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ABSTRACT

A temporaly parameterized channel estimate can be
improved by projedion onto a spatialy parameterized
subset. The projedion is performed in a spedrum norm
sense, and is investigated by means of simulations. By
utilizing the dannel edtimation method in a
multidimensional MLSE detecor, significant improvements
in the hit-error rates can be obtained, compared to using the
initial estimate of the channel.

1. INTRODUCTION

Due to the increasing demand o capadty in wireless
telecommunicadions, it is of grea interest to find ways to
incresse the spedral efficiency. Since the total available
bandwidth is limited, the focus is st on the spatia
dimension. The spatial dimension can be exploited by means
of an array antenna & the base station, in combination with a
spatio-temporal equalizer. An indired equalizer requires an
estimate of the spatio-tempora channel from the mobile to
the base station.

In [1], a maximum likelihood method for estimation of
diredion of arrivals (DOAS) and relative gains in a path
model, for several possbly coherent signals, is derived. In
[2] this method is utilized in order to exploit the spatial
structure when identifying channels to an array of antennas.
In this paper we propcse an improved method. First, an
initial estimate of the dannels to the individual antenna
elements is formed, exploiting the a priori known temporal
filtering in the transmitter and the recever, as described in
[3]. The spatial structure of the channel is then exploited by
projeding the dannel onto a subset of channels
parameterized in DOAs and relative gains.

2. CHANNEL IDENTIFICATION UTILIZING PULSE
SHAPING INFORMATION

Consider the uplink transmisson. The aray is assumed to
have M elements. The symbads are pulse shaped at the
transmitter, upconverted to the ar interface frequency and
transmitted through the 4ar interface Filtering and
downconversion is then performed at the recever. The
resulting system can be modeled by a @ntinuous time filter
with impulse response p(t;) (t. denotes continuous time)
containing al a priori known filtering at the transmitter and
the recaver, a physicd channel with impulse response h(t;)
from the mobile to the i:th antenna dement, and additive
noise ni(t). Figure 1 shows the cntinuous time model,
where the derivative operator p is used. Setting the sampling
period T to 1, we get the output sequence Yy;(t) for the i:th
antenna, where t represents discrete time. The transfer
function from the symbals d(t) to the discrete time output
yi(t) will therefore be modeled by the FIR-filter
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Fig. 1. Continuous time transmission model.
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Fig. 2. Simple discrete time model.
The dhannels Bi(q™") can now be identified by formulating a
least-squares problem, but since the filtering performed at
both the recaver and transmitter can be mnsidered known,
it is wiser to use this information and only estimate the
unkmown part of the channel [3]. In Figure 3 this approach is
applied to an array of antennas. Two samples per symbol
and two pulse shaping branches per channel are used. A
least-squares problem can now be formulated using the
known signals x(t) and y;(t) to identify the paynomials
H,—i(q'l), giving the overalMx2 polynomial channel matrix

By(@™) = H@™)P@@™), (1)
with H(g™") andP(q?) defined in equations (11) and (13).
3PROJECTION ONTO A SPATIALLY
PARAMETERIZED SUBSET

In this sedion, the overall channel estimate obtained
acording to the method described above, here denoted

L3>0 (971, isprojeded onto a spatially parameterized subset
Beqy(q"l). This will in general improve the dannel
estimate since the gpatial structure of the dannel is
exploited. The Mx2 pdynomial matrix éo(q'l) is used as



an initial estimate of the dcannel from the mobile to the
array antenna. If we assume that the channel is constituted of
multiple reflections of the transmitted signal,
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Fig. 3. Channel model utilizing multiple pulse shaping
branches and oversampling.

the true dhannel will belong to a subset, parameterized by
angles, 0, and relative gains (signal strength), y, of the
multi path components. The initial estimate éo(q‘l) will in

genera not belong to the subset {ngy(q‘l)} , and the ideais
therefore to projed By(qt) onto {Bg’y(q'l)} . The
projection can be illustrated as in Figure 4.
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Fig 4. lllustration of the projection.

