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Abstract. Design equations are presented for ro-
bust and realizable decision feedback equalizers, for
IIR channels with coloured noise. Given a probabilis-
tic measure of model uncertainty, the mean MSE, av-
eraged over a whole class of possible models, is mini-
mized. A second type of robustification, which reduces
the error propagation due to the feedback, is also in-
troduced. The resulting design equations define a large
class of equalizers, with DFE’s and linear equalizers
based on nominal models being special cases.

1. INTRODUCTION

If data sequences {d(n)} are transmitted in the pres-
ence of intersymbol interference, they have to be recon-
structed from the received sequences {y(n)}. Equaliz-
ers compute estimates d(r) on a symbol by symbol ba-
sis. Their main advantage, as compared to the MLSE
Viterbi detector, is a low computational complexity.
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If channels are slowly time-varying, filter coefficients
can be adjusted during known training sequences, and
held fixed until the next training. For fast time-
variations, adaptive structures have to be used. The
conventional approach to adaptive equalization is to
make a decision—directed adjustment of the filter coef-
ficients directly. An interesting alternative is indirect
adaptation: a model of the channel (and possibly also
of the noise) is adjusted, often with decisioned data
d(n) being used as channel model input *.

One advantage of the indirect approach is that in
e.g. Rayleigh—fading environments, channel parame-

1Direct adaptation corresponds to recursive minimization of
jd(n) — d(n)f? w.r.t. filter parameters, using LMS or RLS. In-
direct methods adjust a channel model, with output g§(n), to
minimize |y(n) — §(n)|2. Use of a priori information to improve
tracking of time-varying FIR channels is described in [7].
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ters change much more “smoothly” than do the opti-
mal values of equalizer parameters. Thus, it is much
easier for an adaptive algorithm to track them. Fur-
thermore, the number of channel parameters is mostly
smaller than the required number of equalizer coeffi-
cients. Another advantage is that effects of modelling
errors can be minimized analytically in an indirect ap-
proach, as described below.

In an indirect approach, equations are needed which
optimize realizable equalizers, for given channel and
noise models. For IIR channels with coloured noise,
calculation of linear recursive equalizers was described
in [1]. Equations for the more high-performance De-
cision Feedback Equalizer (DFE) were presented in [8).
While simple to use, these methods have two main lim-
itations:

o Modelling errors are not taken into account. The
resulting equalizer performance can be sensitive to
such errors, in particular for channels with reso-
nance peaks or deep nulls.

¢ The DFE in [8] was optimized under the assump-
tion that past decisions were correct. Sensitivity
to erroneous past decisions was not considered ex-
plicitly. The resulting DFE’s sometimes generate
long error propagation events.

Design equations which take these two problems into
account are presented in Section 3 below.

2. MODEL AND FILTER STRUCTURE

The robustification is based on stochastic representa-
tion of the mismodelling and of decision errors.

We describe the received, discrete-time, complex base-
band signal y(n) as

Bo(¢™!) . AB(gh)

) = (B0 25
Ao(g™")  Aulg™)
with ¢~! being the backward shift operator (¢~ !y(n) =

y(n—1)). The transmitted symbols {d(n)} are assumed
to be zero mean and white, with E|d(n)|? = o2.

) d(n —k)+w(n) (1)
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The noise w(n) is described by

win) = ( Mola™?)
(=) (NO(Q'l) *

AM(¢™Y)
Ni(g™")
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where v(n) is zero mean and white, with (uncertain}
standard deviation ov. In these time-invariant models,
By/Ao and Mg/Ng represent stable and known nom-
inal models of transfer functions, while AB/A; and
AM/N; are members of model error classes. Coeffi-
cients of their numerator polynomials, eg. AB(g™!) =
Abg+ Abyg~  + ...+ Absg®, are regarded as (time-
independent) stochastic variables, with zero means and
known covariance matrices. The stable denominators
A; and N, are fixed. In [9], such representations are

use of a small positive value of 7 often gives a lower bit
error rate, in cases with severe error propagation for a
design based on =0 3.
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shown to be suitable for describing a wide range of |

model error types. They are related to the stochastic
embedding approach of Goodwin [4], [5].

For example, a FIR channel with white noise is de-
scribed by

y(n) = (Bo(g™") + AB(g™)))d(n - k) + v(n) .

If §(n) = Bo(g~!)d(n — k) has been estimated by the
least squares method and the order of By is adequate,
the LS covariance matrix can serve directly as an esti-
mate of the covariances E(Ab;Ab}).

