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Abstract

A new approach to robust filtering, prediction and
smoothing of discrete-time signal vectors is pre-
sented. Linear time-invariant filters are designed to
be insensitive to spectral uncertainty in signal models.
The goal is to obtain a simple design method, leading
to filters which are not overly conservative. Modelling
errors are described by sets of models, parametrized
by random variables with known covariances. A ro-
bust design is obtained by minimizing the H#;-norm
of the estimation error, averaged with respect to the
assumed model errors. A polynomial solution, based
on an averaged spectral factorization and a unilateral
Diophantine equation, is presented. The robust es-
timator is referred to as a cautious Wiener filter. It
turns out to be only slightly more complicated to de-
sign than an ordinary Wiener filter.

1. Introduction

For any model-based filter, modelling errors are a po-
tential source of performance degradation. A cautious
Wiener filter for predicion, filtering or smoothing of
discrete-time signal vectors will be proposed here. It
can be designed by using a generalization of the poly-
nomial equations methodology pioneered by Kuéera,
[9]. It is based on a stochastic description of model
errors, related to the stochastic embedding concept
of Goodwin and co~workers [4], [5]. Our approach is
based on the following choices of model and criterion:

o A set of (true) dynamic systems is assumed to
be well described by a set of stable, discrete-
time linear and time-invariant transfer function
matrices

F=F.+AF . (1)
We call such a set an extended design model.
Here, F, represents a stable nominal model,
while an error model AF describes a set of sta-
ble transfer functions, parametrized by stochas-
tic variables. The random variables enter linearly
into AF.
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o A single robust linear filter is to be designed for
the whole class of possible systems. Robust per-
formance is obtained by minimizing the averaged
mean square estimation error

J = trace EE(e(k)e(k)*) . )

Here, e(k) is the estimation error vector, E de-
notes expectation over noise and F is an expecta-
tion over the stochastic variables parametrizing
the error model AF.
The averaged mean square error has been used pre-
viously, see [2] and [6]. We suggest the use of (2),
together with a particular description of the set (1):
transfer function elements in AJF have stochastic nu-
merators and fixed denominators. Such models can
describe nonparametric uncertainty and undermod-
elling as well as parametric uncertainty.

Most previous suggestions for obtaining robust filters
have been based on some type of minimax approach
[3], [8], [10]. Minimax design becomes very complex,
unless there exists either a saddle point or a bound-
ary point solution. The computational effort involved
in minimax design is considerable. Furthermore, in
many problems, closed—form solutions do not exist.

Apart from leading to a radical reduction of computa-
tional complexity, the approach proposed here avoids
two drawbacks of robust minimax design. First, the
stochastic variables in AF need not have compact
support. Thus, the descriptions of model uncertain-
ties may have “soft” bounds. Secondly, not only the
range of the uncertainties, but also their likelihood is
taken into account by the criterion (2). Highly proba-
ble model errors will affect the estimator design more
than do very rare “worst cases”. Therefore, the per-
formance loss in the nominal case, the price paid for
robustness, becomes smaller than for a minimax de-
sign. The conscrvativeness is thus reduced.

The present paper gencralizes the scalar robust de-
sign of [12] to multisignal estimation. One of our
goals will be to hold the number of design equations
to a minimum, without sacrificing numerical accu-
racy. We use matrix fraction descriptions with diago-
nal denominators and common denominator forms.
This leads to a solution which-is, in fact, signifi-
cantly simpler and more numerically well-behaved,



than the corresponding nominal Ho—design (without
uncertainty) presented in [1]. We end up with just
two equations for robust estimator design: a poly-
nomial matrix spectral factorization and a unilateral
Diophantine equation. This solution provides struc-
tural insight; important properties of a robust esti-
mator are evident by direct inspection of the filter
expression.

Remarks on the notation: Signals and polyno-
mial coefficients may, in the following, be complex—
valued. (This is required in e.g. communications
applications.) For any polynomial, P(¢™Y) = po +
P19~ + ...+ Pnpg~"P in the backward shift operator
¢!, define Pu(q) £ pl +pig+ ... + Phpa"?, where
g is the forward shift operator and p; denotes the
complex conjugate of p;. Rational matrices, or trans-
fer functions, are denoted by boldface script symbols,
e.g. R(¢7!). Polynomial matrices are denoted by
boldface symbols, such as P(¢~!), while constant ma-
trices are denoted as P. For polynomial or rational
matrices, P(q) and R.(g) means complex conjugate
and transpose. Arguments of polynomials and matri-
ces are often omitted, when there is no risk of mis-
understanding. The degree of a polynomial matrix is
the highest degree of any of its polynomial elements.
P(g™") is called stable if all zeros of det P(z~1) are
located in |z| < 1. We denote the trace of P by trP.
A rational matrix may be represented by polynomial
matrices as a left matrix fraction description (MFD),
G = A~!B. It may also be represented in a common
denominator form G = B/A. The monic polynomial
A is then the least common denominator of all ele-
ments in G.

