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Abstract

The porosity content in composite material is known to influence the strength
of the material. It is therefore of interest to monitor the porosity contents dur-
ing manufacturing. Since attenuation and porosity are related, traditional porosity
determination in composites is performed as attenuation measurements using ul-
trasonic tone burst through-transmission. In this paper we propose a multivariable
regression approach for estimating ultrasound attenuation in composite materials
by means of pulse-echo measurements, thus overcoming the problems with limited
access that is the main drawback of through-transmission testing. The result from
the work shows that we can obtain good approximations of the attenuation values
using pulse echo ultrasound. This indicates that it will be possible to replace the
through-transmission technique by a pulse echo technique.

Introduction

The increased use of composite materials in aircraft industry the last years has implied
a growing need for efficient methods for nondestructive characterization of composite
materials. One example is determination of porosity contents in composite specimens
during manufacturing. Results have been reported [1], showing that the porosity contents
can be estimated with good accuracy by utilizing a linear relation between the frequency

dependence of the attenuation, i.e., P = K‘fi—? + 1, where P is the porosity content, K and
[ are constants and where ‘fi—}‘ is the slope of the attenuation curve, a(f).

At CSM Materialteknik AB the question has been raised whether the porosity estima-
tion can be simplified further by utilizing attenuation measurements at a single frequency
only. Empirical work show that for a given frequency, which is selcted based on the
thickness of the inspected object, there is a correlation between the attenuation and the
porosity contents. However, there has still not been any documented results proving that
single frequency measurements are sufficient for porosity estimation.

One obvious disadvantage with both the approaches mentioned above is that the
attenuation measurements are based on through-transmission, TT, testing which means
that we need access to both sides of the specimen and this cannot be guaranteed for many
of the complex geometries found, e.g., in the aircraft industry.

Based on the observation above, we maintain that it is of great interest to be able to
replace T'T measurements by pulse-echo, PE, measurements. The PE technique does not
have the above mentioned disadvantage, but there will on the other hand be difficulties
in analyzing the reflected signal because of the strong disturbing reflections caused by the
complex internal structure of the material.

In this paper we propose a method to measure (estimate) the attenuation in composites
by means of PE measurements using a multivariable regression approach.



Theory
Traditional vs regression approach to automatic material characterization

The traditional approach to automatic material characterization is based on physical
reasoning where a set of features of the signals that we assume to be the most relevant for
solving the characterization problem is selected. However, in situations with a complicated
relation between the measurements and the material property to be characterized, this
approach is not always applicable due to limited understanding of the underlying physical
relations.

If the signal features already have been chosen, another important problem is how
to optimally combine these features in order to obtain the best estimate of the material
property. The physical reasoning will give us ideas of how to combine the features but
there will be no guarantee that we are using the chosen features in an optimal way. One
reason for this is that we have to take into account the uncertainties that always are
present in measurement data.

We should also note that most of todays data acquisition systems are capable of
producing enormous amounts of data which the traditional approach does not exploit for
anything but verification of different ways to extract and combine features. To search in
the space of all such combinations is however a tremendous task.

In a regression approach to material characterization, a statistical model which de-
scribes the relation between measurements and the material property is formulated and
unknown model parameters are estimated from experimental data. This approach is
attractive because it does not require a detailed physical model, and because it automat-
ically extracts and optimally combines important features. Moreover, it can exploit the
large amounts of data available.

As we have mentioned, the particular characterization task considered in this work is
to determine attenuation in composite materials. At our hand we have a data acquisition
system that can provide us with data from both PE and TT testing. The approach is
to treat the attenuation problem as a multivariable regression problem where our target
values, y,, are the measured attenuation values (at different locations n) and where our
input data are the (preprocessed) PE data vectors, u,. The problem is to find a function
Un = f(uy), such that g, ~ y,, based on measured data, the so called training data.

We can use multivariate regression as a tool for extracting not only a suitable model
relating our measurements to the attenuation but also as a tool for finding attenuation
sensitive features. The steps involved in the traditional approach of first choosing the
relevant features and then combine these optimally are in the regression approach merged
into a single step. If the preprocessed data can be interpreted as physical entities, we
might also be able to interpret the model parameters in the multivariable regression. For
instance, if we limit ourselves to linear regression, the estimate will be a weighted sum of
the input data elements and the magnitude of the weights can therefore give important
information about what features in the input data are relevant for estimation of the
attenuation.

Multivariable Regression

The regression problem is here formulated as the optimization problem

mu%n J = %z_:l (yn - @n)2 = % z_:l (yn - fw(un))2 (1)



where 3, is the n-th target value, D is the dimension of the observation vectors u, =

(Up1 --- upp)” and the function f, is chosen within a family of functions that are pa-
rameterized by a parameter vector w, i.e., f,(u,) = f(w,u,). N is the number of
observations.

