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Abstract: In this paper, the entire process of transmission and reception in a DS-CDMA
system, including the spreading, is described as a tapped delay line with multiple inputs
and a single output. The model is then used to design a fractionally spaced decision
feedback equalizer with a single input and multiple outputs. In the proposed approach,
long codes can be used and channel estimation can be performed efficiently. The suggested
detector is near-far resistant. Monte Carlo simulations demonstrate the utility of the
proposed approach in a heavily loaded system with and without power control where
multipath is present.

Introduction

Much of the flexibility in the design of a DS-CDMA system relies on the use of long
spreading codes. The use of long codes makes it unnecessary to use code planning and
makes it easy to supply variable rate services.

The use of non-orthogonal channels makes the DS-CDMA system very sensitive to the
near-far problem. The common solution, power control in combination with the conven-
tional detector, has serious drawbacks. To circumvent the near-far problem and thus
eliminate the need for power control, the use of so-called multiuser detectors has been
proposed.

Many proposed multiuser detectors operate on the outputs from a bank of matched filters.
They are frequently presented as block detectors, and multipath propagation and long
codes are rarely considered explicitly. One example is the decorrelating detector [1].
A disadvantage with these detectors is that the propagation delay must be well known.
In a near-far scenario, the propagation delay can be hard to estimate, as illustrated in [2].

Other multiuser detectors [3, 4, 5] operate directly on the received wideband signal, which
is sampled at the chip rate. The received signal is passed through an FIR filter followed by
a decision device. The filters are adaptive and they are updated recursively directly from
the received signals, making estimation of the propagation delay unnecessary. However,
long codes are impossible to use, and low bitrates could result in a difficult tracking
problem.

An ideal detector for DS-CDMA should be near-far resistant like the decorrelating de-
tector. It should also be insensitive to errors in propagation delay estimates. Finally, the
detector should be able to operate in a system where long codes are used.

In this paper, we reformulate the standard DS-CDMA system transmission and reception
as an equivalent, discrete time, tapped delay line model. This model takes the data
symbols as input and has the wideband, chip sampled, received signal as output. The
spreading operation is represented as linear filtering. This model makes it possible to
design equalizers which, directly from the chip sampled signal, filter out the signals of
the respective users.

As an example of a detector which has been derived from this model, we subsequently
outline a generalization of the fractionally spaced decision feedback equalizer (DFE). This
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DFE has one input and the same number of outputs as the number of users. We then
investigate the performance of the proposed DFE without and without any power control.
It is demonstrated that the DFE works without problems in both scenarios.

System model

In this section a DS-CDMA system will be reformulated as a completely discrete time,
tapped delay line model with multiple inputs and a single output.

The DS-CDMA system

We are considering an asynchronous DS-CDMA system with K users. The modulation
scheme is BPSK. The symbol period is denoted by 77, whereas 7 represents the duration
of a chip. The processing gain, i.e. the ratio 7;/7,, is denoted by N.. Without loss of
generality, we set T, = 1. User k transmits the symbol di(¢N.) during the time period
[tNe, (t + 1)N.[. Each symbol is spread by a wideband signature sequence.

The transmitted passband signal propagates through a frequency selective, wideband
channel. The receiver front end consists of a conventional 1Q-stage, where the I and Q
signals are down-converted to the baseband. The received baseband signal is then passed
through a filter matched to the pulse shape of the chip. At the output of this chip-matched
filter, the signal is sampled at the chip rate, resulting in the complex-valued signal r(-).

A linear baseband model: the single-user case

Traditionally, both the symbol sequences and the signature sequences in a DS-CDMA
system are represented as continuous time signals. To arrive at a discrete time model
of the system, all pulse shaping is assumed to take place after the spreading. Next, the
pulse shaping, the frequency up-conversion, the physical channel, the frequency down-
conversion and the chip-matched filter are lumped together and replaced by an equivalent
discrete time channel. This equivalent representation will in the following be called the
physical channel. This means that the transmission and reception can be represented as
in Figure 1.
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Figure 1: A completely discrete time model, sampled at the chip rate.

To arrive at a tapped delay line model, the spreading must be represented by a linear
filter. We would then obtain an equivalent channel which can be represented by the
convolution of this spreading filter and the physical channel. Let us therefore view the
symbol sequence as an input and the spread signal as an output of a linear filter. Consider
the situation during one symbol period, as depicted in Figure 2.
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Figure 2: The spreading viewed as a filtering operation. Input symbol +1 (left) and —1
(right). Note that the symbol sequence is assumed to be non-zero only every N, chips!



This means that during one symbol period, the spread signal can be thought of as having
been generated by passing the symbol through a discrete time filter of length N. with
impulse response identical to the code sequence.!

A multiple-input single-output channel model

Each tapped delay line is the convolution between a spreading filter and a physical chan-
nel. Since the length of the spreading filter is equal to the symbol period, intersymbol
interference will be present if any physical channel has more than one tap.

The entire channel can now be represented by a linear model with K inputs and one
output. To formulate this mathematically, introduce the quantities

th 4 (tN.+j) : tap iN.+7 in the channel impulse response from user k at time ¢t N.+j

m : maximum extent (over all channels) of the intersymbol interference.

