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Abstract

Model-based anti-windup compensation is here considered
for multiple-input multiple-output (MIMO) systems. The
aim will be to modify the dynamics of a control loop when
actuators saturate, so that a good transient behaviour is
attained after desaturation, while avoiding limit cycle os-
cillations and repeated saturations. It is of advantage if
such effects can be controlled separately, while leaving the
nominal dynamics unchanged when no actuators saturate.
A controller structure with three degrees of freedom, with
feedback from saturated control signals, is therefore pro-
posed. The transfer function of this controller corresponds
to that of a nominal controller, with two degree of free-
dom, as long as none of the actuators saturate.

The structure of the controller is selected such that the
loop gain around the bank of saturations is made diagonal.
The properties of the loop around each saturation can then
be tuned separately. We propose one way of doing this, by
means of solving a set of separate scalar H problems. The
proposed approach is applicable to continuous-time as well
as discrete-time systems. Although it is here presented for
systems in input-output form, it can be used in state-space
designs just as well.

1 Introduction

The problem of actuator saturation has led to a search for
controllers which preserve the most important properties
of linear closed-loop systems during and after the satura-
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tion events. This research has, over the years, resulted in
a number of different anti-windup schemes and strategies
[2]-[11]. Some of these schemes are also used for anal-
ysis and design of mode switching, e.g. when switching
between different controllers. Problems associated with
mode switching are often refered to as bumpless transfer
(BT) problems.

Many of the proposed anti-windup strategies focus on ad-
justing the states of the controller during a saturation
event. For reasons explained in [9], and more recently
also in [3, 5, 6], there is, however, no guarantee that the
whole system behaves acceptably during or after a satura-
tion event, when only controller-state windup is prevented.
Repeated saturations and limit cycles might occur.

To avoid such effects, the whole linear dynamics around
the saturating elements, consisting of nominal controller
elements, anti-windup filters and the plant, has to be
taken into account. In the scalar case this can be ac-
complished in a Nyquist diagram: the loop gain around
the saturating element could be adjusted so that it stays
well away from the function —1/Y(C), where Y (C') is the
describing function of the saturation nonlinearity [7, 9],
see Figure 3. The aim of the present paper is to introduce
a controller structure which makes it possible to generalize
this technique for analysis and design to feedback systems
with multiple measurements and control signals.

A key simplification is that the loop gain relevant for the
saturation behaviour is made diagonal. The diagonal el-
ements can then be adjusted in the same way as for a
scalar system. Since our primary goal is to develop ana-
lytical tools which are easy to use also for multivariable
systems, this property is highly desirable.

In section 2 we will present a controller structure with
three degrees of freedom, useful for analysis and design of
both anti-windup and bumpless transfer strategies. After
that section, we will restrict attention to the anti-windup
problem only.



2 Representation of the system
and the controller

We will consider a class of linear time-invariant (LTT)
discrete-time! systems with p outputs, which are con-
trolled by m inputs via memoryless nonlinearities. The
linear systems are assumed controllable and observable,
and their poles are assumed to be located in the closed
unit disc |2| < 1. It can be shown, see [8], that such sys-
tems can always be stabilized by using constrained actua-
tors. For our purpose, it will be convenient to parametrize
the plant model in right rational fractional form with a di-
agonal denominator matrix, as

B(q)A™ (q)v(k) (1)
Nlu(k)] , (2)

where y(k) is the output vector and u(k) is the input vec-
tor. Above, B(q) is a stable and strictly proper rational
matrix in the forward shift operator ¢, while A(q) is a
diagonal stable and biproper rational matrix with diago-
nal elements A;.2 The memoryless nonlinearity N[-] will
in the following represent a bank of (possibly) saturating
elements?

