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Abstract: A probabilistic approach to the robustifica-
tion of Kalman filters is presented. It results in a higher
order model, in which the uncertainty can be taken into
account by simply modifying the noise covariance ma-
trices. The proposed method provides a systematic way
of performing this transformation. The performance of
the robustified Kalman filter is compared to that of a re-
cently proposed minimax Hy scheme, based on two cou-
pled Riccati equations and a one—dimensional numerical
search. It is concluded that such methods should be
used with care, since their guaranteed performance may
be worse than that obtained by doing no filtering at all.

1 Introduction

The aim of this paper is to discuss two recently proposed
design techniques for robust filtering:

1. to minimize the worst case mean square error by
utilizing two coupled Riccati equations, see e.g. [17];

2. obtaining modified Wiener or Kalman filters by av-

eraging over stochastic model uncertainties, as de-
scribed in [16] and [13].

To make a fair (but still only preliminary) evaluation,
the discussion will focus on a context which both tech-
niques are equipped to handle: signals are described by
time—invariant stochastic models with parametric uncer-
tainty. The goal is to robustify the mean square estima-
tion error.

The first of the above approaches is based on work by
Ian Petersen and others on quadratic stabilization. It
is applicable to systems of known order, with uncertain
parameters:

z(k+1) = (A+DA(k)E)x(k)+w(k) ; z(k) = Lz(k) .

(1)
Here, the matrix A(k) contains norm-bounded uncer-
tain parameters. The vector z(k) is the signal to be esti-
mated. See [14], [2] for continuous-time results and [17]
for the discrete-time one-step predictor. See also [7] for

a related method. For systems which are stable for all
A(k), an upper bound on the sum of squared estimation
errors (MSE)

Jy = sup traceE(z(k) — (k) (= (k) — (k)T (2)
A(k)

can be minimized by solving two coupled Riccati
equations, combined with a one-dimensional numerical
search. This represents a significant computational sim-
plification, as compared to previous minimax designs [4],
[9], [10], [11].

In the second approach, a probabilistic description of
model errors will be used, as outlined in [16]. A set
of (true) dynamic systems is assumed to be well de-
scribed by a set of discrete-time, stable, linear and time-
invariant transfer function matrices

F=F,+AF . (3)

We call such a set an extended design model, in which F,
represents a stable nominal model, while an error model
AJF describes a set of stable transfer functions, param-
eterized by stochastic variables. The random variables
enter linearly into AZF and they are assumed indepen-
dent of all noises. A single robust linear filter can then
be designed for the whole class of possible systems. Ro-
bust performance is obtained by minimizing the aver-
aged mean square estimation error

Jo = traceBE(z(k) — 5(k)) (=(k) — 2())T . (4)

Here, E denotes expectation over noise and E expec-
tation over the stochastic variables parameterizing the
error model AF.

This method can be applied for non-parametric uncer-
tainty and under-modelling as well as parametric uncer-
tainty. A discussion of linearly parameterized stochastic
error models can be found in [16], [12] and [13]. For state
space models with parametric uncertainty, the stochastic
approach has been investigated previously by Chung and
Bélanger [3], Speyer and Gustafson [15] and by Grimble

[5]-



Assume A(k) in (1) to be time-invariant. We may then
utilize series expansion to obtain a model (3), which is
linear in the uncertain parameters. Such an approach is
outlined in Section 2. A set of n’th order models with
uncertainty in the system matrix is approximated using
a d’th order expansion. The result is a set of models of
order n(d + 1), with uncertain parameters only in the
input matrix. A robust Kalman estimator can then be
designed easily to minimize J, for this set. The robust
design reduces to a simple modification of the noise co-
variances.

A strength of the probabilistic approach, as compared
to minimax schemes, is its inherent lack of conserva-
tiveness. Highly probable model errors will affect the
estimator design more than do very rare “worst cases”.
Therefore, the performance loss in the nominal case, the
price paid for robustness, becomes smaller than for a
minimax design. On the other hand, the inevitable ap-
proximation involved in a series expansion could conciev-
ably lead to a significant loss of performance. High order
expansions might sometimes have to be used, resulting
in a complex filter. We will investigate these issues in
Section 3. Minimax and probabilistic schemes are com-
pared by means of an example from the paper [17] by
Xie, Soh and de Souza.