Assume that we choose f,, to be a linear function of u,, i.e.,

D
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where the model parameters are the scalar wy and the elements of the vector w =
(wiws ... wp)T. In the linear case the optimal solution to the minimization problem
(1) is given by !

w=R,'R], and wo=my— Ry,R,'m, (3)

where m, = =3 . andm, =+ 3N u,. R, =13 (y,—my)(u, —m,)7 is the
empirical cross-covariance matrix between u and y and R, = + SV (u,-m,)(u,-m,)T
is the empirical covariance matrix of u. Eq. (3) and eq. (2) yield the estimates

Un = fu(ug) = my + RyuRgl(un - m,) (4)

The linear solution (3) is known as the ordinary least squares, OLS, solution. An
analysis of OLS shows that the variance of the solution (3) can become large if R, is
nearly singular. This problem occurs typically when the input data vector u has large
dimension. Then we can expect redundancy and thus strong correlation between some
elements in u which will result in a nearly singular or singular matrix R,,. As we mentioned
earlier, we are interested in finding the most informative features of the measurements,
meaning that we ideally want to examine as large an input vector as possible and thus
we will have problems with an ill-conditioned R,,.

Some methods that partly cope with the above mentioned problem have been proposed
in the literature. The subject has been treated in areas like Chemometrics, Econometrics
etc, giving rise for example to the methods Partial Least Squares, PLS, Ridge Regression,
RR, and Principal Component Regression, PCR [2]. In this work we have chosen to
illustrate the multivariable approach using PCR as our regression tool, mainly because it
has a relatively easy interpretation. The basic idea of PCR is described below.

Let u be a vector valued stochastic variable with dimension D x 1 and with covariance
matrix R, of size D x D. The key idea is to linearly transform all observation vectors,
u,, to new variables, z, = W7u,, and then solve the optimization problem (1) where
we replace u, by z,. We choose the transformation so that the covariance matrix of z is
diagonal and (more importantly) none if its eigenvalues are too close to zero. (Loosely
speaking, the eigenvalues close to zero are those that are responsible for the large vari-
ance of the OLS-solution). In order to find the desired transformation, a singular value
decomposition of R, is performed yielding

R, = TATT (5)

More correctly, the regression problem involves means instead of averages in (1). Furthermore,
when the criterion function is quadratic, the general (usually nonlinear) optimal solution is given by
9n = E[y|uy], i-e., the conditional mean of y given the observation u,,.



where A is a diagonal D x D matrix containing the eigenvalues of R,, {1, A2, ..., Ap},
in decreasing order as diagonal elements. 7' is a matrix containing the eigenvectors,
{t1,19,...tp} corresponding to these eigenvalues as column vectors, i.e., T'= (t; ty ... tp).
The new, transformed input vectors, are formed by

2, = T (u, — my) (6)

where T, denote a D X m matrix that only contain the eigenvectors corresponding to the
largest eigenvalues, i.e., Ty, = (t1t2 ... t,). Note that z is a zero-mean stochastic variable
with dimension m < D. We choose the parameter m as the index where the decreasing
sequence {A1, A, ..., A\p} goes below a certain threshold value, 6, i.e. A\, > 6, M\, 1 < 0,
thereby getting dangerously close to zero. Setting the threshold is a subjective choise and
that is one of the disadvantages with PCR. Unfortunately we cannot determine whether
the information that we throw away is useless for the characterization task, we just know
that our solution will have less variance. By solving the optimization problem (1) with
u, replaced by z, we obtain the estimates

Un = my + Rysz_lzn =my + RyuTngng,;(un —m,) (7)

The last equality is found by using the relations R,, = R,,T;, and z, = T (u, — m,).
Eq. (7) finally gives us the weights, w = R, T,,R; ‘T, for our regression model.

Experiment
Through transmission measurements

During the attenuation measurements, Transducer 1 was excited with a narrowband tone
burst with center frequency 18 MHz, see Figure 1 for a schematic setup. The amplitude of
the sound pressure was measured at Tranducer 2 by means of an amplitude peak detector.
A reference amplitude, A,.r, was measured outside the object as shown at the right hand
side of Figure 1. The object was scanned in the zy-plane and for every position, (z,y),
the attenuation, a(z,y), was calculated as the quotient (in db) between the amplitude at

Transducer 2, A(z,y), and Ay, ie., a(z,y) = 10log;, Af":f)-

Pulse echo measurements and preprocessing

The PE data was obtained by repeating the scanning of the object, now measuring the
received echo at Transducer 1. For every position, (z,y), an A-scan was obtained from
which we extracted the back wall echo by means of a time gate. This back wall echo is
denoted s(z,y). Note that s(z,y) is a time signal that can be written s(¢, z,y) where ¢ is
the time index. One example of such a back wall echo is shown in Figure 2.

Because of the double sound path involved in PE measurements of the back wall echo,
we approximate the corresponding attenuation at a certain frequency to be twice as large
as the attenuation that would be obtained by an ordinary TT measurement. We propose
to use the logarithm of the absolute value of the Fourier transform of the back wall echo
as input data, i.e

u(z,y) = In (|7 (s(t, 2,9))l) (8)

where F(s(t,z,y)) is the Fourier transform of s(¢,x,y) (taken separately for each com-
ponent) with respect to time. Since the amplitude spectrum for a real-valued signal is
symmetric, only half of the spectral coefficient are needed. This choice of preprocessing



method should, provided the approximation mentioned above is valid, yield a linear rela-
tion between our preprocessed data and the target values. With a linear relationship, a
linear regression approach using PCR is natural.
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Figure 1: Schematic view of the measurement setup used in the experiment
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Figure 2: Example of back wall echo (left) and preprocessed back wall echo (right).