2. Problem formulation

Consider the following extended design model

y(k) = Glg~u(k) +H(g™e(k)
u(k) = F(g~)e(k) ®3)
f(k)) = D(g~M)u(k)

where G, H, F and D are stable and causal, but pos-
sibly uncertain, transfer functions of dimension pjs,
plr, s|n and {|s, respectively. The noise sequences
{e(k)} and {v(k)} are mutually uncorrelated and zero
mean stochastic sequences. They have unit covari-
ance matrices. Thus scaling is included in F and H.

Multisignal estimation
From data y(k) up to time k + m, an estimator

FkIk +m) = R(q~ )y(k +m) (4)

of f(k) is sought. The estimator may be a predictor
(m < 0), a filter (m = 0), or a fixed lag smoother
(m > 0). The transfer function R, of dimension £|p,

is required to be stable and causal. It is designed to
minimize (2), where

e(k) = (ex(k) .. . e (k)T 2 W(g™)(F(k)—F(klk+m)).

Here, W(g™!) is a known stable and causal £|£ ratio-

nal weighting matrix, with a stable and causal inverse.
It may be used to emphasize filtering performance in
particular frequency bands. See Figure 1.

The model (3) offers considerable flexibility. For ex-
ample, when estimating a signal u(k) in coloured
noise, we set G = D = I, giving f(k) = u(k). In
deconvolution, or input estimation problems, G is a
dynamic system and P = I,. In a state estimation
problem, u(k) is the state vector, G and D are con-
stant matrices while 7 v(k) represents measurement
noise.

Figure 1: A general linear filtering setup.

Parametrization of the model

We choose to represent G and H with left MFD’s
having diagonal denominators!, while F, D and W
are represented in common denominator form;?

G=A"'B ; H=N"'M (5)
1o p_le. w1
F=5C; P=xpS; W=g

In (5), G, H and F may be uncertain, while W is
assumed to be known. It can be shown that uncer-
tainty in D does not affect the optimal filter design.
Therefore, uncertainty in D is not introduced. The
matrix V is assumed stable, with V'(0) nonsingular.

The extended design models, cf. (1) and (3),
G=G,+AG , H=H.+AH , F=F,+AF

are now represented in polynomial matrix form. Us-

1Note that this is a natural choice, if transfer functions are
obtained by means of identification.

2We have made these choices to obtain tidy and transparent
design equations. Coprime factorizations are avoided , which
are numerically sensitive, and also, we obtain an unilateral Dio-
phantine equation.



ing B, = A B,, B, = A,B, etc., we define

G = A;'B, + A{'B\AB
A;'ATY (B, + B,AB)

>

A™'B
H = N;'M,+N['M;AM

NJ'NTY (M, +M,AM) £ N™'M

Il
lie

F

ACo+4CiAC
pip7(Co + €14C)

>

ic .

Above, G, = A;' DB, represents the nominal moga
and AG = AT'B,AB is the error model. The same
holds for 2 and F. The diagonal polynomial ma-
trices A = A,A;, N = N,N; and the polynomials
D = D,D;, T and U are all assumed to be stable,
with causal inverses. In the error models, the poly-
nomial D;, the diagonal matrices A; and IN; and
the matrices Cy, B; and M, are fixed. They can be
used to tailor the error models for specific needs.

The matrices AB, AC and AM contain polynomi-
als, with jointly distributed random variables as co-
efficients. These coefficients parametrize the class of
assumed true systems. One particular modelling er-
ror is represented by one particular realization of the
random coefficients. Element ij of AP is denoted

AP = Apd + Apiq + .+ AP (7)

where 8p is the degree of AP. All coefficients have
zero means, so the nominal model is the average
model in the set. Only the first and second order
moments need to be known, since the type of dis-
tribution, and higher order moments, will not af-
fect the filter design. The parameter covariances
E(ApY)(Ap*)* are collected in covariance matrices
Pg’Pu), see (10) below.