2 Cautious Kalman filtering

Assume a set of stable discrete—time models
z(k+1) = (Ao + AA(p))xz(k) + (Bo + AB(p))v(k)

y(k) = Cx(k) + (Mo +AM(p))e(k) ; z(k) = Lz(k) (5)

where z(k) € R™ is the state vector and v(k) € R™
is zero mean process noise with unit covariance matrix.
The output y(k) € R? is the measurement signal, with
e(k) € RP being white zero mean noise with unit covari-
ance matrix. The signal z(k) € R! is to be estimated.
The nominal model is

zo(k + 1) = Agzo(k) + Bov(k) (6)

yo(k) = Cxo(k) + Moe(k)
We assume the matrices AA, AB and AM to be known
functions of the unknown parameter vector p. The vec-
tor p may, for example, be uncertain physical parame-

ters of a continuous-time model. The robust estimation
of z(k) will be founded on the following assumptions:

e The uncertain parameters p are treated as if they
were stochastic variables!. Their realizations repre-
sent particular models in the set.

INote that the vector p is assumed to be time-invariant. This is
in contrast to the approach of Haddad and Bernstein in [6], where
the effect of uncertainties is represented by multiplicative white
noises. For a given uncertainty variance, such a white noise repre-
sentation would under—estimate the true effect of a time-invariant
parameter deviation on the dynamics.

e All models (5) are assumed stable. In other words,
the eigenvalues of Ag + AA(p) are in |z| < 1 for all
admissible p.

e The effect of p on the set of models (5) is described
by known covariances between elements of the ma-
trices AA, AB and AM. The nominal model (6) is
selected as the average model of the set; AA, AB
and AM have mean value zero.

The aim is to obtain an approximate modified Kalman
estimator which minimizes the criterion (4), i.e. the av-
erage, over the set of models, of the mean square esti-
mation error.

In [16] and [13], a systematic approach to robust Wiener
filtering based on probabilistic error models was pre-
sented. The set of models was parameterized so that
stochastic coefficients enter only linearly. In order to
apply this probabilistic framework on state estimation,
a model with uncertainties in the system matrix must be
approximated by a new model, in which the uncertain-
ties appear only in the input matrix. One way of doing
this is to use series expansion, based on the denominator
terms of a transfer function representation of (5). Here
we shall, instead, perform the expansion directly in the
state space representation, by augmenting the nominal
state vector zo(k + 1) by additional vectors. These vec-
tors correspond to sets of perturbations caused by the
different powers of AA occuring in a series expansion.

Introduce the set of possible state trajectory variations
ox(k + 1), caused by AA(p) and AB(p), such that

z(k+1) =zo(k+1)+0x(k +1) (7)
where ¢ is the nominal state vector given by (6) and

ox(k +1) = AAxo(k) + Aodz (k) + ABu(k) + AAdz(k) .

®)
The equality (8) is an exact expression derived from (5).
We now express §(k) in (8) as

ox(k) = 21 (k) + o (k) + ...+ x4(k)

for a given expansion order d. The term z,,(k),m <
d is defined as being affected by powers of AA up to
m only. Specifying state equations for the additional
state vectors, x.,(k), is now a matter of pairing terms
Zm (k + 1) on the left-hand side of (8) with appropriate
terms on the right-hand side. The choice

+1) =

$2(k} Ao.’I}Q(k‘) + AAl'l (k)

.’L’d(k + ].) Z Ao.’L’d(k) + AAl’d_l(k) + AA.’L’d(k)



yields the augmented state space model

Ay 0 ... 0

zo(k+1) zo(k)
: ) 0 :
za(k +1) 0 AA Ag+AA za(k)
A
Bo
AB
+ | O |k (9)

0
z(k) = zo(k) + z1(k) + ... zq(k) .

So far, no approximation has been made. The term AA
in the lower right corner of A represents the effect of
(d+1)’th and higher powers of AA and AB on z(k). We
neglect this term from now on, and thus discard terms
of higher order than d. The characteristic polynomial is
then given by det(z/(a1), — A) = det(zI, — Ag)?*, so
perturbations will no longer affect any transfer function
denominator.

To keep the notation simple, we shall in the sequel spe-
cialize to first order expansions: z,,(k),m > 1 are ne-
glected in (9). Using the forward shift operator (qw(k) =
w(k + 1)), we obtain

— Ao 0

ok =[1 17| ¥ i ]_1[5% ]v(k).

—AA

Now, introduce the n|n polynomial matrices D(g) and
AA(q) as a solution to the coprime factorization

D(q)AA = AA(q)(aln — Ao) (1)
where D(q) should contain no stochastic coefficients?.

and degdet D = n. Then, (10) can be written as a left
matrix fraction description

z(k) =
(¢In — Ao) "1 (Bo + AB + AA(ql,, — Ao) "' Bo)v(k)
= (¢I,— A0)"'D(q) ™" (D(q)(Bo + AB) + AA(q) Bo)u(k)
£ D(g)'Clq)v(k) (12)

where degdet D(q) = 2n. This representation is of the
form (3), with

F, =
AF =

(qIn — Ao)_lBo
(4l — Ao) ' D(q) " (D(q)AB + AA(q)Bo)

2This step is superfluous if the original system is realized in
diagonal form. As explained in [12], the factorization actually
corresponds to a polynomial matrix spectral factorization. A d’th
order expansion will require d factorizations of the type (11).