Let us introduce an IIR decision feedback equalizer

S(g™!) Qe 5

- dn-£-1) (3
R )™ P T @
where £ is a user—chosen smoothing lag and d(n) is de-

cisioned data. The denominator polynomials R(g™!)
and P(g™!) are required to be monic and stable.

d(n - tn) = y(n)

Errors in the decisioned data d(n) will be treated as
uncertainty, and represented by additive white noise
x(n), uncorrelated? with d(n — j) and v(n — j) for all j

d(n) = d(n) +&(n) ; Els(n)?=n07 . (4)
The problem can then be solved with tools for linear
quadratic design, since the nonlinear decision element
is removed from the signal path to the error d - d.

The scale factor > 0 is used to trade off error prop-
agation against theoretical performance, with n = 0
representing a belief in error—free decisioned data. The

2This is, of course, a simplification. In reality, the error x(n)
is non-stationary since decision errors tend to occur in bursts.
There may also exist correlations to past noise samples, in par-
ticular to those that caused the error. These nonlinear and time—
varying effects are neglected here, to obtain a tuning parameter
which is simple to use.

(Fictitious noise) El|x(n)|* = no?

3. FILTER DESIGN EQUATIONS

Now, a single equalizer is to be optimized with respect
to the whole model error class. We minimize an aver-
aged MSE criterion

J = EE|d(n - £) — d(n - £|n)}? (5)

where E represents expectation over d,v and « and E
is an expectation over the model error distribution in
(1) and (2). This type of criterion has been used in con-
nection to other filtering problems, e.g. by Chung and
Bélanger [3]. Note that not only the range of uncer-
tainties, but also their likelihood is taken into account
by (5); common model deviations will have a greater
impact on an estimator design than do very rare “worst
cases”. Compared to the use of a minimax design, the
conservativeness is thus reduced.

In [10], design equations have been derived for mini-
mizing the criterion (5) with respect to the filter co-
efficients of the DFE (3), for an ensemble of systems
(1),(2), assuming (4). A novel derivation technique,
described in [2] and in {9], has been used. For poly-

nomials P = po+ p1g” > +..., let P. ép8+p;q+....
Define polynomials H(g™!), A(¢~!) and N(g™!) as

H é BoAlNoNl ) A é AnAl 3 N é NoN]
Define double-sided polynomials BB.(¢,¢"!) and
MM.(g,47") by

BB. By BouA1 A1 + E(ABAB.)Ag Ao

(6)

MM, MoMo. Ny Niu + E(AM AM,)No No.

3For a related suggestion, using a linear combination of a zero
forcing linear equalizer and a zero forcing DFE, see [6].
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Finally, define
p=E(o})/a] .

Now, let the scalar r; and the stable monic polyno-
mial B(g~!) be the solution to the averaged spectral
factorization

BB = NN.AoAwE(ABAB)) )
+ pNN.BB, + (1 +n)pAA.MM. .

Let {Q(g7"),51(a7"), L14(g), L2+(g)} be the (unique)
solution to the coupled polynomial equations

B+q (1+nQ = ¢ F*HS +BLi.  (8)

—rBeS1 + ¢ H Ly
9

Then, the equalizer (3), which minimizes (5), is given
by @ from (8) and by

—¢ ¥ pH. + ¢(14 1) Lo

S=SNA,; R=p; P=§ . (10)

This result can be derived by adding a variation v(n) =
7’1y(n)+7'2ci(n —£-1), with 7; and 7; arbitrary but ra-
tional and stable, to the estimate d(n—£|n). Optimality
corresponds to orthogonality of the mean estimation
error with respect to this variation. The equations (8)
and (9) arise from requiring orthogonality with respect
to the two terms Tiy and Tod, separately. A detailed
derivation can be found in [10], where generalization
to correlated symbol sequences is also discussed.

The coupled equations (8),(9) can be solved in precisely
the same way as the corresponding equations (3.3a,b)
in [8]. Convert them to systems of linear equations in
the coefficients. Then, a new system of linear equations
is created by combining all equations with known left-
hand sides. This system is solved with respect to the
coefficients of Sy and L,,.. Subsequently, Q is obtained
from (8). The polynomial degrees are

deg51 :degL1 =f—-k

deg Q = deg Ly = max{deg H,degf} -1 .

Solution of the spectral factorization (7) is straight-
forward. With a given right-hand side, it is just an
ordinary polynomial (FIR) spectral factorization, for
which there exist efficient iterative algorithms. The av-
eraged factors in (7) can be evaluated as follows. For
a stochastic polynomial AP(g™?), of degree 6p, let the
Hermitian parameter covariance matrix be

E|Apo|? E(ApoAps,)

Pap= : :

E(Apsp Ap}) E|Apsp|?