Error models can be obtained from ordinary identi-
fication experiments, provided the model structures
match. For SISO systems, error models can be esti-
mated in presence of undermodelling, using a max-
imum likelihood approach, [4]. They could also be
obtained from frequency domain data on system vari-
ability, [5]. Even if the statistics is hard to obtain, one
could still use the elements of covariance matrices
pragmatically, as robustness “tuning knobs”. They
are then tuned to obtain reasonable performance for
the uncertainty set, without degrading the perfor-
mance in the nominal case too much. See [11] or
[12] for a further discussion about the error models.

Covariance matrices

The covariance matrices will be organized as follows.
First, (7) is written as

APY(g™Y) = oT(q7 V)i (8)

@) = (1 ¢7t...q7")
— ij T (9)
Pij = (apd ApY. APg,,)
Secondly, the cross covariance matrix PX{,")
ED;;Pii between coefficients of APii(g~!) and
AP%(g™1), is defined by

E(ApY )(AP"‘ y E(ap¥ )(AP AN

plite) _
aP
E(Apj, )(AP"‘ * E(A9} )(AP 5"
(10)
Then we can write,

E(APYAPH)

E(pT (a7 ")Pij Pt (2)
- TP('JyU‘) T
= oP .

(11)
We collect all matrices of type (10) into one large
covariance matrix, P, p, with éjth block given by

(i1,j1) (i1,jm)
PAP PAP
[PAP].'j: (5 ) ( : ) - (12)
im,j1 im,jm
PAP PAP

If AP has dimension n|m, then P, p is composed of
nm by nm covariance matricies P{J:¥). The struc-
ture of P, p is useful from a design point of view. If,
for example, a multivariable moving average model,
or FIR model, is to be identified, then P,p is the
natural way of representing the covariance matrix. If
we instead prefer to use the blocks Pg‘i’;k) of P, p as
multivariable “tuning knobs”, we can assign a given
amount of uncertainty to a specific input-output pair.

The following assumption will be utilized.

A1l. The coefficients of all polynomial elements in AC
are independent of those in AB.3

3. Design of robust filters

The averaged spectral factorization

An averaged spectral factor B(¢™?) is defined as the
numerator polynomial matrix of an averaged innova-
tions model. It constitutes a key element of the ro-
bust filter. The average, over the set of models, of the
spectral density matrix @y(e’“) of the measurement
y(k) is given by

1

B{#y(c)} = 5 AT NTIBBNT AT

The square polynomial matrix B(z~!) is given by the
stable solution to

BB, = E{NBCC.B.N.+ DAMM.A.D.} .
(13)

3 Assumption A1 could be excluded, but it does simplify the
solution and it is also reasonable in most practical cases.




The following results are useful when solving (13).

Lemma 1: Let H(g,q™!) be a m|m polynomial ma-
trix with double-sided polynomial elements having
stochastic coefficients. Also, let G(¢™!) be an njm
polynomial matrix with polynomial elements having
stochastic coeflicients, independent of H. Then,

E[GHG.) = E[GE(H)G.] . (14)
Proof. See [11].
Now, define the double-sided polynomial matrices
¢¢.2 Ecc.) ; MM, & E(MM.)
BeBe. 2 E(BEE.B.) . (15)
Invoking (6) and using the fact that the stochastic
coefficients are assumed to be zero mean, gives
CC. = CoCo + CLE(ACAC.)C,;.
BcBe. = BoCC.Bow + BLE(ABCC.AB.)B,.
MM, = MM+ M,E(AMAM.)M,, .(16)

Factorizations of CC. etc. need not be performed.

Lemma 2: Let Assumption A1 hold. By using (15),
(16) and invoking Lemma 1, the averaged spectral
factorization (13) can be expressed as

BB.=NBcBc.N.+ DAMM.A.D. . (17)
Proof. See [11].

With a given right-hand side, equation (17) is just
an ordinary polynomial matrix left spectral factor-
ization. It is solvable under the following mild as-
sumption

A2, The averaged spectral density
E{®y(e'“)} is nonsingular for all w.

matrix

This assumption is equivalent to the right-hand side
of (17) being nonsingular on |z| = 1. Then, the solu-
tion to (17) is unique, up to a right orthogonal factor.
Under A2, a solution exists, with 8 having a nonsin-
gular leading coefficient matrix 8(0). Its degree, ng3,
will be determined by the maximal degree of the two
right-hand terms in (17).4

To obtain the right-hand side of (17), averaged poly-
nomial matrices E(APHAP.) have to be computed,

where H(q,q~!) = CC, or I. It is shown in [11]
that the ij°th element of E(APHAP.) is given by

o7 0
E[APHAP.],'J' =trH x
0 qu

“When solving (17), we have utilized an algorithm by Jeiek
and Kugera, presented in [7]. It provides a solution with an
upper triangular full rank leading coefficient matrix.
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B PEY [ o
: : (18)
pugm R [[ o

where 7 is defined in (9). The block covariance ma-
trix in (18) constitutes the block—transpose of the ijth
block [ -] of P, p, see (12). Thus, the average factors
in (16) are readily obtained by substituting AC, AB
and AM for AP in (18).

