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Abstract: A new type of tracking algorithm
with time-invariant gain is presented. It can
be applied for obtaining prediction, filtering or
fixed-lag smoothing estimates of time-varying pa-
rameters in linear regression models.

The algorithm design constitutes a systematic
way of introducing a priori information into
LMS-like adaptation laws, using the concept of
stochastic hypermodelling of the unknown time-
varying parameters. The design equations, which
provide the structure and adjustment of the
tracking algorithms, are derived from a Wiener
filtering perspective.

The simplest variant of the novel class of
algorithms, denoted Simplified Wiener LMS
(SWLMS), is presented here. The SWLMS al-
gorithm is particularly well suited for tracking of
parameters of mobile radio channels. The utility
of the algorithm will be demonstrated on a mo-
bile radio channel, where channel coefficients are
subject to Rayleigh fading. The tracking scenario
refers to the D-AMPS 1900MHz standard.

1 Introduction

We often need to construct a linear dynamic
model based on data, by first selecting a suitable
model structure, and then estimating its parame-
ters. In situations with time-varying parameters,
the parameter estimation problem becomes a pa-
rameter tracking problem.

Ad hoc tracking schemes can be obtained by
modifying algorithms constructed for the time-
invariant case, under the assumption of slow pa-
rameter variations. Standard modifications are
moving data windows and non-vanishing adapta-
tion gains. The choice of adaptation gain (or data
window) is based on a compromise between noise

sensitivity and tracking capability. For exam-
ple, the use of modified stochastic approximation

gives the Least Mean Squares (LMS) algorithm,
while Gauss-Newton schemes lead to e.g. win-
dowed Recursive Least Squares (RLS) algorithm.
These two algorithms are in frequent use. In gen-
eral, the algorithms work well if the regressors
provide sufficiently rich information, and if the
time-variations are slow. For fast time-variations,
the performance of both LMS and RLS tracking
schemes can be poor: We may find no reasonable
adjustment of the data window, since both types
of algorithms will, in general, have a suboptimal
structure.

An efficient way of improving the tracking per-
formance is to utilize any existing a prior: infor-
mation about the nature of the time variations.
For example, it may be known that the parame-
ters behave approximately as sinusoids. Such in-
formation can be included into algorithms based
on Kalman filters, either in the form of stochas-
tic models or as functional series. Different ap-
proaches for incorporating a prior: information
into tracking schemes can be found in, for exam-

ple, [2], [4] and [7]-[11].

When we studied adaptive equalizers for the D-
AMPS system (IS-54B) a few years ago, existing
methods for analysis and design turned out to be
unsuitable, for the following reasons:

o The parameter variations of the FIR-channel
cannot be regarded as “slow” .

e The use of Kalman-based algorithms was out
of the question, due to severe limitations on
the allowable computational complexity.

e The performance of the LMS and RLS- al-
gorithms was unacceptable.

Taking into consideration that a prior: infor-
mation about the nature of the time-variations

1 «Slow” is here a relative concept. It depends on the
speed of parameters drifts as compared to noise power,
and on the number of parameters to be estimated.



was available from physical grounds, a response
to the problems described above was to develop
a novel class of algorithms with time-invariant
gains. The algorithms were required to minimize
the steady state mean square parameter track-
ing error for smooth but fast variations in the
parameters of linear regression models, in partic-

ular FTR models [8].

The proposed algorithms combine low computa-
tional complexity with an often significant per-
formance increase as compared to LMS and win-
dowed RLS. The increased performance is at-
tained by introducing stochastic “hypermodels”
which describe the second order properties of
time-varying parameters.

Another feature of the class of algorithms is that
smoothing and prediction parameter tracking can
be obtained in a straightforward way. This is
valuable, since the use of fixed-lag smoothing
will improve the attainable tracking performance
whenever future data values are available. Multi-
step prediction of radio channel properties is of
importance in e.g. mobile radio receivers which
utilize Viterbi algorithms.

The novel design methodology offers a selection
of algorithms of different complexity. There is a
direct connection between the generality of the
assumed hypermodel and the complexity of the
resulting algorithm. As outlined in Section 7,
simpler models will result in simpler design equa-
tions and in tracking algorithms with a lower
computational complexity.

The previous work closest related to our approach
is that of Benveniste [2]. Tt was aimed for the
use of (state-space) hypermodels in the design of
adaptation algorithms with time-invariant gains.
Compared to that approach, the methodology
presented here can be claimed to be simpler to
use. Moreover, it is not restricted to situations
with slowly time-varying parameters.

