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Abstract: Design equations are presented for a ro-
bust realizable decision feedback equalizer, for FIR
channels with uncertain channel coefficients and white
noise. The mean MSE averaged over the class of
channels is minimized. An example using a robust
DFE for a fading GSM-channel is presented.

1. INTRODUCTION

If data sequences {d(n)} are transmitted in the pres-
ence of intersymbol interference, they have to be
reconstructed from the received sequences {y(n)}.
Equalizers compute estimates d(n) on a symbol by
symbol basis. Their main advantage, as compared
to the MLSE Viterbi detector, is a low computa-
tional complexity.
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Figure 1: Decision feedback equalizer

Due to reflections from surrounding objects, the re-
ception for a mobileradio varies as its location chang-
es. This causes time variations (fading) in the coef-
ficients of the channel.

If the time variations are large an equalizer that
adapts to the channel has to be used. If the time
variations are small, the filter coefficients can be ad-
justed during known training sequences, and held
fixed until the next training. However if in the lat-
ter case the time variations are not negligible, they
have to be considered when designing the equalizer.

A method for dealing with this problem will be pre-
sented in Section 3 below. It utilizes a technique
for taking the spectral uncertainity of IIR models
into account in the design of Wiener filters, which
has recently been presented in [6],[8]. In this ap-
proach, a set of possible systems around the nominal
design model is parametrized by random variables.
That way of describing model uncertainity is closely

related to the stochastic embedding concept devel-
oped by Goodwin and co-writers in [3],[4]. A robust
(realizable) Wiener filter is then obtained by min-
imizing the MSE, averaged over the set of possible
true systems. The design equations become no more
complicated than for a Wiener filter which does not
take model uncertainity into account.

To make a robust filter sufficiently insensitive, but
not too cautious, the set of possible systems must be
covered by the model error description. In Section 4
below, we will illustrate how this can be acheived in
a mobile radio application.

2. MODEL AND FILTER STRUCTURE

Consider the following received, discrete-time, com-
plex baseband signal

y(n) = (Bo(¢™!) + AB(g™1)) d(n) +v(n) (1)

where ¢~ is the delay operator such that ¢~ y(n) =

y(n — 1)). The transmitted symbols {d(n)} are as-
sumed to be zero mean and white, with E{d(n)|? =
o2, The noise v(n) is zero mean, with variance

Elv(n))? = ol.

The nominal model of the transmission channel is
described by a FIR filter with complex coefficients

Bo(g™1) =bo+big ...+ babg™™ (2)

The set of possible model errors is represented by
the “error model”

AB(g7Y) = Abo+ Abig™ + ...+ Abyg™™  (8)

The coefficients Ab; are stochastic variables with
zero mean and known correlations E[Ab;Abf]. This
channel model is a special case of more general un-
certain models discussed in [6] and [8].

We now introduce the following ITR decision feed-
back equalizer (DFE)

o=t = XLy - A Do - 2-1) 0

where £ is a user-chosen smoothing lag and d(n)
are decisioned data. The denominator polynomials




R(q™') and P(¢™') are required to be monic and
stable. The optimization of such equalizers based
on exactly known channel and noise models has been
discussed in e.g.[5].

CHANNEL vn) FEEDFORWARD FILTER g, _ ¢) dn -0
dln) Received slgnal . : ’i
—— B + snEy T ecelved slgnal y(n} ;‘:_‘;
FEEDBACK FILTER|
Qe
P

Figure 2: Channel with error modell and IIR deci-
sion feedback equalizer.

In the theoretical treatment of the equalizer, decided
data d(n — £~ 1) is replaced by delayed transmitted
data. By doing this, we eliminate the nonlinear de-
cision device from the theoretical treatment.

3. FILTER DESIGN EQUATIONS

We have designed an equalizer which is optimal in
the sense that it minimizes the averaged MSE crite-
rion

J = EEld(n— £) — d(n — £|n)]? (5)

where E represents expectation over d and v and E
is an expectation over the model error distribution
in (1). This type of criterion has been used in con-
nection to other filtering problems, e.g. by Chung
and Bélanger [2]. Note that not only the range of
uncertainties, but also their likelikood is taken into
account by (5); common model deviations will have
a greater impact on an estimator design than do
very rare “worst cases”.

In [7], design equations have been derived for min-
imizing the criterion (5) with respect to the filter
coefficients of the DFE (4), for an ensemble of sys-
tems (1). A novel derivation technique, described in

p=E@l)lo}
v(n)
CLASS OF CHANNELS FEEDFORWARD FILTER . _ ) din -0}
din) Received signel o) [ 5oy
| ‘Ba™) + ABY) ) Fah) -

- d{n~{~1) Dedslcneddata——; Q™
e i e Mt B

FEEDBACK FILTER

I
|
!
!
I
-ty ={ Erorz(n)
R o

Min EE[z(n)]? = LE(d(n — {) — d{n - {In)?

Figure 3: Theoretical model of the decision feedback
equalizer.

[1] and in [6], has been used.

For polynomials

P=po+pig™ ' +... (6)
let A
P.=p5+pig+... (7)
where ¢ is the forward shift operator.
Define
p=oifos .

The polynomials S(g~1), R(¢™ 1), @(¢”*) and P(¢™ 1)
in the equalizer (4) can then be calculated as follows.