Errorsin the initial estimate in "diredions’ where we have
strong co-channel interference ae paid little atention. A
more detailed description of the projedion is given below,

but first the involved parameters and variables are defined

The parameterized subseg, , (9~ )}

nb
Be,y(q_l) = b (6, :Vl)q_l =
nb ; ! (2)
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where 6; 0[0271] and y; OO. The I:th vector tap
corresponding to thketh fractional sample can be written as

Ky
By (B, Yw) = z Y im@(Bgm) 3
m=1

where a(8,,) is the Mx1 array response vedor
parameterized by the ange 6,,,. The number of impinging
plane waves for the I:th vedor tap and the k:th fradional
sample is given by Ky . The angles and relative gains
corresponding to ead of the plane waves are mlleded in
the parameterectors 6,, andy , respectively, given by

9k|:[9k|1 ekIKk,]T

L (4)
Yu :[Vku Vk||<k,]
The parametematrices 6 andy are defined as
0=(0,y O, 641 O, ... O 0
[ 10 20 11 21 Inb 2nb] (5)

V:[Vlo Yoo Y11 Y21 - Vb y2nb].

In a redistic situation, one would have to consider the
effeds of over- and underestimation of the number of paths
Ky per sample and tap. In this gudy, we dso make the
asumption that al anges are digtinct, i.e. no anguar
spread.

The initial channel estimate B,(q™2) is projeded onto
the subse{ By y(q'l)} in aspectrumnorm sense, i.e.

(6)

-1

6,y =

Ry o (@07

1

giving Béy(q'l) . The norm"A(q' )"W(q’q_ ) is defined as

thetrace of the constant term of the matrix polynomial

A (@W(a,a)A@™) . 7
Theerror of the initial estimatd@o(q'l) is defined as
DBo(a7) = By(@™) ~ Brue(d™) (8)

where B,,(q}) is the true cannel (in the subset
{Bgﬁy(q'l)}). The doublesided matrix polynomial
RAQO’AE}O(q,q‘l) is the expedation of the spedrum of
ABy(q7Y), ie.

Ryg, a8, (€07 = E[Aéo(q'lméo“(q) . ©

The weighting R (9,971 puts high weights in the

AB AB
aress of the spatio-temporal spedrum Bo(q'l)BO (q) that

has the elements e |ow uncertainties, and low weights in the aess of

By(q ™) B (q) that have high uncertainties.
We now derive an expresson for Rz s (9,97 . The
0 0
output matrixY(t) can be expressed as

Y(t) =H(@™)X(®) (10)
whereH(q™") andX(t) are defined as
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Oa1(t)  %2(t) 0 1
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and

Poo(@™) = Pooo p0.0,lq_l+-'-+p0.0,npq_np- (14)

The polynomial matrix H(gq") can be estimated with the
least-squares method as

H@™ = Rx (9.9 )R (@07 (15)
where

R 4= 1 r]p+nh\(t+ xH)g™ 16

(0,4 )—N—uzm:z_np( m X" (t)q (16)

~ np
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u t m=-np
and N, is the number of terms used in the gproximation.
Above, np+1 and nh+1 are the number of taps in the pulse
shaping filter and in the physical channel, respectively.
The output matrix(t) can also be written as

Y(t) = Yirue(t) + N(1) (18)
whereYy.e is the "noise-free” output given by
Y[rue(t) = Btrue(q_l)d(t) (19)

and N(t) is an Mx2 noise matrix. It is important to note that
we have negleded errors in the channel estimate due to an
incorred model structure, i.e. only errors due to the noise is
considered. Define the residugff) as

£(t) = Y(t) - Bo(a™)d (D).

The channel error is then given by
DBy (™) = Bo(@™) ~ Byue(@ ™) =
=(H(@™) ~ Hue (@ )P(@™) = AH(@@ P(@ ™) =
= Rx(a.9 )R (a.a7)P(@™) (21)

where FAzgx (0,97%) is defined similarly to (16). For a large

number of training symbolN, the following holds

Rex (@071 = P(@™)P" (q)
and

Rygas, (0:07) = E[AB(a )8 (0)] =

= K Z gty +my)d" (t)g™ ™ x
t.my, b, My
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= EP* @(P@ P (@) P@ e 0. (23)
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In the gproximations above we have ssumed the symbadls
d(t) and the residues &(t) to be temporally white. In pradice,
with co-channel interference, the noise will be temporaly
colored, but we still make the assumption above, since this
leads to a radicdly simplified decoupled agorithm, as will
be explained below.

For the spedal case of two branches and two samples
per symbol, P(@%) will be a square matrix, and the
expression above simplifies to

Rygeg, (07 = E[a8o(@™)ABY (9)] = o0

= Ele0e" 0] = Ryg pa,
i.e. a onstant matrix (no g-dependence), which means that
QAI%O,A@O (0,971 = IféAéo,Aéo is purely spatial. This means
that the projedion in this case is purely spatial, and
therefore we cdl the projedion here aparametric spatial
projection. The minimizaion of the norm in (6) now
decouples as shown below, i.e.