In this paper, we shall focus the presentation on
one of the simplest members of the a priori based
class of algorithms: the Simplified Wiener LMS
(SWLMS) algorithm. Tt is based on the assump-
tion that all the time-varying parameters have
the same statistics, described by second order
autoregressive (integrated) processes. The de-
sign equations for the steady state MSE-optimal
tracking algorithm are particularly simple in this

case. The LMS algorithm is a special case of the
SWLMS algorithm, and follows by considering
random walk hypermodelling and FIR systems
with white input data of zero mean.

After introducing the tracking problem in Sec-
tion 2, we directly present the SWLMS algorithm
in Section 3. (Readers more interested in the use
of the algorithm than in its derivation could read
the Sections 2, 3, 4.2 and 5.2 only.) Section 4
then introduces the two key concepts on which
our approach is based:

e The design of adaptation laws with time-
invariant gains is reformulated as a linear
filter design problem.

e Linear time-invariant “hypermodels” are
used for characterizing the assumed dynam-

ics of the time-varying parameters.

The design equations leading to the SWLMS al-
gorithm are then presented in Section 5. We dis-
cuss an application of the SWLMS algorithm to
the tracking of mobile radio channel coefficients
subject to Rayleigh fading in Section 6. Finally,
Section 7 outlines how other members of the fam-
ily of tracking algorithms are obtained by making
less restrictive assumptions on the hypermodels.

2 The tracking problem

Our interest will in this presentation be focused
on tracking schemes suitable for adapting time-
varying parameters of linear regression models,
here expressed as

gt|t—1 = Sﬁﬁlt|t—1 . (1)

Above, the column signal vector g,,_; represents
an estimate of a sampled signal y;, based on data
up to the time instant ¢ — 1. It has n, elements
and may, in general, be complex-valued. The col-
umn vector 7zt|t_1, of dimension nj, contains ad-
justed parameters and the regression matrix o}
of dimension ny|n, consists of signals which are
known or computable at time instant ¢.

We shall assume that the signal y: can be de-
scribed by a dynamic system with the same struc-
ture as the model,

Yye=ths + v, (2)

where the zero mean measurement noise v; 1s
stationary and statistically independent of both



the parameter vector h: and the regressor j.
The coefficient vector h: represents the true time-
varying parameters to be estimated.

Throughout this presentation, we shall assume
that the correlation matrix of the regressors,

R=E [Sﬁt%t] )

is non-singular and time-invariant, with finite
third and higher moments. This will in particu-
lar be fulfilled in the case of FIR models with sta-
tionary input data. For FIR models with scalar
outputs, the regression vector is given by

‘50: = (ut Ut—1 ... Ut—m) ) (3)

where u; denotes the input data at time #.

3 The tracking algorithm

The SWLMS algorithm and its design equations
are presented below. The main steps for deriving
the algorithm will be outlined in Section 4 and

5. Readers interested in the complete derivation
are referred to the PhD thesis [§] by L. Lindbom.

3.1 The algorithm structure

The basic structure of the SWLMS algorithm is
given by the following equations

& = Yt - %tjlﬂt—l (4)

- - ~—1

he = hyp_1+pR o pre (5)
ilt+1|t = _pilt|t—1 + géilt + !]%Bt—l , (6)

where ¢; is the output prediction error, p is a
real-valued step-size (0 < p < 1) and where R
denotes an estimate of the correlation matrix R.
Furthermore, the estimates h; and 1A1t|t_1 repre-
sent a filter parameter estimate and a one-step
ahead parameter predictor, respectively.

Specific for SWLMS design is that the real-valued
scalar coefficients p, g and gl of the difference
equation (6) are determined according to

_ dldg 1—/1)
Po= 1xdy(1=p) (7)
g6 = p—di gi=—ds, (8)

in which d; and ds are required to fulfill

di] <14 ds ldo] <1 . (9)

The SWLMS design consists of first selecting the
coefficients dy and da, determining the inverse of
R (or R) and then adjusting the step-size y. The
step-size can be determined by optimal filtering

as presented in Section 5.

The choice of d; and dy reflects what we know,
or assume, about the time-variation of the pa-
rameters to be estimated. These scalars are co-
efficients in a second order vector-autoregressive
(integrated) model of h;. (See (31) below.) Tf no
prior knowledge exists about the parameters, a
robust choice of d; and dy turns out to be

The intepretation of this particular choice will be
discussed in Section 4.2, where also other selec-
tions of d; and ds will be considered.

Remark: LMS is obtained by selecting dqy = —1
~—1

and d» = 0, and replacing pR  in (5) with a

scalar, po. We then have that ilt+1|t =hy a

3.2 Smoothing and prediction

The SWLMS design also includes a systematic
way of updating the parameter estimates h, ),
for arbitrary integers k.