The input-output representation could be complemented
by stochastic additive error models which represent un-
modelled higher—order dynamics. It can form the basis
of a robust Wiener filter design [12], [13], in which also
uncertainty in the matrix C of (5) can be handled. If we
prefer to work with state space models, the set of models
(12) can be realized on observable state space form [8],
with 2n states:

£(k+1) = FE(k)+(Go+AG)v(k) ; x(k) = HE(K) (13)

where AG has zero mean. Note that since the denomi-
nator matrix D(q) of (12) contains no uncertain coeffi-
cients, neither will ' in (13). The covariance matrix of
the uncertain elements of AG in (13) can be calculated
straightforwardly from the covariances of the elements
of AA and AB in (5).

Let us restrict attention to linear estimators®. The
model (13) can now be utilized for designing robust
Kalman predictors, filters and smoothers, using well-
known techniques [1]. For example, it is straightforward
to show that if AM is independent of AA, AB and if
v(k) is uncorrelated to e(s) for all &, s, then the one-step
predictor minimizing (4) is given by

§(k+1) = Fik)+ K(k)(y(k) — Cié(k))
2(k+1) = LHEKk+1)
K(k) = FP(k)CT (C1P(k)CT + Ry)™'  (14)
P(k+1) = FP(k)FT+R,

— FP(k)CT(CLP(k)CT + Ry)~*Cy P(k)FT
where C 2 oH , with initial values
A — A 0
£(0) = EEE(0) = ¢

P(0) = EE(£(0) — £°)(§(0) — ") .

The robustifying modified covariance matrices are given
by
Ry = GoGl + E(AGAGT)

Ry = MoMg + E(AMAMT) (15)

with AG introduced in (13) and AM in (5) having zero
means.

3 A comparative evaluation

Consider the following second order model from [17],
with an unknown parameter p:

3Note that the variable AGv(k) will, in general, not be Gaus-
sian. Robustified Kalman estimators are, however, the optimal
linear estimators for arbitrary noise and uncertainty distributions.



0 —-05 —6
z(k+1) = [1 1+p]x(k)+[ 1 ]v(k)
2(k) = [10]z(k)
y(k) = [—10010]=z(k) + e(k)

Above, the scalar noises v(k) and e(k) are mutually un-
correlated, zero-mean and white, with unit variances. A
one-step prediction 2(k + 1|k) is to be estimated, based
on the noisy measurements y(k). The parameter may
vary in the range p € [ —0.3 0.3 ].

Figure 1: Power spectrum, ®,(e®), of y(k) in (16), for
different values of the uncertain parameter: p = —0.3
(dashed), p = 0 (solid), p = 0.3 (dash-dotted) and inter-
mediate values (dotted).

From Figure 1 we see that the power spectrum is af-
fected mainly at lower frequencies. In particular, the
magnitude for the nominal system (solid line) is much
lower than for p # 0. This indicates that predictors
having high low-frequency gain will be sensitive to the
actual value of p.

It is simple to design a predictor using the stochastic ap-
proach. Lacking any information about the distribution
of p, we assume an uniform distribution between —0.3
and 0.3. Thus, E(p) = 0, E(p?) = 0.030. The order of
a reasonably approximating expansion is investigated in
Figure 2, by using d = 2 and (16) in (9). A first order
expansion provides a reasonable approximation, except

possibly for parameter values close to p = 0.3.
A first order expansion, d = 1, leads to the model (10).

By selecting
~ ~ 0 0
D(q)=[ ] ; AA(q)=p[1 ]
q
as the solution to the coprime factorization (11)

ba |y 0] -5aw| 4 2]

1 0
0 ¢?—q+05

0 »p
we obtain the model (12), with

0.5
D(q) = [ —g? +qq_0‘5 (> —q+0.5)(g—1) ]

p

Figure 2: For a given p, the sum of state variances
is shown for the nominal states trE(zozl) (solid), the
first order approximation trE(z;x7) (dashed) and for
the states trE(z22]) (dash-dotted) which represent all
second and higher order effects.

@ —-q+0.5

N P |

The highest row-degree coefficient matrix of D(q) is I,
and is thus nonsingular. A realization (13) in observable
form, cf [8], of order 2n = 4 can then be computed. It is
given by

0 -5 0 0 —6
ek+n = | 115 o T lew| L (v
5 5 0 0 5—6p
ew = e = | ] 00 |ew
y(k) = CHE(k)+e(k) = [—100 1000 ] (k) + e(k) .

(17)
The use of (14),(15) constitutes the cautious Kalman
predictor for the set of models (17). The resulting gain

vector is
K =103 [ —2.217 —5.169 5.047 — 2.561 ]T .