A T
|Bo@™ - B, @),
'AB,AB
= tl'{AboH é&BO a8, Abp+.. +Abjy ﬁ&éo ,ABOAbnb}
= tr{AboH IQ&%O,ABOAbo}*'- . -+tr{AQ:t|) IQA_éO,ABO Abnb} - (25)
where

Ab =B -b(6.y)). (26)
The terms of (25 can therefore be minimized
independently. Theth term can be expressed as
Hby' O

tr{AQH ﬁ&éo,ABOAQ} =tr %.-éxb; éRAéO,ABO [Abu Ab,, ]g
|

— ARH B-1 HB-1
= Aby Ryg, ap, Abyy +Ab; Ryg) ag, ADY -

(27)

We thus get two independent minimizations per vedor tap,
and the minimizing angles and gains are therefore given by

ékl W = argmyng% —by (B, V) E (28)
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This can be solved as (see [1])

0
%m = { ﬁ&é{is A(ém )}+ ﬁa_rjaj,zs ) |

L, ~Hla- A
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where

MO =[a0u) au2) -~ alu,)|  (30)

and ¥ denotes pseudo inverse. The @ove non-quadratic
minimizaion with resped to 6y can be solved by some
gradient method, and the resulting angles and relative gains
of each path in each tap give the final channel estimate.



4. EXAMPLES

In this ®dion the cannel identification methods discussed
in Sedions 2 and 3 are gplied to a multipath channel with
intersymbal interference. Independent Rayleigh fading is
asumed. The example physicd channel have taps of equal
mean power at delays 0, 0.33T, 0.67T and T. A raised
cosine pulse with roll-off fadtor 0.35is used. For simpli city
a ULA (uniform linea array) is used. Distinct angles are
assumed (no distributed transmitters).

Four identification methods have been investigated and
compared; unparameterized least-squares identificaion
(LS), parametric spatia projedion initialized with the
unparameterized LS-estimate of the dannel (LS-PSP), the
method d [3] utilizing the pulse shaping information with
two branches and two times oversampling (PS), and finally
the here derived parametric spatial projedion initialized by
PS (PS-PSP). The gradient method for the non-linea
minimizaion in the PSP-methods is initialized by the true
angles. The true anges would of course not be known in a
red situation, but if the angles vary slowly, estimated angles
from the previous frame muld be used to initiate the angle
cdculation of the aurrent frame. We only nedal initial
estimates good enough to avoid false local minima.

The methods can be compared by studying the relative
channel error, defined as

"BO B Btrue Frobenius/" B[rue"Frobenius

where L3>0 is a matrix with columns formed by the Mx2

(31)

metrix taps of éo(q'l). A more useful performance
criterion is the bit-error-rate (BER) adchieved by using the
channel estimates in a multi-channel MLSE [4].

Figure 5 shows the relative channel error and the BER as
a function of the number of antennas. The signal-to-noise
ratio (SNR) was chosen to -5 dB. A co-channel-interferer
with the same delay profile & the signal of interest but with
different DOAs was dmulated, giving a signal-to-
interference ratio (SIR) of -3 dB. The length of the BPSK-
modulated training sequence was chosen to 26 symbals.
Since LS and PS are purely temporal methods, it is not
surprising that the channel errors remain constant as we
increasse the number of antennas. LS-PSP and PS-PSP
utili zes the spatial structure of the channel, and therefore the

channel errors decrease as the number of antennas increase§ntemationa|
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Fig. 5. Relative channel error (a) and BER (b) as a function
of the number of antennas. Solid is LS, asterisk LS-PSP,

dashed PS and dash-dot PS-PSP.

We ca seethat the BER is sgnificantly improved for PS-
PSP compared to LS-PSP. If 4 % is an accetable BER, the
number of antennas can be reduced from 12 to 9. Note that
the BER for al methods deaeeases as the number of
antennas increases because of the improved antenna gain.

5. CONCLUSIONS

The dannel estimate obtained by the method o [3] was
improved by projedion in a spedrum norm sense onto a
subset parameterized in angle of arrivals and relative gains.
The resulting channel estimate was compared to other
estimates in terms of relative channel error and BER. The
spatio-temporal methods outperform the purely temporal
ones as the number of antennas is increased. A notable
improvement can aso be seen when comparing the
propased method to the method where an urparameterized
initial LS estimate is used, see [1].
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