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ABSTRACT

A temporally parameterized channel estimate can be
improved by projection onto a spatially parameterized
subset. The projection is performed in a spectrum norm
sense, and is investigated by means of simulations. By
utili zing the channel estimation method in a
multidimensional MLSE detector, significant improvements
in the bit-error rates can be obtained, compared to using the
initial estimate of the channel.

1. INTRODUCTION

Due to the increasing demand of capacity in wireless
telecommunications, it is of great interest to find ways to
increase the spectral eff iciency. Since the total available
bandwidth is limited, the focus is set on the spatial
dimension. The spatial dimension can be exploited by means
of an array antenna at the base station, in combination with a
spatio-temporal equalizer. An indirect equalizer requires an
estimate of the spatio-temporal channel from the mobile to
the base station.

In [1], a maximum likelihood method for estimation of
direction of arrivals (DOAs) and relative gains in a path
model, for several possibly coherent signals, is derived. In
[2] this method is utili zed in order to exploit the spatial
structure when identifying channels to an array of antennas.
In this paper we propose an improved method. First, an
initial estimate of the channels to the individual antenna
elements is formed, exploiting the a priori known temporal
filtering in the transmitter and the receiver, as described in
[3]. The spatial structure of the channel is then exploited by
projecting the channel onto a subset of channels
parameterized in DOAs and relative gains.

2. CHANNEL IDENTIFICATION UTILIZING PULSE
SHAPING INFORMATION

Consider the uplink transmission. The array is assumed to
have M elements. The symbols are pulse shaped at the
transmitter, upconverted to the air interface frequency and
transmitted through the air interface. Filtering and
downconversion is then performed at the receiver. The
resulting system can be modeled by a  continuous time filter
with impulse response p(tc) (tc denotes continuous time)
containing all a priori known filtering at the transmitter and
the receiver, a physical channel with impulse response hi(tc)
from the mobile to the i:th antenna element, and additive
noise ni(tc). Figure 1 shows the continuous time model,
where the derivative operator p is used. Setting the sampling
period T to 1, we get the output sequence yi(t) for the i:th
antenna, where t represents discrete time. The transfer
function from the symbols d(t) to the discrete time output
yi(t) will therefore be modeled by the FIR-filter

Fig. 1. Continuous time transmission model.

Bi(q
-1)=bi0+bi1q

-1+...+bi,nbq
-nb, where q-1 represents the

backward shift operator, i.e. q-1x(t)=x(t-1). The discrete time
model is depicted in Figure 2.

Fig. 2. Simple discrete time model.

The channels Bi(q
-1) can now be identified by formulating a

least-squares problem, but since the filtering performed at
both the receiver and transmitter can be considered known,
it is wiser to use this information and only estimate the
unknown part of the channel [3]. In Figure 3 this approach is
applied to an array of antennas. Two samples per symbol
and two pulse shaping branches per channel are used. A
least-squares problem can now be formulated using the
known signals xik(t) and yjk(t) to identify the polynomials
Hji(q

-1), giving the overall Mx2 polynomial channel matrix�
( ) ( ) ( )B q H q P q0

1 1 1− − −= , (1)

with H(q-1) and P(q-1) defined in equations (11) and (13).

3 PROJECTION ONTO A SPATIALLY
PARAMETERIZED SUBSET

In this section, the overall channel estimate obtained
according to the method described above, here denoted�

( )B q0
1− , is projected onto a spatially parameterized subset

B qθ γ, ( )−1 . This will i n general improve the channel

estimate since the spatial structure of the channel is

exploited. The Mx2 polynomial matrix � ( )B q0
1−  is used as
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an initial estimate of the channel from the mobile to the
array antenna. If we assume that the channel is constituted of
multiple reflections of the transmitted signal,

Fig. 3. Channel model utilizing multiple pulse shaping
branches and oversampling.

the true channel will  belong to a subset, parameterized by
angles, θ, and relative gains (signal strength), γ, of the

multipath components. The initial estimate � ( )B q0
1−  will i n

general not belong to the subset { }B qθ γ, ( )−1 , and the idea is

therefore to project � ( )B q0
1−  onto { }B qθ γ, ( )−1 . The

projection can be illustrated as in Figure 4.

Fig 4. Illustration of the projection.

Errors in the initial estimate in ”directions” where we have
strong co-channel interference are paid littl e attention. A
more detailed description of the projection is given below,
but first the involved parameters and variables are defined.

The parameterized subset { }B qθ γ, ( )−1  has the elements

[ ]

B q b q

b b q

l l l

l

nb
l

l l l l l l
l

l

nb

θ γ θ γ

θ γ θ γ

, ( ) ( , )

( , ) ( , )

−

=

−

−

=

= =

=

∑

∑

1

0

1 1 1 2 2 2

0

, (2)

where [ ]θ πij ∈ 0 2,  and γ ij ∈ ℜ . The l:th vector tap

corresponding to the k:th fractional sample can be written as
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where a klm( )θ  is the Mx1 array response vector

parameterized by the angle θ klm . The number of impinging

plane waves for the l:th vector tap and the k:th fractional
sample is given by Kkl . The angles and relative gains

corresponding to each of the plane waves are collected in
the parameter vectors θ kl  and γ kl , respectively, given by
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The parameter matrices θ and γ are defined as
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In a realistic situation, one would have to consider the
effects of over- and underestimation of the number of paths
Kkl  per sample and tap. In this study, we also make the

assumption that all angles are distinct, i.e. no angular
spread.