Denote the sum of the diagonal elements go, the sum of
the elements in the i’th super-diagonal g;, the sum of
elements in the 7’th subdiagonal g_;. Note that g_; =

g!. Then it becomes evident, by direct multiplication
of AP(¢"')AP.(q), and taking expectations, that

E(APAP,) = yzpq‘dp+. gt g0+g10+. . .+gd,,q"”
Above, dp < §p, with dp = 0 for uncorrelated coeff.

Note that, apart from the nominal model and the vari-
ance ratios p and 7, only second order moments of
the model error distributions need to be known. If
not known, A;,N;, and the covariance matrices of
AB and AM can still be used as “robustness tun-
ing knobs”. In the case of no model uncertainty, we
set AB =AM = 0,4 = N1 = 1in (6)-(10). An in-
crease of the covariance matrix elements of AB or AM
will result in more cautious feedback and feedforward
filters, with lower gains and lower, broader, spectral
peaks.

An increase of 7 reduces the gain of the feedback fil-
ter @/P. This results in shorter, but more numerous,
bursts of decision errors. (See section 5 below.)

4. THE CLASS OF EQUALIZERS

The equations (3)-(10) define a class of robust equaliz-
ers, with linear equalizers and DFE’s as special cases:

o If n = 0 (perfect decisions assumed), and with no
model uncertainty, the IR DFE discussed in [8] is
obtained %. In this (and only this) case, a solution
of the spectral factorization (7) is not required.
We directly obtain 8 = Ay Mp.

o If n — oo (decisioned data are very unreliable),
Il Q(g=1) |— 0. Then, (7) and (9) reduce to the
design equations for a robust linear equalizer S/ R,
derived in [9]. (Divide (7)~(9) by 7 and set r £
r1/n, which is finite.)

e When 7 — oo and no model uncertainty is as-
sumed, we obtain the ordinary linear recursive
equalizer, discussed in e.g. {1],(8].

4With AB = AM = 0,A; = N; = 1, we get BB. = ByBo.,
MM, = MoMop., 71 =9, 8= Ao Mo é'y and H = BoNp 2 T.
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5. PERFORMANCE AND ROBUSTNESS

We are presently evaluating the performance of robust
equalizers. The properties of a large number of linear
equalizers (17 — o), based on randomly selected 5-tap
FIR channel models, are summarized in Section 4.5 of
[9). In about 1/5 of those cases, the nominal chan-
nels had pronounced nulls. Equalizers designed with-
out taking any model uncertainty into account then
had spectral peaks. Their performance was very sen-
sitive to model errors. Robust design eliminated the
sensitivity, at the price of only a slight increase of the
minimal MSE (for correct models).

Example. The utility of the parameter 7 is investi-
gated. Based on a model (without uncertainty)

(14 0.95¢™Y)
(1-0.70¢-1)3

we designed DFE’s for the signal to noise ratio 28dB ¢
p = 0.553. The smoothing lag was £ =5 and the data
sequence was binary PAM (d(n) € [-1,1]). DFE’s were
designed for different values of the parameter 7). Here,
H = By, BB. = BoBp., MM. =1, and (7) reduces to

y(n) = g-g-d(n) +v(n) = d(n) +v(t)

108« = nBoBo. + (l + ﬂ)pAoAa,. .

The bit error rate (BER) was estimated, from runs
with 500000 symbols for each design. The diagram
below shows the BER as a function of 5 (solid). Also
shown is the BER without error propagation (dashed),
i.e. the result we would obtain if correct past decisions
could be substituted for d(n—£—1) in (3). In this dif-
ficult problem, a pure DFE has severe problems with
error bursts, while a linear equalizer (LE) gives a large
BER. However, the BER can be reduced by a factor of
3.5 by using 17 = 0.001 instead of 7 = 0 (pure DFE).

100 ¢

F < DFE LE=> ]

& 102}

@ F
L0 S —— 4
108 107 10€ 105 10+ 103 102 10 10° 10

eta
Furthermore, it is evident from the table below, that
the use of a small 7 > 0 reduces the length of error
propagation events® substantially. If a coding scheme

SDefined in this example as the length of sequences of d(n)
which contain < 7 consecutive correct decisions.

is used which is sensitive to long consecutive sequences
of errors, this property is valueable in itself.

Number of error propagation events

Length: 1-2  3-20 21-50 51-100 >100

n=0: 328 197 75 66 133
n=10"3: 323 232 77 24 -
7=0.1: 6100 4469 171 - -
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