Its performance is compared in Figure 3 and Table 1 to
that of the minimax Hs-design by Xie et.al [17]. (We
have independently verified the results reported there.)

The variance of the uncertain parameter p, used in the
design of the cautious Kalman estimator, need not be
equal to the true variance. If a higher value is used,
solutions with lower maximal error, can be obtained.
See Table 1. In this particular example, the average
MSE is also decreased by using Ep? = 0.09 instead of
Ep? =0.03.4

4Because the approximation involved in the series expansion,
the use of the “correct” variance of p is not guaranteed to minimize

the averaged MSE.



Figure 3: The prediction error variance as a function
of the uncertain parameter p, when using the cautious
Kalman predictor obtained from a first order expansion
(14) (solid), the nominal estimator (dash-dotted), the
lower obtainable bound for known p (lower dotted) and
the use of Z = 0. Compare to the performance presented
in [17] for the minimax H,-design (dashed).

E(MSE) max MSE
(p=0.3)
Minimax solution, as in [17] 63.3 64.4

The use of 2 =0 55.5 71.6

Cautious predictor, order 1 44.5 86.1
Cautious predictor, order 2 43.8 76.4
Use of Ep? = 0.09, order 1 43.8 66.2
Kalman pred, Ee? = 100000 44.4 79
Kalman pred, known system 40.2 51.9

Table 1. Average and worst case performances.

It is very instructive to compare the performance of the
estimators to the attainable bound (lower dotted) and
the “trivial” prediction 2(k+1) = 0 (upper dotted). Let
us, somewhat loosely, say that an estimator provides a
“useful performance” for a given parameter value when
it performs better than the estimator 2(k +1) = 0. The
results presented in Figure 3 and Table 1 can be sum-
marized as follows:

e The interval between the upper and lower dotted
curves is rather narrow. This indicates that the
estimation problem is difficult by nature; not much
can be gained by performing optimal prediction.

e A nominal Kalman predictor is very sensitive to p,
and is useful only in the interval p € [ —0.0250.025].
It fails completely outside of that interval. The rea-
son for this is that the Kalman predictor has high
low—frequency gain.

e The cautions Kalman predictor of Section 2, based
on a first order expansion, provides a performance
close to the attainable bound for p € [ —0.30 0.17 ].
It provides useful (but not good) performance in the

interval p € [ 0.17 0.23 ]. The use of higher order
expansions improve the result somewhat at p = 0.3

e The simplest robustification consists of just design-
ing a conventional Kalman estimator, based on a
higher measurement noise variance. In the present
example, this strategy, with Ee? = 100000, can in-
deed provide performances almost as good as for
the cautious approach. (This is rather common for
low order systems, but is seldomly the case for more
complex systems.)

e The minimax H, design provides the lowest worst
case performance (at p = 0.3). The design provides
useful (but not good) performance in the interval
p € [ 0.25 0.30 ]. It is not useful for any other
parameter value. The guaranteed cost value J; =
98.7, cf [17], is not informative; it turns out to be
higher than the variance obtained with the trivial
estimate 2(k + 1) = 0, for all p.

4 Conclusions

We have outlined a way of robustifying Kalman filters,
which is related to the old idea of modifying the noise co-
variance matrices used in a nominal design. The design
model was made linear in the uncertain parameters by
using an approximation which expands the state space.
The uncertainties are then taken into account by a sys-
tematic modification of the noise covariance matrices for
the augmented model. It was exemplified in Section 3
that a problem with a very large uncertainty in the dy-
namics (Figure 1) could be handled surprisingly well by
using the simplest, first order, approximation.

In our experience, first order expansions are mostly ad-
equate. Second order expansions, combined with a mul-
tiplication of all parameter variances by a factor of two
to account for higher order terms, has worked well so far
for all problems where robust design has been a reason-
able alternative.

The example also revealed several weaknesses of the
method suggested in [17], which belongs to a class of
minimax methods receiving recent attention. First, the
upper bound on the guaranteed performance .J; could
in this example not be made smaller than the variance
produced by the zero estimate. Secondly, the actual per-
formance was worse than that of the zero estimator (and
much worse than that of the probabilistic scheme) for
most parameter values.

Currently, it seems that methods of the kind suggested
in [17] have to be used with extreme care, since they
have not inherited the feature of producing zero filters,
if such filters are optimal. Robust filters based on mini-
mizing (4) have that property.



We consider it important to investigate to what extent
the lack of usable performance indicated in Section 3 is
a rule or an exception for minimax-robust Hy and H.,—
estimators.

Robust filtering has its limitations. When the dynamics
of models have very large uncertainties, such as in Sec-
tion 3 above, it is hard to attain a useful performance
throughout the parameter space. One should then con-
sider alternatives, such as adaptive schemes, or methods
based on filter banks.
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