The updating of Bt+k|t can be performed by ex-
tending the filtering (6) according to

ilt+k|t: —pilt+k—1|t—1+Gk(q_l)ilt , (1)
where Gi(¢™") is an FIR filter,
Gela™) = g6+9Tq ™+ A ghap g TR
(12)
and where ¢~! is the unit delay operator?.

With k& < 0 we consider fixed lag smoothing,
while & > 0 represents k-step ahead prediction.
We notice from (12) that the filter Gy is of first
order as long as k > —2. How the coefficients of
Gy, are determined will be shown in Section 5.2.

We conclude this section by noting from (11) that
the filtering of h; can also be expressed as

7lt+k|t:7)k(q_1)ilt ) (13)
where
Pra™") = —g‘;gq:lgl (14)

?In the frequency domain, ¢ is replaced by z, or el



Go(q™") = l+pg ', (15)

with I denoting the identity matrix. Characteris-
tics for SWLMS design is that the matrix trans-
fer function Py is diagonal, with equal entries
on the diagonal. In the sequel, we shall refer to
Py, as the coefficient smoothing-prediction filter.
The name originates in Kubin [6], where a one-
step ahead prediction filter (P1) was introduced
into a tracking scheme. Tt was referred to as a
coefficient prediction filter.

4 Steps towards SWLMS

In the present section, we introduce two main
concepts on which the SWLMS algorithm is
based. A key step in the derivation of the algo-
rithm is to rewrite the tracking scheme (4)—(6) as
time-invariant filtering.

4.1 Tracking regarded as time in-
variant filtering
Introducing fictitious measurements

The column vector ¢, in (5) represents the
gradient of the instantaneous negative squared
output prediction error —e; e /2 with respect to
izt|t_1. By substituting the assumed true system
(2) into the output prediction error (4), and in-
troducing the parameter estimation error

ht|t—1 =h - hr|r—1 )
the gradient term ¢ie: can be expressed as

er(ye — So:ilﬂt—l)
= 80t¢:7lt|t_1+80tvt . (16)

pter =

Moreover, by adding and subtracting Rilt|t—1 on
the right-hand side of (16), and defining

Zt = QDMD: — R (17)
m = tht|t—1 + Prut (18)
ft = Rht + 77,3 y (19)

the gradient (16) can be formulated as

pree = Rhyy_y+ Zihyo1 + pove
= fi—Rhy_y . (20)

In this formulation, the gradients can be viewed
as the difference between the signal f; and the

predictor RiL”t_]. Here, f; can be regarded as
a fictitious measurement, with Rh; and n; being
the signal and the noise, respectively. The con-
struction of f; is depicted in Figure 1.

In the sequel, the noise terms 7; and 7; 7%|t—1 will
be referred to as the gradient noise and the feed-
back noise, respectively.

Remark: The matrix 7;, of dimension ny|ny,
has zero mean by definition.
first introduced by Gardner [3], and was referred
to as the autocorrelation matriz noise |

This matrix was

Pt N Zthye—a

ft

Yt o3 €t ) (2 ft .
B \?Sﬁt \f
" R
)Xft f 7%|t-1
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Figure 1: Two equivalent signal flow representations
of the fictitious measurement signal f;. The lower
diagram shows how f; can be generated from avail-
able signals, presuming that R is known.

The Learning filter
Consider the recursion (5). Introduce the matrix
~—1
T=(I-uR R) (21)

and note from (13) that izt|t_1 = 'Pl(q_l)izt_l.
By substituting (20) into (5), we obtain

~ ~—1 -
ht = ht|t—1 + MR (ft - Rht|t—1)
~—1 - ~ —1
= (I-pR R)hy1+pR fi
R ~—1
= TPi(g Y1 +uR  fi. (22)

Now, by moving the term involving hi_1 to the
left-hand side we finally obtain

Lo(qg™") fe (23)

(I— g TP (¢ iR (24)

h =
Lo(g™") =

Tracking of h; can thus be regarded as time-
invariant filtering of the fictitious measurements
ft introduced in (19), see Figure 2. Note that R,



must be known if the tracking algorithm is ex-
pressed in this way.

It is evident by substituting (23) into (13) that
iLt+k|t for all k£ can be obtained by filtering fi,

ht+k|t =
Le(q™") =

The time-invariant filters £, shall in the sequel
be referred to as the learning filters.