Vi maz if U; (k) > Vi maz
Uz(k) = U (k) if Vimin S Ui (k) S Vi max (3)
Vi min if Uz(k) < Vi min

where ¢ = 1...m. A more compact notation for (3) is
v(k) = sat[u(k)] . (4)
As a starting point of our discussion, a nominal controller
Ru(k) = —Sy(k) + Tr(k) (5)

is assumed to be present. It is designed to fulfill appropri-
ate specifications of an idealized linear closed loop, defined
by connecting (5) to (1) with v(k) = u(k), as depicted in
Figure 1. Above, R, 8, T are stable and proper ratio-
nal matrices in ¢, of appropriate dimension. We assume
I,, —R to be strictly proper, and the idealized closed loop
system to be stable.

In a state-space design, the expression (5) may, for ex-
ample, constitute an input-output representation of an
observer-based state feedback. The poles of R and S
will then correspond to the observer dynamics. The con-
troller may also have been designed in a polynomial frame-
work, in which case R, & and T would correspond to

IThe anti-windup concept presented here is, however, applicable
to both discrete time and continuous time systems.

2The argument g will be omitted here and in the follwing, if no
risk of misunderstanding exists.

3The controller structure introduced in the present section can
be utilized also in problems other than windup control, for example
bumpless transfer. In that situation, N[-] would represent swiches,
possibly in series with saturation elements.

polynomial matrices in the backward shift operator ¢—!.

(Polynomial matrices in 2~! are special cases of rational
matrices in z, with all elements having all poles at the
origin z = 0.)

Some consequences of input saturation, such as the inabil-
ity to reach certain output values, will be unavoidable.
Other effects, in particular limit cycles, instability, unde-
sirable desaturation transients and undesirable changes in
the direction of the control vector can be counteracted,
if the saturated control vector v(k) can be measured or
reconstructed. Therefore we shall in the sequal assume
that v(k) can be measured or estimated without errors.
It can then be utilized to modify the nominal control law
(5). The most straightforward modification is to substi-
tute saturated control signals v(k) for all old values of u(k)
in the recursions

u(k) = (Im — R)v(k) — Sy(k) + Tr(k) . (6)

The structure (6) can be obtained by using saturated con-
trol signals in an observer. The modification (6) is often,
but far from always, adequate. To obtain a satisfactory
behaviour when inputs saturate, we may have to mod-
ify the controller dynamics, perhaps by de-tuning it so
severely that the specifications can no longer be fulfilled
in the nominal case. The controller (6) has no parame-
ters that affect the behaviour caused by saturation, while
leaving the dynamics unchanged when no components of
u(k) saturate. A systematic modification of the effects
of actuator saturation becomes difficult unless additional
degrees of freedom are introduced.

It can be shown that the most general realizable LTI con-
troller, which reduces to the nominal control law (5) when
no control element saturates, can be expressed as

uw (k) = (In — WR)v(k) + W(Tr(k) —Sy(k)) . (7)
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Figure 1: The process B(q)A '(g) in rational
fractional form, in closed loop with the nominal
two degree of freedom controller. The closed loop
is assumed stable.



Here, W is a stable and proper rational m|m matrix, for
which a stable and proper inverse W1 exists. Algebraic
loops around the saturation element (4) must not be in-
troduced. Conditions for the avoidance of algebraic loops
are discussed in Appendix A. These conditions are fulfilled
if (I, — W) is strictly proper, which will be assumed in
the following.

Controlling the plant (1),(4) by use of (7) results in a
closed-loop system depictured in Figure 2. In the nominal

case, when sat[uw (k)] = uw (k), the closed loop system
(1),(4),(7) becomes

y(k) = B(RA+SB)'W™'W Tr(k) , (8)
which corresponds to the nominal closed loop when

WIW is cancelled.

The rational matrix VY can be utilized as an anti-windup
filter, which affects the linear dynamics during saturation
events and also the transients which occur when control
signals return to the linear range.

uw v Y

I, -WR

Figure 2: The process B(q).A™'(q) controlled in
closed loop with a three degree of freedom con-
troller structure. The anti-windup compensator
W(q) represents the third degree of freedom.

The controller structure (7) can be shown to be equiva-
lent to the one discussed by Kothare et al. in [3]*. An
equivalent structure for polynomial designs in the scalar
case was proposed by Rénnbéck et al. in [5].

