 1 gives guidelines on how to choose the fil-
ter degrees in a conventional structure when the optimum structure
is deemed inappropriate.

4.2. The zero-forcing GDFE

‘We now turn our attention to the general zero-forcing DFE.

Theorem 2 Consider the multivariable channel model (6) and the
general DFE (10). There exists a multivariable DFE satisfying
the zero-forcing condition (13) if and only if there exist rational
matrices R(q™") and F(q~') such that

g I=RA'B-¢g " 'F. 19)
Proof: See [5]. |

Equation (19) may have several solutions. However, in some cases
no solution to (19) will exist. The precise condition for this is
stated in Lemma 1.

Lemma 1 There exists a solution to (19) if and only if every com-

mon right factor’ of A~ B and q~*"1 is also a right factor of
e

gL

Proof: The results follows from the general theory of Dio-
phantine equations. See [9]. |

Lemma 1 can be used to determine if a zero-forcing solution
exists for any given channel. However, we can also use Lemma 1
to find cases where trivial channel characteristics make the exis-
tence of a zero-forcing equalizer impossible. The following two
corollaries deal with this issue.

Corollary 1 [f ng > ny, then A~ B and q~*~'1 will always
have a common right factor which is not a right factor of L

Proof: See [5]. [ |
If we define
A = the minimal delay of user 7 in any channel. (20)
then the second corollary can be stated as follows:
Corollary 2 IfA: > £for somei, A~* B and g~ *~ 'L will always

have a common right factor which is not a right factor of gL
Proof: See [S]. [ |

‘When no ZF equalizer can be found, there will be some resid-
ual interference at the output of the corresponding MMSE equal-
izer, irrespective of the noise level. In the limit as the powers of
the interfering signals go to infinity, the MMSE detector will be-
come useless. This phenomenon is called the near-far problem in
the CDMA literature, and detectors that are capable of handling
a situation with very disparate transmitter powers are said to be
near-far resistant.

The discussion above suggests that the existence of a zero-
forcing DFE can be used as an indicator of the near-far resistance
of the corresponding MMSE DFE.

2The right factors should be members of the ring of stable and causal
rational matrices [9].
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Figure 3: The BER of the GDFE (solid) compared to the BER
of the conventional DFE (dashed) for correct decisions and real
decisions.

5. ANUMERICAL EXAMPLE

Toillustrate the potential performance improvements of the GDFE,
we have performed a Monte Carlo simulation. Consider the two
input-two output FIR channel

-1
B = (0.979 +0.204¢

0.826 + 0.563¢~1
-0.843 - 0.538¢7! :

0.403 + 0.915¢7!

Over this channel, we transmit two BPSK modulated signals, i.e.
d;(k) = {+1, -1}, j = 1,2. Atthe receiver, noise is added. The
noise is Gaussian and can be described by the MA model

-0.481 - 0.148¢7 ¢

-1y -0.629 +0.592¢7!
M) = (-0.53 +0.265¢" ) '

0.795-0.132¢7*

This noise model has zeros in 21,2 = 0.298 & 0.3214, and repre-
sents rather weakly colored noise. We compare the performance
of two DFE:s with smoothing lag £ = 3:

o The GDFE, designed using Theorem 1.

e The fixed structure, or conventional, DFE described in [2]
with feedforward filter degree 45 = 4 and feedback filter
degree 6Q = 1.}

In Fig. 3, the bit error rate (BER) is shown as a function of the
signal-to-noise ratio (SNR) of a single user. The SNR:s of the two
users are identical. The simulations are performed using either
correct decisions or decisions from the decision device.

From Fig. 3, we conclude that it is clearly advantageous to take
the noise model into account. The GDFE does this in an optimal
way, whereas the conventional DFE does not. The performance of
the two DFE:s are almost identical for low SNR, but for high SNR,
the difference is significant.

From Fig. 3, we also note that with real decisions, the per-
formance of both DFE:s worsen, but that the difference in perfor-
mance between the two DFE:s remains, except at low SNR:s.

3These degrees have been chosen so that both DFE:s are described us-
ing the same number of parameters.

6. CONCLUSIONS

From a practical point of view, a decision feedback equalizer must
be realizable. Also, significant performance improvements can be
achieved if the structure and filter degrees of the DFE are appropri-
ate. We have presented a solution which fulfills both these require-
ments. The solution, which is explicit in terms of the channel and
noise description, offer both insight and useful design equations,
properties which are vital for detector design.

We have also presented new findings regarding the near-far
resistance of the MMSE decision feedback equalizer. By investi-
gating the possible existence of a ZF MIMO DFE, important con-
clusions can be drawn: If such an equalizer does not exist the cor-
responding MMSE DFE will not be near-far resistant.

The utility of the general DFE is demonstrated in a numeri-
cal example. This example indicates that for colored noise and
moderate to high signal-to-noise ratios, the GDFE outperforms the
conventional DFE. The performance improvement may however
depend on the location of the zeros of the noise description. We
anticipate this conclusion to hold also for time-varying channels.
Investigation of these aspects is currently underway.
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