Remark: The LMS learning filter is given by
Lomsla™)=(I-q  (I-poR) ™ po .
It is readily obtained by replacing ,uf{_l with g,

and by setting P; to unity in (24). Evidently,
this learning filter is of first order a

QDt Ve N

R 2 L T

)3)<—_ 7)1

Figure 2: The tracking algorithm formulated as
a time-invariant filter. If a parameteric stochastic

7t ht|t—]
kajﬂ

model of~ht is introduced, and if the non-linear feed-
back via h;;_1 introduces negligable correlation, then
the filter £y can be designed analytically.

Under mild conditions, discussed in Section 5,
the correlation introduced by the non-linear feed-
back via 7%|t—1 in Figure 2 can be neglected. The
design of the learning filter £y can then be re-
garded as a linear open-loop Wiener filter design
problem, in which the feedback noise Ztizm_l is
considered as an additional disturbance.

Remark: If the gradient expression (16) had
been used instead of (20), the filtering expression
would have been

he = Lo (a7 ") (et he + pror)
~o1
Lorla™) = (I-q 'TePi(eh)) iR

in which Ty = (I - uﬁ._]gotga,?). It is far from
obvious how to perform a filter synthesis from
such expressions, since the regression matrix @
appears in the filter in addition to its presence in

the signal to be filtered. Tt can be seen that sub-
stituting @t by R would correspond to a total
neglection of the feedback noise Zihy,_q |

We notice that the learning filter (24) is a matrix
transfer function, and that its elements will in
general have different impulse responses. How-
ever, iIf R coincides with R, so that the matrix T
in (21) reduces to (1 — p)I, and if the coefficient
predictor P; is diagonal with equal entries,

Pia)=Pi(@ I,
then the learning filter £, follows as
Lo(q™) = Sp(a R (27)

So(a™) = (l—q”(l—/i)Pl(q_l))'(QS)

Substitution of (27) and (19) into (23) yield

he = Sp(¢ " )R™'(Rhe + mt)
= Sp(a)The+Sp(g YR e (29)

We note that all elements of the vector h; will
in this case be equally affected by the learning
filter, while forming the estimate h;.

A necessary condition for obtaining bounded es-
timation errors 71t|t_1 is that both the learning
filter £, and the coefficient predictor P, are sta-
ble, i.e. that they have all their poles located in-
side the unit circle. In the SWLMS design, Py
will, by construction, always be stable. This is
also the case for £5, when R coincides with R.

Due to the presence of the feedback noise
Zihyjy—q, filter stability is not a sufficient con-

dition for boundedness of ﬁt|t_1. To guarantee
boundedness, it becomes necessary to take the
impact of the feedback noise into consideration.
For more details see Chapter 4 in [8].

4.2 Hypermodelling

By regarding tracking as time-invariant filtering,
we obtain an intuitive understanding of the na-
ture of the problem as well as of the desired prop-
erties of tracking schemes. For example, if the el-
ements of h; behave as narrow band signals (e.g.
sinusoids in (29)), the corresponding learning fil-
ter should have the property of a bandpass filter.

One way of incorporating e.g. bandpass proper-
ties into learning filters is to introduce hypermod-
els of order two, or higher, in the design.



A large class of parameter dynamics can be de-
scribed by linear time-invariant hypermodels of
the form

he = H(g™er (30)

where H is a transfer function matrix of dimen-
sion ny|n, and where e; is a white sequence of
random vectors. We will here assume e; to be
stationary with zero mean. The elements of H
may have poles inside or on the stability border.

The SWLMS design, outlined in Section 3, is
based on second order hypermodels,

hi +dihi—1 +dohi_s =¢; | (31)

or in a transfer function description by

hy = ——— 32
t D(q_l)ef: ( )
with
D(g"y=1+dig" +daqg™? .

This simple type of stochastic hypermodels cap-
tures the essential behavior of the time variability
in a wide range of practical situations.

The zeros of the polynomial z2D(z7') are not
allowed to be outside the unit circle. This is ful-
filled if dy and dy are selected according to (9).

Filtered random walk hypermodelling

Consider the case in which the parameter dynam-
ics 1s assumed to be given by

I

hy = h;_ —€ .
t t1+1_d2q_1€t

(33)
This model is obtained by setting di = —(1 4 d»)
in (31), and is commonly referred to as filtered
random walks. An example is the coefficient
choice suggested in (10) in Section 3.1. Simu-
lations have shown (10) to be a reasonable and
robust first approximation in a wide variety of
situations.

The ”design” parameter ds can here be used to
match the degree of smoothness of the parame-
ter variations. With ds close to one, the elements
of hy are modeled as if they have a strong trend
behavior, while moving the value of dy towards
zero decreases the correlation between consecu-
tive vector increments hy — hy—q, until random
walk modelling is obtained for ds = 0.