Remark: As discussed in [3] and [6], the expression (7) in-
cludes the more restrictive controller structures utilized by
previously suggested anti-windup schemes. Consider, for
example, a controller for the scalar case designed by poly-
nomial methods. The nominal controller is then repre-
sented by

T
S T Q

qnr ’ qnr

4The paper [3] mostly discusses the case of control error feedback,
which corresponds to 7 = & in (7).

R =

where R,S and T are polynomials in ¢, all of degee nr
[10]. The general scalar stucture W = P/F, where P
and F are adjustable stable polynomials, was proposed
by Rénnbéck et al. in [5]. The special case W = ¢"" /A,
where Ay is an adjustable stable polynomial of degree nr,
corresponds to the saturation observer-based anti-windup
controller suggested by Astrom and Wittenmark in [10].
The choice Ag = T'/to, where tg is the leading coefficient
of T in (9) will futhermore correspond to the Conditioning
technique suggested by Hanus et al. in [2]. The proper-
ties of these and other strategies have been compared and
discussed in, for example, [3, 6] and [7].

An existing controller with a simple saturation feedback
described by (6) can be generalized to the form (7) with-
out altering its internal structure. One can just insert a
filter between the control signal generated by (6) and the
nonlinearity (2).° The additional filtering to be performed
is specified by

uw (k) = (Im = W)v(k) + Wu(k) , (10)

where u(k) is obtained from (6).6

3 Tools for analysis

The main aim of anti-windup design, as it will be pre-
sented here, is to obtain a good transient behaviour after
desaturation yet preserve stability. With a good transient
behaviour we mean that

1. desaturation transients should have a fast decay;

2. limit cycles should not occur and repeated saturations
should be avoided.

It is hard to address these issues with presently available
methods. Several methods, such as the conditioning tech-
nique of [2], lack adjustable parameters. Others, such as
the observer-based method of [10] do have adjustable pa-
rameters, but there exist no tools for adjusting them in a
systematic way.

We will here utilize the linear approximation introduced
by Rénnbéck in [6] when discussing and analyzing the lin-
ear loops around the bank of saturations. The difference
between the actual and the saturated control signal is re-
garded as an input disturbance

o(k) = olk) —uw(k) - (11)

5This fact is important from a practical point of view. It may
futhermore decrease the barrier of acceptance towards the use of
model-based anti-windup schemes in general.

%The equivalence between a combination (6)(10) and the expres-
sion (7) is simple to demonstrate. Note that since uw (k) is used as
the control signal, the signal v(k) will equal sat[uw (k)] in both (6)
and (10).




By omitting the argument ¢, and combining (1),(4),(7)
and (11), the closed-loop system is then obtained as

y(k) Ynom (k) + yé(k)
= Hupomr(k) + Hs(k) (12)
where
Horom B(RA+SB)™'T (13)
H; = BRA+SB)W!. (14)

Above H.,,0, constitutes the nominal closed-loop system”.
When a control signal exits saturation, the corresponding
column of H; will determine the resulting transient be-
haviour. This simple linear formulation is enlightening
when evaluating desaturation transients and other prop-
erties. It is, however, not a complete and adequate de-
scription of the closed loop; when some of the control
signals saturate, d(k) will be determined by a nonlinear
feedback. We therefore have to introduce additional tools
for controlling the nonlinear properties of the closed loop.

By inserting (1) into (7), the loop gain around the nonlin-
earity (4) can be expressed as

L,EWMRA+SBAL -1, . (15)

Stability of the closed loop can be ascertained by studying
the properties of the loop gain. The use of passivity-based
methods, as suggested by e.g. Kothare and Morari in [4] is
one possibility. This class of methods is, however, rather
cumbersome to use, and in general results in conservative
sufficient conditions for stability.