Let the scalar 7y and the stable monic polynomial
B(g™1) be the solution to the averaged spectral fac-
torization

r1ffs = E(ABAB.) +p (8)

Let {Q(q—l)) S(q—l): Ll*(Q))L%(Q)} be the (unique)
solution to the coupled polynomial equations

B+q'Q = ¢'BoS+PLi 9)

qLae = —r1BcS+q *BoyL1s

(10)
The polynomial degrees are
degS =degLi =¢

deg Q@ = deg Ly = max{deg Bg,degf} —1 .
Then, the equalizer (4), which minimizes (5), is given
by @ and S from (9) and (10) and by

R=p; P=§ . (11)

This result can be derived by adding a variation
v(n) = Tiy(n) + Td(n — £ — 1), with 73 and T
arbitrary but rational and stable, to the estimate
d(n — {n). Optimality corresponds to orthogonal-
ity of the mean estimation error with respect to this
variation. The equations (9) and (10) arise from re-
quiring orthogonality with respect to the two terms
Tiy and 7ad, separately. A detailed derivation can
be found in [7].

The coupled equations (9),(10) can be solved by con-
verting them to a system of linear equations in the
coefficients.

Define
bo 0 0
pa| b b 0 (12)
by beq bo




ﬂ é ﬂl 1 cas 0 (13)
Be Be-1 - Bo
sT 4 r,on It
—( So S1 .. 8¢ A1 b1 1,0 )
(14)
cT2(0 o 100 ..0) (15

where the “1” in C appears in element nr £41. Then
it can be shown from (9) and (10) that

_( B B\
s_.<r1*ﬂ* _B*> c (16)

From S we now can extract S (and L;) and subse-
quently @ can be obtained from equation (9).

Solution of the spectral factorization (8) is straight-
forward. With a given right-hand side, it is just
an ordinary polynomial (FIR) spectral factorization,
for which there exist efficient iterative algorithms.

The averaged term, E(ABAB), in(8) can be evalu-
ated as follows. For a stochastic polynomial AB(g~!),
of degree nb, let the Hermitian parameter covariance
matrix be

E|Abo|2 E(AboAb »)

Pap=
E(AbnbAb ) E‘|Ab,,b|2

Denote the sum of the diagonal elements go, the sum
of the elements in the ¢’th super—diagonal g;, the
sum of elements in the #’th subdiagonal g_;. Note
that g_; = gf. Then it becomes evident, by direct
multiplication of AB{g™ 1)AB*(q), and taklng ex-
pectations, that

E(ABAB.) = giyq~®+.. +gi ¢  Hg0+910+. . A9 g™

Above, db < nb, with db = 0 for uncorrelated coeff.

Note that, apart from the nominal model and the
variance ratio p, only second order moments of the
model error distributions need to be known.

If the coefficients in AB are uncorrelated, then
E(ABAB,) is a constant (not a polynomial) and
from equation (8) we see that the robust equalizer
is achieved by adding the sum of the variances of
the coefficients of AB to the variance ratio p. Thus,
if the uncertainities of the channel coefficients are
uncorrelated, the robust equalizer is obtained by in-
creasing the noise power for which the equalizer is
designed.
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Figure 4: Example of the variation of a channel tap
at carrier frequency 1800 MHz and mobile speed 200
km/h. The time span is 58 symbols of 3.7us each.
Solid line: real part, dashed line: imaginary part.

4. EXAMPLE

Consider as an example a GSM-channel with three
independently Rayleigh fading received signals hav-
ing average relative powers 0 dB, -1.8 dB and -
4.8 dB. The three rays are arriving separated by
one symbol interval. The carrier frequency used
is 1800 MHz. The GSM-system uses a partial re-
sponse modulation stretching over 3-4 symbol in-
tervals. This results in a channel with 5-6 coeffi-
cients b;.

Fading due to movement of the mobile causes the
channel to be slightly time varying over the dura-
tion of a burst. An example of this time variation
can be seen in Fig. 4.

This time variation can be taken into account when
designing a robust DFE. The channel identified dur-
ing the training sequence is used for the nominal
model By(g™1). The time variation is viewed as one
part of the stochastic uncertainity AB(g™!). An-
other part of the AB(¢™1) is the uncertainity in thé
identification of the channel during the training se-
quence,

In order to design the equalizer, an average value
for the correlation matrix Pap is required. Pagp
consists of two parts

PAB = PTime variation+PIdentiﬁcation uncertainity (17)

The correlation matrix for the channel coefficients
of the channel Pg can be estimated on line by av-
eraging over a number of bursts. Prime variation Call
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Figure 5: Performance gain, BE Rnom /BER,,; and
MSEnom/MSE, 4, for the robust equalizer as com-
pared to the nominal equalizer.

then be related to Pp by

L " na(ang. 20y
'T'- /0 ()( T c'g(;'r T
(18)
where T is the time period averaged over, f, is the
carrier frequency, cg is the speed of light and vq is
the speed of the mobile, which can be estimated.

Jo1s 3 Bessel Function of thefirst ikind, af arder zero,
Prdentification uncertainity ¢an be computed, by well known

methods, from the training sequence and the esti-
mated noise variance. With the resulting, Pap, the
robust equalizer can now be designed.

P’I‘ime variation = 2PB(1 -

The performance gained with the robust DFE as
compared to the nominal DFE can be seen in Fig. 5.
The performance gain increases with increasing speed
of the mobile, and is largest at large SNR’s.

In the considered example, it turns out that the un-
certainities in the coeflicients of the channel are only
weakly correlated and therefore one could design an
almost as good robust equalizer by only adding the
sum of the diagonal of Pop to the variance ratio p.
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