Remark: We noticed in Section 3.1 that LMS

was obtained by setting d; = —1 and d3 = 0 in
~ 1

(7) and in (8) (as well as replacing pR. with

Ho). Hence, LMS design indirectly corresponds

to random walk hypermodelling a

Remark: With di = —2 and ds = 1, we obtain
integrated random walk hypermodelling. The
coefficient predictor filter Py in (13), based on
this hypermodel, closely relates to the so-called
”degree-1 least squares fading-memory predic-
tion”, presented in [4] O

Remark: When some, or all, elements of the pa-
rameter vector h; are time-invariant, bias will be
introduced in the estimates, unless the estimator
includes an integrating term. Integration is in-
troduced when D contains 1 — ¢~! as a factor.
The polynomial D of the filtered random walk

model (33) contains this factor:

D)= (1—q")(1 —dag™") O

Lightly damped AR.(2) models

The simplest stochastic hypermodel describ-
ing oscillatory parameter behavior is a lightly
damped second order AR model. The coefficients
of these models can be expressed as

di = —2r,cos(Qo)  doy = r2 <1 , (34)

where z = roe*% represents the pole locations
of the transfer function of (32). The pole ra-
dius r, reflects the damping while Q, captures
the dominating frequency of the coefficient vari-
ation. If this frequency is not exactly known,
the spectral peak of the amplitude response of
the transfer function should be well damped, to
obtain a design which is robust to errors in the
assumed dominant frequency. (For a general dis-
cussion on robust design, see Section 3.5 in [§].)

Example: Jakes’ model

Consider a digital mobile radio channel coeffi-
cient, with zero mean, unit variance and subject
to Rayleigh fading according to Jakes’ model [5].
Then, a covariance function of a channel coeffi-
cient, denoted by hl, can be expressed as

E[hi hi*] = Jo(Qwl) £=0,%1,..., (35)

where Jo(-) is the Bessel function of first kind
and zero order, Qp is the maximum normalized
Doppler frequency and £ is the time lag.



The simple idea with the hypermodelling ap-
proach is here to approximate the Bessel func-
tion with a covariance function corresponding to
an AR(2) process. This is achieved by first de-
termining Yule-Walker equations related to the
process, and then utilize (35) in the so obtained
set of equations. In other words, the goal is to
adjust the coefficients of D(¢™") such that

Jo(Qnf)+d1 Jo(Qo(b—1))+daJo( Q2 (£-2)) = 0 .

With the coefficients of the hypermodel specified
by (34), an approximate solution is given by the
following parameter choices
Qp
Qo = —
V2
In Figure 3, the Bessel function is compared to
the covariance function of this AR(2) process, for
normalized Doppler frequency Qp = 0.02.

ro = 0.998 . (36)

Figure 3: Comparison between .Jo (0.02 [) (solid) and
a covariance function based on the AR(2) model (34)
and (36) (dashed) m]

5 Optimal filter design

Here, the objectives are to state conditions, un-
der which the structure of the SWLMS algorithm
will be optimal, as well as outlining the final steps
to obtain the algorithm.

5.1 Multivariable estimation

In Figure 4, we have combined the hypermodel
discussed in Section 4.2 with the time-invariant
filtering formulation introduced in Section 4.1.
We can then formulate a filter design problem,
see Figure 4, in which the goal is to determine

the learning filter £ such that the steady state
Mean Squared tracking Error (MSE)

. 7 2
tli{go E ||ht+k|t”2 ) (37)

is minimized. Here the estimation errors ]~'Lt+k|t
can be expressed, by using (25) and (19), as

}Nlt+k|t = ht+k - ilt-|—k|t = ht+k - Ly ft

By minimizing (37), the initial transient response
of hyyg), is not taken into account in the filter

optimizations.
M )
e h h
_t’I/D ¢ R‘é e L. b4kt
hiyr ‘/L ilt+k|t
¢ ®

Figure 4: A multivariable estimation problem. The
vector h; is to be estimated from f;, such that the
steady state MSE lim; o K |ht+k|t||§ is minimized.

Design assumptions and constraints

The expression (37) will be minimized under the
constraint of stability and causality of the filter
L, and under the following design assumptions:

A1: The dynamics of the parameter vector h; is
described by (32), where e; has zero mean and is
stationary and white.

A2: The gradient noise 7 has zero mean and is
assymptotically stationary and white.

A3: The random vector sequence e; and the gra-
dient noise n; are mutually uncorrelated.

