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Abstract

The aim of anti-windup compensation is to modify the dynamics of a control
loop when control signals saturate, so that a good transient behaviour is attained
after desaturation, while avoiding nonlinear oscillations and repeated saturations.

Model-based anti-windup compensation is here considered for multiple-input
multiple-output (MIMO) systems. A modified controller structure is proposed,
which leaves the nominal closed-loop dynamics unchanged, as long as none of the
control signals saturate. The proposed approach is applicable to continuous-time as
well as discrete-time systems. Although it is developed for systems in input-output
form, it can be used for systems in state-space form as well.

1 Introduction

The problem of finding controllers which have desired properties during or after saturation
events has, over the years, resulted in a number of different anti-windup strategies. Many
of the proposed methods focus on adjusting the states of the controller during a saturation
event. For reasons explained in [6], and more recently also in [3, 4], there is, however, no
guarantee that the whole system behaves acceptably during or after a saturation event,
when only controller-state windup is prevented. Repeated saturations and even limit
cycles might occur. To avoid such effects, the whole linear dynamics around the saturating
elements, consisting of nominal controller elements, anti-windup filters and the open-loop
plant, has to be taken into account. In the scalar case this can be accomplished in a
Nyquist diagram: the loop gain around the saturating element is adjusted so that it
stays well away from the function —1/Y(C), where Y (C) is the describing function of
the saturation nonlinearity. The aim of the present paper is to introduce a controller
structure which makes it possible to generalize this technique for analysis and design to
feedback systems with multiple control signals. A key simplification is that the loop gain
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relevant for the saturation behaviour is made diagonal. The diagonal elements can then
be adjusted in the same way as for a scalar system.

2 Problem formulation

The aim of anti-windup design, as it will be presented here, is to obtain a good transient
behaviour after desaturation. With a good transient behaviour we mean that

1. desaturation transients should have a fast decay;

2. limit cycles and repeated saturations should not occur.

To achieve these aims, a method developed in [8] will be utilized.

Consider a discrete-time! multivariable, stable or marginally stable system with m inputs
and p outputs, parameterized in rational fractional form as

y(k) = Blg)A™ (g)v(k)
v(k) = satfuw (k)] . (1)

Above, A(q) is assumed to be a diagonal stable rational matrix, with diagonal elements
A;. Introduce the controller

uw (k) = (I-WI(@)R(g))v(k) = WI(q)S(q)y(k) + W(g) T (¢)r(k) (2)

where W, R, 8, T are stable rational matrices in ¢, of appropriate dimension. Here,
W is the anti-windup filter. The controller structure proposed in (2) is inspired by a
similar structure suggested in [3] for scalar systems. It is depicted in Figure 1.
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Figure 1: A discrete-time MIMO process y(k) = B(q).A™'(¢)sat[u(k)] with a two
degree of freedom controller structure {R(q) S(q) T (q)} appended with a stable
and proper anti-windup transfer-operator matrix YW(q). The rational matrix W(q)
is to be selected such that the loop gain around the saturations becomes diagonal.

Remark: In the scalar case, the controller structure (2) includes a number of well know
anti-windup schemes, of which the following are worth mentioning. (The matrices R , 8
and T are here assumed to be scalar polynomials R, S and T.)

!The anti-windup concept presented here is applicable to both discrete time and continuous time
systems. Here we shall however use a discrete time framework, based on the forward shift operator ¢,

(qy(k) = y(k +1)).



1. The observer-based method of Astrom and Wittenmark [7] is obtained if W = F~1,
where F' is the characteristic polynomial of the anti-windup observer.

2. The conditioning technique of Hanus [2] is obtained if W = t,T~!, where t; is the
leading element of T'.

For more details see [4, 5].

Following [4], let us regard the difference between the actual and the saturated control
signal as an exogenous disturbance

(1>

v(k) —uw(k) . (3)

By omitting the argument ¢, and combining (1)-(3), the closed-loop system is then ob-
tained as

3(k)

y(k) = ynom(k)+yé(k) = %nomr(k)"_%éé(k) (4)
where
Huom = B(RA+SB)'T ; Hs = BMRA+SB)"'W ' . (5)

Above H.,,m constitutes the nominal closed-loop system which is obtained in (4) when § =
0, i.e. when the control signals do not saturate. When a control signal exits saturation, Hs
will determine the resulting transient behaviour. According to the specified requirements
above, the dynamics of H; should be fast. This can be achieved by appropriate choices
of W. However, if the dynamics of H; is made too fast, then repeated saturations and
limit cycles may occur. Thus, the requirements 1. and 2. above are often contradictory.
It is therefore essential that an anti-windup design includes a trade-off between a fast
transient and a small influence of nonlinear effects. A design method is presented next,
which utilizes simple scalar tools for attaining such a trade-off .