If W is selected so that the loop gain becomes diagonal,

L, = dlag(‘cJ) ) (16)

there exists a simpler and less conservative alternative.
Since the loops around the saturation elements are then
decoupled, we may utilize scalar tools, in particular the
describing function. When using the describing function
Y(C), it should be ascertained that the loop gain £;(e™)
stays well away from the function —1/Y(C). If the two
functions intersect, then a limit cycle oscillation may be
excited. If the loop gain comes close to but does not
cross the inverse describing function, then repeated re-
saturations occur when the signals leaves saturation. A
safety margin must therefore be introduced between the
Nyquist curve of the loop gain and the inverse describing
function. see Figure 3.2

A discussion of the use of signal-dependent safety margins
around the loop gain can be found in [7]. The use of a fixed
avoidance sector, as suggested by Wurmthaler and Hippe
in [9] and depicted in Figure 3, is mostly an adequate tool

"We have here cancelled the factor W~1W in (8) to obtain (13).

8 Although we here illustrate the case of simple input saturation,
the metod can be used for N[-] being a diagonal matrix of arbitrary
time-invariant memoryless nonlinearities.

Figure 3: The scalar loop gain £;(e™) around
actuator j and the inverse describing function,
—1/Y;(C), of the nonlinear actuator. A safety
sector which is to be avoided by the loop gain, is
also shown. (In this particular case the loop gain
enters the avoidance sector and hence, repeated
re-saturations may occur.)

for predicting the ocurrence of repeated re-saturations of
the actuators.

The transfer matrices Hs from (14) and £, from (15)
constitute our tools for investigating desaturation perfor-
mance and stability. They will now both be utilized in the
design of the anti-windup filter W.

4 Systematic anti-windup design

According to requirement 1. in Section 3, the dynamics of
H; should be fast. This can be achieved by appropriate
choices of W. However, if the dynamics of Hs is made
too fast, then repeated saturations and limit cycles may
occur. Thus, the requirements 1. and 2. in Section 3 are
often contradictory. It is therefore essential that an anti-
windup design includes a trade-off between a fast transient
and a small influence of nonlinear effects. A design method
is presented next, which utilizes simple scalar tools for
attaining such a trade-off.

For the design of the anti-windup filter W in (7), the
criterion
2
J = ||7'¢5||§ + HQ ((Ev + Im)_1 - Im) H2 (17)
is introduced. This criterion was suggested for the scalar
case by Sternad and Roénnbéck in [7]. In (17), Q is a
diagonal penalty matrix. In the limiting case Q = 0,
minimization of J corresponds to the minimization of the
H- norm of the stable transfer matrix Hs. The second
term of J penalizes loop gains which may cause instability.
In particular, it penalizes loop gains £, which come close
to —L,,,. Now, by choosing W as

W = P(RA+SB)™' | (18)

where P is a rational matrix to be determined, the ratio-



nal matrices ‘Hs and £, reduce to
H;=BP'; L,=PA ' -1, , (19)

respectively. We restrict both P and P~ to be stable
and proper. Since A = diag(A;), selecting P diagonal
makes £, become diagonal.

By insertion of (19) into (17), the criterion can be rewrit-
ten in the form

7= |BP o+ lQ(AP - L)), . (20)

Let B;; be the ij-th scalar rational element of B in (1).
The minimum of (20), with respect to a diagonal P, for a
given diagonal penalty matrix Q = diag,/p;, is shown in
[11] to be attained by solving m separate scalar spectral
factorization equations

V4
Z BiiB; + pjAj A
=1

diag(P;) .

Tj'Pj'P; = (21)

P = (22)

Here,r; is a scale factor. Equation (21) has to be solved
for j = 1,2....m, where m is the number of process inputs,
p is the number of process outputs, The design of a multi-
variable anti-windup compensator is thus reduced to m
scalar designs, in which the m elements of the diagonal
loop gain matrix £, are systematically adjusted.

Note that if p; — oo, then P; — A;. The jth loop
gain £; will then contract and stay well away from the
negative real axis, if A; is stable®. As a result, repeated
saturations will not occur in that loop. However, the de-
saturation transients may then show an unsatisfactory be-
haviour, since the common denominator of the jth column
of Hs goes towards the plant dynamics A;, which may be
slow of oscillative.