A4: The matrix R i1s known and invertible.

In addition to the above constraints, the learning
filter is also structurally constrainted as

Li(g™") =Sk(g™ R, (39)

where Si(¢™") is a scalar transfer function. The
main motivation for constraining the structure of
L}, 1s that this leads to simpler design equations.

Remarks: It can be noted from (18) that sta-
tionarity of n: requires stationary and bounded
moments for both the noise »; and the feedback
noise Zt];t|t—1~ The whiteness assumption of
will in most situations not be fulfilled exactly, but



it becomes a very good approximation for FIR
systems (2),(3) with white inputs. The assump-
tion A3 implies that e; and the feedback noise
will also be uncorrelated. This makes it possible
to discard the feedback loop via hy;_y. In gen-
eral, A3 will hold only approximately, unless 7;
and hy;_; are independent. A case of practical
importance where A2-A4 above hold exactly is
considered in Section 6. For details see [8] o

Realizable Wiener filter design
We are now ready to state the following result,

obtained by applying a polynomial approach to
the design of realizable Wiener filters [1].

Result: Under the design Assumptions A1-A4,
the constrained optimal linear estimator mini-
mizing (37) can be expressed as

- Dl g~ 4
“ Blg™") e (40)
hosie %Iq , (41)

where the polynomial #(¢™") is a monic and sta-
ble spectral factor, determined by solving a poly-
nomial spectral factorization

rB(z"HB(z) = v+ DETHD(2) (42)

in which r is a positive scalar (> 1) and v is the
parameter drift-to-noise ratio, defined as

A trE[ecef]
trE [meny]

The polynomial Qg (¢ ") is, together with Ix(q),
obtained by solving a Diophantine equation

7"y =rQr(a™")B(q) + ¢D(a ) Lk(q) ,  (44)

where @ and I have the polynomial degrees

ot (43)

ng = max(—k,np —1) n, =max(k,np) -1,

with np being the degree of D(q—l) O
Proof. See Section 3.6 in [§] -

In traditional realizable Wiener filtering theory,
the signal ¢ represents the innovations of fi,
while the transfer function of (40) is the so-called
whitening filter. The transfer function of (41)
corresponds to the casual factor of the realizable
Wiener filter solution.

The Diophantine equation (44) corresponds to a
linear system of equations, with equal number of
unknowns and equations. There exists a closed-
form solution to (44). For one-step ahead param-
eter prediction Bt+1|t, the solution is given by

Qi(q™) q(B(a")—D(g™"))  (45)
Li(g) = rB(g9) —D(q) ,

which is verified by direct substitution into (44).
The polynomials @, can all be obtained from (3,
r and D as described in Corollary 3.4 in [8].

For second order spectral factors, there exists an
analytical solution also to the spectral factoriza-
tion (42) Define the non-negative scalar y as

p=1-=1/r . (46)
The coefficients of the stable spectral factor
Bla™) =1+ Pig™" + Pag™” (47)

can then (see Result 3.5 in [8])) be expressed as

g = dl+da)(1-p)
I+dz(1—p)
If we now substitute (47) into (45) it can, by

straightforward calculations, be shown that

Qia™) = q((B1—di)g™" + (B2 —d2)q™?)
= ulgo +9iq7") = pGi(q™") , (49)

Bo = da(1 - p). (48)

where g§ and g are given by (8). We observe
that @1 has p as a factor, which can be shown
to be the case for all Q). Note also that u is an
optimal choice of determining p in (7).

Remark: The ratio v in (43) will rarely be
known a priori. Furthermore, the variance of 7
will depend on the selected algorithm, via ﬁt|t_1
in (18). Thus, in practice, the scalar g will con-
stitute a remaining design parameter )

The optimized learning filters

The optimized £, readily follows from (40) and
(41), and with uGy substituted for @y, as

Bla™")

Since the stable spectral factor G constitutes the
denominator of Ly, the SWLMS learning filter
(50) is thus stable by construction.

Lol = KO Rt (50)



Given the learning filter (50), the optimal co-
efficient smoothing-prediction filters can be ob-
tained directly from (26) as

—1 - _1y-1 _ Ge(d™)
1 =L 1 C 1 1 — k ) I
Pk(q ) k‘(q ) O(q ) Go(q—l)
which is the filter presented in (14). The result
(51) provides an explicit expression for the opti-
mal design of e.g. the coefficient prediction filter
P1, which appeared in the work by Kubin [6].