Results

The results presented below were obtained using a 2 mm thick carbon fiber reinforced
epoxy composite laminate with 16 layers. The laminate was quasi isotropic with fiber
orientations: 0°, 90° and +45°. The laminate had an average porosity content of approx-
imately 1.7%. The object was divided in a training area and an evaluation area. The
model parameters were determined by data solely from the training area. Both ultra-
sound tranducers used in the experiment had a center frequency of 21 MHz and a 6 dB
bandwidth of 70%.

The back wall echoes were sampled at 100 MHz and the length of these were 70
samples, yielding a size of the input data vectors, D = 35. An example of such an echo
is shown in Figure 2 together with its log spectral amplitude.

In our experiment we used thresholing value 6 = 0.025, yielding m = 25 and a ratio
between the smallest and the largest eigenvalue );\—'1” = 0.01.

In Figure 3 we see how the logarithm of the spectral amplitude effects the estimation
results. For each component in input data vector, ug, we have defined the feature rele-
vance, Fr(d), as the weight in the regression model multiplied by the standard deviation
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Figure 3: Feature relevance. The weight parameters for every component in the input
vector multiplied with the standard deviation for that component are plotted. This is a
measure of the significance of this feature (in this case, the logarithm of the power in a
small frequency region.)

of the corresponding log amplitude spectral value, i.e., Fr(d) = wgstd(ug). The multi-
plication is because components with large standard deviation will have more influence
on the estimate than those with less. By examining the plot we find that the important
features for estimating T'T attenuation are the log spectral amplitudes around 10 MHz.
Note that the frequency resolution is inherently bad because of the short A-scan segment
that have been used for calculating the Fourier transform.

The results in Figure 3 illustrate how we by using the regression approach can find
relevant features in an automatic manner. We can also interpret the extracted features
physically. Maybe we would expect the log amplitude of the frequencies around 18 MHz
to be the most relevant feature but the results in this example indicate that we instead
should put more weight to the frequencies around 10 MHz, at least when performing the
PE measurements and the preprocessing as was described above. One interpretation of
this result is that since the higher frequencies are attenuated more heavily then the lower,
we loose much energy (or loosely speaking, information) in these frequencies and therefore
the lower frequencies will bear comparatively more information. However, it is important
to note that the extraced weights are closely related to the preprocessing method used
and, equally important, to how the measurements are performed.

In Figure 4 the measured attenuation values (TT) and the corresponding estimates are
plotted against each other. Ideally (with error free estimates) all sample points should lie
on the straight line through the origin with unit slope. Clearly there is a strong correlation
between the estimates and the true values.
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Figure 4: Scatterplot. Measured attenuation values on z-axis and estimated on y-axis.
All samples are from the evaluation area

In Figure 5 a C-scan produced by the estimates and corresponding measured C-scan
are presented. By comparing the C-scans in Figure 5 we see that the PE estimates in most
cases exhibit the global variations that are present in the T'T measurements. Note that
we have performed a (spatial) lowpass filtering on both C-scans in order to emphasize
these global variations. The lowpass filtering is mainly to help in a visual comparison
that otherwise would be difficult due to the strong horizontal, vertical and diagonal lines
caused by the fiberorientations at different layers that would mask much of the imagages.
Lowpass filtering can also be motivated with the original (porosity estimation) problem
in mind. Porosity contents is mainly a statistical property that only have meaning when
considering a (small) area of the C-scan.

It is worth to mention that the approximation is almost as good in the evaluation area
as in the training area. In other words, we seem to have found a regression model with
good generalization properties.

Conclusions and future work

We have proposed a multivariable regression approach for the estimation of ultrasound
attenuation in composite materials by means of PE-measurements, thus overcoming the
problem of limited access that is the main weakness of T'T testing. Estimating the atten-
uation is a step towards determining the porosity contents, something that is of interest,
for instance, in composite manufacturing.
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Figure 5: Approximation results. Measured 18 MHz attenuation presented as a C-scan
(left) and corresponding estimated attenuation based on PE-data (right)

The regression approach can be used in an iterative procedure to develop a material
charactarization system. By investigating the model parameters we can determine the
features in the input data which are most significant for solving the estimation problem.
This information can be fed back to modify the testing procedure to get more accurate
measurement, of these suggested significant features.

In this preliminary work we have investigated composite objects with a simple geom-
etry. In future work the proposed approach will be applied to more complicated objects,
in particular glued structures. Since we for such objects expect to have a less distinct
back wall echo, we have reason to believe that the preprocessing method that was used
in this work has to be somewhat modified.

It would also be of interest to investigate if the attenuation estimates can be further
improved by extending our input data vectors. Since attenuation (and porosity) is spa-
tially correlated, we should expect improvements when including data from A-scans in a
neighbourhood around the point of interest. This is also a topic for future work.
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