On the other hand if p; is selected small, the dynam-
ics of the jth column of #s will become fast, while the
jth loop gain may become large, and come close to the
negative real axis to the left of —1. This, in turn, may
generate repeated saturations and limit cycles. The user
must therefore select the values of p; properly to obtain
an appropriate trade-off.

5 Simulation example

The model used for simulation describes a Heavy Oil Frac-
tionator [1], with two inputs and two outputs. The con-
troller in (7) is used with two different choices of W. In

9For stable Aj;, the loop gain £; vanishes when p; — oo. It is
mostly possible to find adjustments of p; which push £; outside the
avoidance sector indicated in Figure 3, but there are exceptions. If
triple or higher order integrators are present in A, then a crossing
between the loop gain and the describing function cannot be avoived.
The intersection point must then be placed so far to the left that
no disturbances with reasonable amplitudes will excite limit cycle
oscillations.

both the cases, the nominal controller, R, 8, T, orig-
inates from an observer-based state-feedback LQ-control
law, expressed in input-output form. The model used for
controller- and anti-windup filter design is obtained by
subspace-identification.

In the first case, we select W = 1,,,, which simply means
that the observer is fed with saturated control signals, as
in (6). The two resulting outputs from the simulation are
shown in the upper pair of diagrams in Figure 5, and the
two corresponding control signals are shown in the third
pair of diagrams from the top. These four diagrams are
all labeled with (W=I).

In the second case, the method proposed in this paper was
used for the design of W. The result, after adjustment
of the penalties p1, pa, is shown in the second pair of
diagrams from the top, and in the two bottom diagrams,
all labeled (W optimal).

In this example, it is clearly worthwile to optimize the
anti-windup filter W.

A Realization

Due to the fact that v(k) = sat[uw(k)], care must be
taken in the realization of the control laws (6)(7)(10) to
avoid algebraic loops. The key property of relevant ratio-
nal matrices M(q) is their leading coefficient matrix Mg
in a series expansion in the backward shift operator ¢!,
i.e. in the puls response

M:M0+M1q_1+... (23)

Consider a feedback connection of a memoryless nonlin-
earity v(k) = N[u(k)] and the system u(k) = M(q)v(k).
If arbitrary cross-connections are allowed in N[-], then
the absence of algebraic loops is guaranteed if and only
if My = 0.1 As an example, consider M = I,, — WR
from (7). Since I,, — R is stricly proper by assuption, we
have R =1, + Rig ' +.... If I, — W is restricted to
be stricly proper, then W =1,, + Wyg~! 4+ ... . Thus,
M, = 0, so no algebraic loops will occur.

The filter (10) can be realized in the following way, with

u (k) = a1 (k) + w2 (k): I upr (k) 2 Wu(k) is given by
a state space-realization

z1(k+1) = Az (k) + Bu(k)
uyw1(k) = Cxzi(k)+Du(k), D=1, (24)
then w.,s(k) = (I, — W)v(k) is given by
z2(k+1) = Axa(k) + Buo(k)
uwz(k) = —CIL'Q (k) . (25)

107f N[] is diagonal, as in (4), then the interconnection can be
realized without algebraic loops if My is either strictly upper or
lower triangular, with only zeros on the diagonal.



Let us now briefly discuss one possible way to find a state
space-realization for the filter W, when it is given by the
expression W = P(RA + SB)'. Since the matrix P
has a stable inverse, the filter VYW can be rewritten as
W= (RAP '+8BP ')} (26)
This transfer function matrix can be obtained from a
closed loop involving four filters:
PA,BP T, R, =S, (27)
which are rather straightforward to realize individually.
See Figure 4. The final step is to combine these filters to
obtain a state space-realization as the one in (24).

u Uw1

R! PAL

Y

-8 BP!

A

Figure 4: Closed loop representation of the filter
W=PRA+SB)™.
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