(51)

5.2 The SWLMS design equations

for smoothing and prediction
In Section 3.2, the SWLMS structure of the
difference equations for updating the estimates
ﬁt+k|t for arbitrary k& was presented. Below, we
shall explain how the coefficients of the FIR filters
Gi(gq™") in (12) are determined. The derivations
are based on Corollary 3.4 in [8], the use of the
spectral factor (47) and the identity (46).

For k-step ahead prediction, the coefficients of
Gk(q_lﬂkzo can be determined through

<§§)Z<:§; é)k<;> k>0, (52)

where p is given by (7). For fixed lag smoothing,
the coefficients of Gk(¢7")|k<o can be obtained
through the backward recursion

Gre (@) =q7'Gu(a™) + D(a™")(1 = p) LG,
(53)

where the scalars L& are determined through

k
N _( -5 1\ g
¥ betas 0 g1

and where 3, and 35 are given by (48).

k<0,
(54)

6 A case study

In this section, we shall compare the attainable
tracking performances of the SWLMS algorithm
and the LMS algorithm, in a situation where the
time variations of the parameters are known to
differ substantially from random walks.

Channel tracking for mobile radio systems
In present TDMA systems, digital data are trans-
mitted in bursts of fixed length. Within each
burst, a small fraction of the transmitted data
(the training sequence) is known to the receiver.

The channel can be estimated by correlating the
known channel input with the received output
signal. The resulting model is, however, invalid
during the remainder of the burst, if the fading
is severe. The coefficients of the channel (or an
equalizer) must then be tracked during the burst.
This problem can be solved through decision-
directed adaptation, where the outputs from the
detector are used as regressors in place of the un-
known transmitted symbols.

The considered system
In the D-AMPS 1900 system, the wireless chan-

nel is subject to severe fading, so channel coeffi-
cients will be rapidly time-varying. An adequate
description of the wireless channel is given by

Yyt = hEUt +ht1ut—1 + vt

= @ihi+w

*

Yr = hy = (h? htl)T )

(Ut Ut—l)

where the channel coefficients kY and h; are sub-
ject to Rayleigh fading, u: are /4 DQPSK mod-
ulated symbols of variance 02 = 2 (R = ¢2I) and
v represents noise and co-channel interference.
All signals in (55) are complex valued and sta-
tionary with zero mean, and v, ; and h; are
assumed to be mutually independent.

We regard (55) as the “true system”, from which
we (by simulation) obtain the received signal y;.
To generate the Rayleigh fading coefficients of h,
Jakes’ model is used. Hence, the covariance func-
tion of the channel coefficients is given by (35).

We shall here study a case with a mobile traveling
at a speed of 50km/h. In the D-AMPS 1900 sys-
tem, with a sampling period of about 40us and
1900 MHz carrier frequency, this corresponds to
a Doppler frequency Qp of approximately 0.02.

The selected hypermodel

We describe h; by an AR(2) hypermodel (31),
with dy and dy determined from (34) and (36).
With Q, = Qp = 0.02, the coefficients of D(qg™")
are then given by

dy =
dy =

—2r5c0s(Q0/V2) = —1.9956
ry =0.9960 .
This hypermodel is motivated by the quasi-

periodic behavior of channel coefficients subject
to Rayleigh fading according to Jakes” model.



The optimized trackers

Consider the SWLMS algorithm (4)-(6) with
R = 2I, its design equations (7) and (8), and
the above specified coefficients d; and d5.

For a signal-to-noise ratio of 15dB and a Qp
of 0.02, the SWLMS algorithm, with optimized
step-size® p = 0.09, will then be given by

& = Y- 90§13t|t_1
he = hyi_q+0.045 e
i7't+1|1 = _pilﬂt—l + gbhe + gihe_y

where p = —0.95, g6 = 1.045 and g{ = —0.996.
The LMS algorithm with step-size p, optimized
for the above case is given by

ilt+1|t = ilt|t—1 +0.1prer .

The properties of these tracking algorithms and
their influence on the symbol error rate when
used in conjunction with a Viterbi detector in an
adaptive equalizer, is depicted in Figure 5 below.
In the left-hand figures, the tracking performance
is illustrated by simulations of 600 symbol times,
using known transmitted symbols as regressors.

As can be seen from the upper right-hand fig-
ure, the attainable MSE tracking performance is
improved almost three times by the SWLMS al-
gorithm. The improvement of the bit error rate
obtained by using the SWLMS algorithm with
estimated symbols as regressors 1s approximately
2 times at 15dB and 7 times at 25dB. This cor-
responds to a gain between 3 and 5dB. We con-
clude that a considerable improvement can be ob-
tained by simple means in cases when the param-
eter variations differ substantially from random
walk behavior.