The initial channel estimate � ( )B q0
1−  is projected onto

the subset { }B qθ γ, ( )−1  in a spectrum norm sense, i.e.
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The error of the initial estimate 	 ( )B q0
1−  is defined as

∆ 	 ( ) 	 ( ) ( )B q B q B qtrue0
1

0
1 1− − −= − (8)

where B qtrue ( )−1  is the true channel (in the subset
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output matrix Y(t) can be expressed as

Y t q X t( ) ( ) ( )= −H 1 (10)
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The polynomial matrix H(q-1) can be estimated with the
least-squares method as�
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and Nu is the number of terms used in the approximation.
Above, np+1 and nh+1 are the number of taps in the pulse
shaping filter and in the physical channel, respectively.

The output matrix Y(t) can also be written as

Y t Y t N ttrue( ) ( ) ( )= + (18)

where Ytrue is the ”noise-free” output given by

Y t q d ttrue true( ) ( ) ( )= −B 1 (19)

and N(t) is an Mx2 noise matrix. It is important to note that
we have neglected errors in the channel estimate due to an
incorrect model structure, i.e. only errors due to the noise is
considered. Define the residues ε(t) as
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∆

∆

�
( )

�
( ) ( )

(

�
( ) ( )) ( ) ( ) ( )

B q B q B q

H q H q P q H q P q

true

true

0
1

0
1 1

1 1 1 1 1

− − −

− − − − −

= − =

= − = =

= − − − −

�
( , )

�
( , ) ( )R q q R q q P qX XXε

1 1 1 1 (21)

where 

�
( , )R q qXε

−1  is defined similarly to (16). For a large

number of training symbols N, the following holds
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In the approximations above we have assumed the symbols
d(t) and the residues ε(t) to be temporally white. In practice,
with co-channel interference, the noise will be temporally
colored, but we still make the assumption above, since this
leads to a radically simpli fied decoupled algorithm, as will
be explained below.

For the special case of two branches and two samples
per symbol, P(q-1) will be a square matrix, and the
expression above simplifies to
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i.e. a constant matrix (no q-dependence), which means that�
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that the projection in this case is purely spatial, and
therefore we call the projection here a parametric spatial
projection. The minimization of the norm in (6) now
decouples as shown below, i.e.�
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where
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The terms of (25) can therefore be minimized
independently. The l:th term can be expressed as
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We thus get two independent minimizations per vector tap,
and the minimizing angles and gains are therefore given by�
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This can be solved as (see [1])
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where

[ ]A a a akl kl kl klKk
( ) ( ) ( ) ( )θ θ θ θ= 1 2 � (30)

and + denotes pseudo inverse. The above non-quadratic
minimization with respect to θkl  can be solved by some
gradient method, and the resulting angles and relative gains
of each path in each tap give the final channel estimate.



4. EXAMPLES

In this section the channel identification methods discussed
in Sections 2 and 3 are applied to a multipath channel with
intersymbol interference. Independent Rayleigh fading is
assumed. The example physical channel have taps of equal
mean power at delays 0, 0.33T, 0.67T and T. A raised
cosine pulse with roll -off f actor 0.35 is used. For simplicity
a ULA (uniform linear array) is used. Distinct angles are
assumed (no distributed transmitters).

Four identification methods have been investigated and
compared; unparameterized least-squares identification
(LS), parametric spatial projection initialized with the
unparameterized LS-estimate of the channel (LS-PSP), the
method of [3] utili zing the pulse shaping information with
two branches and two times oversampling (PS), and finally
the here derived parametric spatial projection initialized by
PS (PS-PSP). The gradient method for the non-linear
minimization in the PSP-methods is initialized by the true
angles. The true angles would of course not be known in a
real situation, but if the angles vary slowly, estimated angles
from the previous frame could be used to initiate the angle
calculation of the current frame. We only need initial
estimates good enough to avoid false local minima.

The methods can be compared by studying the  relative
channel error, defined as�

B B Btrue
Frobenius

true
Frobenius

0 − (31)

where �B0  is a matrix with columns formed by the Mx2

matrix taps of � ( )B q0
1− . A more useful performance

criterion is the bit-error-rate (BER) achieved by using the
channel estimates in a multi-channel MLSE [4].

Figure 5 shows the relative channel error and the BER as
a function of the number of antennas. The signal-to-noise
ratio (SNR) was chosen to -5 dB. A co-channel-interferer
with the same delay profile as the signal of interest but with
different DOAs was simulated, giving a signal-to-
interference ratio (SIR) of -3 dB. The length of the BPSK-
modulated training sequence was chosen to 26 symbols.
Since LS and PS are purely temporal methods, it is not
surprising that the channel errors remain constant as we
increase the number of antennas. LS-PSP and PS-PSP
utili zes the spatial structure of the channel, and therefore the
channel errors decrease as the number of antennas increases.
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Fig. 5. Relative channel error (a) and BER (b) as a function
of the number of antennas. Solid is LS, asterisk LS-PSP,
dashed PS and dash-dot PS-PSP.

We can see that the BER is significantly improved for PS-
PSP compared to LS-PSP. If 4 % is an acceptable BER, the
number of antennas can be reduced from 12 to 9. Note that
the BER for all methods decreases as the number of
antennas increases because of the improved antenna gain.

5. CONCLUSIONS

The channel estimate obtained by the method of [3] was
improved by projection in a spectrum norm sense onto a
subset parameterized in angle of arrivals and relative gains.
The resulting channel estimate was compared to other
estimates in terms of relative channel error and BER. The
spatio-temporal methods outperform the purely temporal
ones as the number of antennas is increased. A notable
improvement can also be seen when comparing the
proposed method to the method where an unparameterized
initial LS estimate is used, see [1].
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