The cautious multivariable Wiener filter

Theorem 1: Assume an extended design model (3),
(5), (6), to be given, with known covariance matrices
(12). Assume A1l and A2 to hold. A realizable es-
timator of f(k) then minimizes (2), among all linear
time-invariant estimators based on y(k + m), if and
only if it has the same coprime factors as

F(klk+m) = Ry(k+m) = %V-IQﬁ-lNA y(k4+m) .

(19)
Here, B(gq™!) is obtained from (17), while Q(g~?)
together with L.(g), both of dimensions £|p, is the
unique solution to the unilateral Diophantine equa-
tion

¢ ™VSCC.BouN.=Qp, +qL.UTDI, (20)
with generic® degrees

nQ =

nL. =

max(nv +ns + né+ m,nu+nt+nd - 1)
max(né + nbo + nn —m,ng) - 1

(21)
where ns = deg S etc. When applying (19) on an
ensemble of systems, the minimal criterion value be-
comes

i APIATI I —15-1
EE(E(R)e(k) Jmin = tr }{zlzl{m 8L,
N 1
UTDD. T.Ux
[I"—é*BO*N*ﬁ:lﬂ—INBoé] C’*S*V*}ﬁdz_z .
(22)

VSC x

Proof. See [11].

Remarks. The design equations are, (17), (18) and
(20). The only new type of computation, as compared
to the nominal case described in [1], is the calculation
of averaged polynomials, using (18).

Since both V' and B are stable, the estimator R will
be stable®. Furthermore, since V/(0) and B(0) are as-
sumed to be nonsingular, R will be causal.

5In special cases, the degrees may be lower.

6Stable common factors may exist in (19). They could be
detected by calculating invariant polynomials of the involved
matrices. If such factors have zeros close to the unit circle, it
is advisable to cancel them before the filter is implemented.
Otherwise, slowly decaying initial transients may deteriorate
the filtering performance.



Note that the diagonal matrix NA = NoIN1 4,4,
appears explicitly in the filter (19). Important prop-
erties of the robust estimator are therefore evident by
direct inspection. For example, assume some diago-
nal elements of N7 or A7’ in the error models to
have resonance peaks, indicating large uncertainty at
some frequencies. Then, the filter will have notches,
so the filter gain from the corresponding components
of y(k +m) will be low at the relevant frequencies.

The model structure (5)—(6) was selected to obtain a
few simple design equations. Other choices are possi-
ble, but lead to various complications. For example,
if stochastic polynomials had been introduced in the
denominators, no exact analytical solution could have
been obtained. The use of general left MFD represen-
tations, instead of forms with diagonal denominators
or common denominators, would have led to a so-
lution involving seven coprime factorizations. Such
a solution reduces the possibility to obtain physical
insight. It would also exhibit worse numerical be-
haviour, since algorithms for coprime factorization
are numerically sensitive.

Robust design improves the numerical properties of
the solution. Almost common factors of det 8, and
UTD close to |z| = 1 would make the solution of (20)
numerically sensitive. Due to the presence of aver-
aged factors in (16), the risk for this is less than in
the nominal case.

4. A design example

Assume that a scalar signal u(k), described by a first
order AR—process without uncertainty, is to be esti-
mated:

.

uk) = 1= 057"

e(k) ; Ee(k)’=1.
Thus, D=8 =T=D,=€,=1,€, =0 and
D =D, =1-0.5¢~. This signal is measured by two
transducers with nominal models being second order
FIRfilters. The transducers are modelled by

y(k)=(Bo+ AT'AB)u(k) + Mov(k)

where
B. = B\ _ 0.100 + 0.080¢~2
° TN\ BR )T\ 1-14¢7140.92¢72
(1 0
A ‘(0 1—0.6q-1)
ABll
AB = ( ABn)
_ AbL! 4+ Abllg2
T\ AB+ AbileT! + Ab3lg?
0.1 0
M. ‘( 0 0.1)