The reason for the improved performance can be
understood by inspecting the frequency responses
of the learning filters. As illustrated in Figure 6,
the SWLMS learning filter (50) (with R = 2I)
possesses band-pass character around the domi-
nating frequencies of the time-variations, and it
has lower gain at high frequencies.

3For the considered system, Result 8.1 in [8] contains
an exact analytical expression of the steady state MSE.
The selected step-size minimizes this MSE. The optimal
value of u depicted in Figure 5 then gives p in (7).
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7 A class of algorithms
The presented SWLMS algorithm (4)—(6) is one

of the simplest members of a class of Wiener fil-
ter designed tracking algorithms [8]. The basic
structure of this class of algorithms is given by

&t Yt — soﬁlt|t_1

F(q_l)i’lﬂt—l‘l'gl(q_l)@t& (56)

ht+1|t

where F (¢g7') is a polynomial matrix, which is
related directly to the hypermodel H in (30),
and where G1(q™") is a rational matrix, here re-
ferred to as the gain filter. In this formulation,
the SWLMS algorithm corresponds to

F(q™")

(1= D(g™ )T
i) R

w(go + 91" HR

obtained by substituting (5) and (8) into (6).

Characteristics for our Wiener filtering approach
to the design of tracking algorithms is that differ-
ent assumptions on the structure of  in (30) and
on the properties of the gradient noise n; in (18)
will result in different levels of complexity in the
design equations and in the resulting algorithm.
The following cases deserve to be mentioned.

1. If no restrictions are placed on H and if n;
may be colored, then the gain filter G; will
be a rational matrix. A polynomial matrix
spectral factorization and bilateral Diophan-
tine equation will then, in general, have to
be solved to optimize the tracking scheme.

2. If H is general, while n; is assumed to be
white, then the gain filter G; will be a poly-
nomial matrix (multivariable FIR). In this
case, no Diophantine equation needs to be
solved. An algebraic Riccati equation will
determine the optimal estimator.

3. To further reduce the complexity of the al-
gorithm, the optimization can be performed
under the constraint that

Gi(g)=8i(¢HR™!

where 81 is a diagonal rational matrix. The
design equations will then consist of uncou-
pled sets of scalar spectral factorizations and
polynomial Diophantine equations, one for
each parameter. This type of algorithm was
in [8] called Generalized Wiener LMS.



4. We may assume that the elements of the pa-
rameter vector h; are uncorrelated but have
the same dynamics,

H(g7")=C(q7")/D(e")T ,

and also assume that 7 is white. The opti-
mal gain filter will then reduce to uGiR ™",
where (G1 is a polynomial. The design equa-
tions will consist of a single polynomial spec-
tral factorization. No Diophantine equations
are required. The resulting algorithm was in

[8] called Wiener LMS (WLMS).

5. If it is assumed that the elements of the true
parameter vector are uncorrelated but have
the same second order autoregressive (inte-
grated) dynamics and if 7; is white, then
no design equations at all will be required.
The optimal algorithm is then the here con-
sidered Simplified Wiener LMS (SWLMS).
This algorithm is also optimal when ele-
ments of h; are correlated, if the constraint
(39) is placed upon the structure of Ly.

The algorithms based on case (3),(4), and (5)
above can all be seen as generalizations of LMS,
with various complexity and structure of the de-
sign equations. It should be noted that the de-
signs (3),(4) and (5) do not utilize possible cor-
relations among the parameters. On the other
hand, the resulting algorithms require a small
number of computations at each time step. If
the matrix R is known and diagonal, then the
number of required multiplications will grow lin-
early with the dimension of the parameter vector.

If the parameters are known to be significantly
mutually correlated, and if n; is colored, then the
design (1) provides the lowest steady state MSE.
Any of the other alternatives can, of course, be
utilized, regardless of what is known about the
nature of h;. If a mismatching structure is de-
liberately chosen, the user will be aware of what
kind of approximation it corresponds to.
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Figure 5: The result of LMS and SWLMS parameter estimation. Top and bottom left figures, estimates (solid)
and the true parameter variation (dashed). Top right, the MSE tracking performance for the LMS algorithm
(dotted) and for the SWLMS algorithm (dashed), evaluated for 15dB SNR and Qp = 0.02 (50 km/h). Bottom

right, bit error rate for estimator LMS (dotted) and SWLMS (dashed), concatenated with a Viterbi algorithm,
and the bit error rate obtained by using true channel parameters (solid).
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Figure 6: Amplitude and phase response of the learning filters, corresponding to SWLMS tracking (dashed)
and to LMS tracking (dotted), as a function of the normalized frequency €
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