The received signal will be the noise-corrupted sum of the signals from the K users:

r(tN, + j) = sz:hm (NG + §)di((t — ))N.) + n(tN, + 5) (1)

k=1 =0

where n(tN, + j) is assumed to be wide sense stationary zero mean noise. Introduce

d(tN,) 2 (di(tN,) ... d(tN)"
hi\ 1; (hiy (N +35) .. hE (tN.+7)) . (2)
Then the received signal (1) can be rewritten as

m

r(tNe+7) = Y _hiyeHd((t — i)No) + n(tN. + j) - (3)

=0

Equation (3) is the desired K-input single-output channel model, which relates the se-
quence of symbol vectors to the chip sampled output sequence.

To make use of this model to design a DS-CDMA detector, we have to estimate the
channel coefficient vector (2) fori =0,1,...,mand j =0,1,..., N.—1. We then have to
design an equalizer based on the impulse response coefficients (2). When performing the
channel estimation, we suggest the use of the transmitted chip sequence as regressors to
identify only the physical channel. The complete channel is then obtained by convolving
the (estimated) physical channel with the (known) spreading filter.

A good equalizer candidate is the fractionally spaced decision feedback equalizer (DFE),
which will be outlined next.

The single-input K-output fractionally spaced DFE

Our proposed decision feedback equalizer operates directly on the chip sampled signal
r(-). The outputs from the equalizer are the data symbols of the K users. This means
that the proposed DFE will be a single-input multiple-output equalizer.

The structure of the DFE is depicted in Figure 3. The scalar, chip sampled signal r(-)
is used as input to the feedforward filter and the K outputs of the feedforward filter are
sampled at the symbol rate.

LFor short codes, the spreading filter will be time-invariant, but for long codes it will be time-varying.
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Figure 3: The single-input multiple-output fractionally spaced DFE.

The DFE estimates the symbol vector that was transmitted at time ¢/N., given data up
to time tN. + £. The design variable ¢ is known as the smoothing lag or decision delay.

The coeflicient matrices of the two filters are adjusted so that the mean square error of
the symbol vector estimate d(t/N,) is minimized. To calculate the optimal filters, we solve
a system of linear equations. For the derivation of the optimal filters, see [6].

If long codes are used, the known part of the channel will change completely every sym-
bol period. The time-varying nature of the channel is taken into account by including
coefficients of future channel models in the calculation of optimal filter coefficients. The
proposed DFE is a symbol-by-symbol detector, making it possible to implement without
modification.

The computational complexity of the calculations necessary to optimize the equalizer
coefficients is rather high. To calculate the coefficients of the feedforward filter approx-
imately (¢ + 1)®/6 + K (¢ + 1)? multiplications have to be performed. The number of
multiplications necessary to calculate the feedback filter is proportional to K (£ + 1)2.
Using the DFE to estimate a transmitted symbol vector then requires (¢ + 1)K + mK?>
multiplications. Notice that the complexity is not exponential in any system parameter.

Simulations

We will now investigate the utility of our channel model, as well as the usefulness of our
proposed DFE. We are using long codes in a system with processing gain N, = 8 and
K =5 users. This represents a rather heavily loaded system.

All physical channels have four Rayleigh faded taps. During transmission of a burst, the
taps are time invariant. The propagation delays of the users are uniformly distributed in
the interval [0, N, — 1] (in units of the chip period). For the simulation, we assume that
we know the impulse response of the channel.

To emphasize the near-far problem in a system with no power control, four of the users
have the same average power, whereas the fifth user has an average power that is 10, 20
or 30 dB lower. The weaker user (user 1) has an average F},/N, between 5 and 20 dB.
The performance measure is the BER of the weaker user.

The result is shown in Figure 4 on the following page, where it is also shown that the
DFE outperforms the conventional receiver with a four-finger RAKE in a system with
perfect power control. We see that the near-far effect has an impact on the DFE, but
the effect is small. Increasing the power of the four stronger users by 20 dB results in a
deterioration of approximately 1 dB for the entire investigated range of SNR:s.

Conclusions

In this paper, we have described the complete transmission and reception process in a
DS-CDMA system, including the spreading, by a discrete time tapped delay line model.
The model takes as the input the symbols from all users in the system and outputs the
received signal, sampled at the chip rate. By using this discrete time model, the problem
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Figure 4: BER as a function of Ey/Ny. Perfect power control (left) and no power control
(right)

of detecting the signals of the users has been recast as a deconvolution problem. Also,
channel estimation can be handled in a way that reduces problems with fast fading.

Based on the proposed model, we have subsequently derived a fractionally spaced deci-
sion feedback equalizer. This DFE detects all signals simultaneously, thereby making it
possible to operate in an environment without power control. In contrast to many other
multiuser detectors, it is derived as a symbol-by-symbol detector. Another advantage is
that due to the fast sampling, the DFE only requires rough synchronization.

The DFE can be used in systems where long codes are employed. Since the DFE effec-
tively decorrelates the users, a large part of the capacity loss commonly associated with
long codes can be eliminated.

The amount of computations that has to be performed to update the equalizer is sub-
stantial, but it is not exponential in any system parameter.

The simulations in Section 4 show that in a heavily loaded system, the DFE works well,
even in a rather severe near-far situation.
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