3 Systematic anti-windup design

For the design of the anti-windup filter W in (2), the criterion

J = i+ Qe+ =1). (6)

is introduced. This criterion is a generalization of a criterion suggested for the scalar
case by Sternad and Rénnbéck in [5]. In (6), Q is a diagonal penalty matrix whereas L,
represents the loop gain around the saturation nonlinearity. Now, by choosing W as

W = P(RA+SB)™ | (7)

where P is a stable and rational matrix to be determined, the rational matrices H;s and
L, are given by

Hs=BP ' ; L,=PA' -1 (8)



respectively. If P is choosen diagonal, then L, will be diagonal. By insertion of (8) into
(6), the criterion can be rewritten as

J = |BP Y +llQ(AP -5 (9)

Minimizing (9), with respect to P, for a given penalty matrix Q, is shown in [8] to be
equivalent to the solution of m separate scalar spectral factorization equations

p
7‘]’7)]'7); = Z B@'B:j —+ ijj.A; 3 P = diag(’Pj) . (10)
=1

Here, (10) has to be solved for j = 1,2....m, where m is the number of process inputs, p
is the number of process outputs, r; is a scale factor and p; is the jth diagonal element
of Q. The design of a multivariable anti-windup compensator is thus reduced to m scalar
designs, in which the m elements of the diagonal loop gain matrix £, are systematicaly
adjusted. Note that if p; — oo, then P; — A;. The jth loop gain £; will then contract
and stay well away from the negative real axis. As a result, repeated saturations will not
occur in that loop. However, the desaturation transients may then show an unsatisfactory
behaviour, since the common denominator of the jth column of Hs goes towards the plant
dynamics A;. On the other hand if p; is selected small, the dynamics of the jth column
of H;s will become fast, while the jth loop gain may become large. This, in turn, may
generate repeated saturations and limit cycles. The user must therefore select the values
of p; properly to obtain an appropriate trade-off.
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4 Example

The controller in (2) is used for two different choices of W. In both the cases, the nominal
controller, R, &, T, originates from an observer-based state-feedback LQ-control law,
expressed in input-output form. The input penalty is 0.01 for both inputs. The model used
for simulation descibes a Heavy Oil Fractionator 1], with two inputs and two outputs.
The model used for controller- and anti-windup filter design, is obtained by subspace-
identification. In the first example, we select W = I, which simply means that the
observer is fed with saturated control signals. The result of the simulation is shown in
the four upper diagrams, (D 1.1 — D 1.4). In the other example, the method proposed
in this paper was used for the design of WW. The result, after adjustment of the penalties
p1, P2, is shown in the six lower diagrams, (D 2.1 — D 2.6). The two bottom diagrams
show the diagonal elements of the loop gain £, and the functions —1/Y(C).

References

[1] Benchmark Problems For Control System Design. Report of the IFAC Theory Com-
mittee, Edited by Edward J. Davison, Chairman, May 1990.

[2] R. Hanus, M. Kinnaert and J-L. Henrotte, “Conditioning technique, a general anti-
windup and bumpless transfer method,” Automatica, vol. 23, pp. 729-739, 1987.

[3] S. Ronnbéack, K.S. Walgama and J. Sternby, “An extension to the generalized anti-
windup compensator,” In Mathematics of the analysis and design of process control,
Edited by P.Borne, S.G. Tzafestas and N.E. Radhy, Elsevier Science Publishers B.V.
(North-Holland), 275-285, 1992.

[4] S. Ronnbéck, Linear Control of Systems with Actuator Constraints. PhD thesis, Di-
vision of Automatic Control, Lulea University of Technology, Sweden, 1993.

[6] M. Sternad and S. Ronnbéck, “A Frequency domain approach to anti-windup com-
pensator design,” Inst. Technol., Uppsala Univ., Sweden, Rep. UPTEC 93024R, 1993.

[6] Ch. Wurmthaler and P. Hippe, ”Systematic compensator design in the presence of
input saturation,” Proceedings of the ECC °91, Grenoble, France, July 2-5, pp. 1268-
1273, 1991.

[7] K.J. Astrom, and B. Wittenmark, Computer-Controlled Systems. Englewood Cliffs,
NJ: Prentice-Hall, 1990.

[8] J. Ohr, Systematic Anti- Windup Compensator Design for Multivariable Systems.
Master’s thesis, UPTEC 95150E, Uppsala University, Sweden, 1995.