Thus, By = Ao = N = I, and A = A, are used
in (6). In the first transducer B'!, there is only a
single uncertain parameter. It affects the coefficients
Abl! and Ab}! with opposite signs, so they have zero
mean, variance r? = 0.02 and cross covariance —ri.
In the second transducer, the stochastic coefficients
are assumed mutually uncorrelated, with zero means
and equal variance r# = 0.10. Coefficients of AB'!
and AB?! are assumed mutually uncorrelated. Now,
expression (11) gives

E(ABVABY) = ri(-¢® +2 -¢7%)
E(AB™AB}) = 3r% .
Note that E(AB''AB}!') has zeros at z = 1 and at
z = —1. Thus, the static gain and the high-frequency
gain is assumed to be exactly known. The chan-
nel B! has its uncertainty concentrated around the

notch at frequency w = /2, while B?! is uncertain
mainly at low frequencies. See Figure 2.

The goal is now to design a filter (m = 0), which es-
timates u(k) based on the two measurements y;(k)
and yz(k). No frequency weighting is used (W =1).

A stable averaged spectral factor, which satisfies (17),
with B(0) nonsingular, is given by

8= 0.1339 — 0.01867¢~" + 0.01622¢ ™2
=\ —0.1474¢7' + 0.2908¢™2 — 0.1325¢~°

0.07862 — 0.01488¢ ™" + 0.06905¢™2
1.1585 — 2.0327¢! +1.6219¢~2 — 0.4765¢™>

The solution to the Diophantine equation (20), is
given by

Q = (0.4005 0.7746 )
L. = (0.0290 + 0.0200¢ — 0.2053 + 0.3224q — 0.1299(12).

Finally, the robust estimator (19) becomes

- 1.
R=QB7'A = E(A,” Kl?)

where
KB = 2.9922 — 4513897 +2.7365¢™2 — 0.5687¢™°
K = 0.4655 —0.3341¢™" — 0.06445¢ > + 0.05841¢™°

R, = 1-1.8193¢~! +1.6043¢™2 — 0.6584¢™°
+0.08479¢™* 4 0.009182¢™° .

A corresponding nominal estimator is given by R, =
(KA K1)/ Ra, with

K} = 0.7419-1.0943¢"! +0.3617¢~2
K% = 0.8792-0.3767¢~! - 0.03145¢"2
Rn = 1-1.77869"1+1.4269¢% - 0.3938¢~2 .

From Figure 2 the following can be seen. The gains of
the nominal estimator are determined exclusively by
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Figure 2: Bode magnitude plots for the nominal
models of the two transducers B'!(g~!) and B?'(g™?!)
(solid). The dotted curves show fifteen realizations
of possible true systems, assuming Gaussian distri-
butions. Magnitude plots for the gains from g (k)
(upper) and yo(k) (lower), are shown for the robust
(dash—dotted) and nominal Wiener filter (dashed).
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Figure 3: MSE for robust (dashed) and nominal fil-
ter (solid). Also shown is the variance of u(k) (upper
dotted). The lower dotted curve is the lower bound,
achievable with knowledge of the true system. Rings
(o) indicate the two standard deviation limits.

the nominal signal to noise ratios, while the gains of
the robust estimator are determined by the balance
between noise levels and model uncertainties in the
two channels. For example, the robust filter “knows”
that channel 1 is well known at low and high frequen-
cies. Consequently, a higher gain is used from y; (k)
as compared to the nominal case, and a lower gain
from y2(k). The difference, as compared to nominal
design, is largest at low frequencies. There, the dy-
namics of channel 1 is almost perfectly known, while
channel 2 is very uncertain. The nominal filter gain
in channel 2 is an approximate inverse of the nomi-
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nal transducer. Compared to the nominal filter, the
robust filter has much lower peak at the (uncertain)
notch around w = 0.7. It utilizes channel 1 more at
this frequency.

Figure 3 shows the mean square estimation error,
when one of the uncertain parameters

Abt = —ABI A o AR ABY ;AN

is varied, while the others are zero. The four pa-
rameters span the set of assumed true systems, the
extended design model. On average, over the four
uncorrelated stochastic coefficients, the MSE is 0.32
for the robust filter and 0.90 for the nominal design.

The robust estimator does, of course, not perform
as well as the nominal one in the nominal case. It
is evident from Figure 3 that this performance loss
is small, compared to the improvement in non-ideal
situations.
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