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ABSTRACT

Low complexity algorithms for channel estimation
in Rayleigh fading environments are presented. The
channel estimators are presumed to operate in con-
junction with a Viterbi detector, or an equalizer. The
algorithms are based on simplified internal modelling
of time-variant channel coefficients and approximation
of a Kalman estimator. A novel averaging approach is
used to replace the on-line update of the Riccati equa-
tion with a constant matrix. The associated Kalman
gain is expressed in an analytical form. Compared to
RLS tracking, both a significantly lower bit error rate
and a much lower computational complexity is attained.

1. INTRODUCTION

When digital data are transmitted over mobile ra-
dio channels, time-dispersion and multipath fading may
occur. To preserve high-quality transmission in such
channels, it is necessary to utilize adaptive channel
equalization.

An inherent difficulty associated with adaptive equal-
ization is that unknown transmitted data are needed
for channel or filter adaptation. They can be replaced
by decisioned data in “decision directed mode”. With
severe fading there is a potential risk of losing tracking
ability when (possibly incorrect) decisions are used in
the adaptation. Characteristic of adaptive detection
schemes based on decisioned data is that small im-
provements in tracking accuracy result in significantly
lower bit error rates.

Tracking of parameters in rapidly time-varying sys-
tems with “classical” LMS and windowed RLS algo-
rithms require large adaptation gains, i.e. a small mem-
ory. Algorithms with small memories become sensitive
to noise and to incorrect decisions. They are therefore
inappropriate for tracking rapidly time-varying param-
eters from noisy data. When prior knowledge about the
behaviour of the time-varying parameters exists, algo-
rithms with larger memories can be designed without
sacrificing tracking capability.

In fading environments, the coefficients of a FIR
channel model typically exhibit trend and quasi-periodic
behaviour. One way to incorporate this a priori in-
formation in the adaptation is discussed here. It is
related to design of recursive algorithms based on hy-
permodels (internal models), i.e. dynamical models of
time-varying parameters, see e.g. [1,2,4].

Most of the current approaches, for tracking of time-
varying parameters in fading environments, utilize dif-
ference approximations of the derivatives of the pa-
rameters in the estimation scheme. This is sometimes
called fading-memory prediction, see e.g. [3,5]. These
coefficient predictions filters are combined with LMS
or RLS algorithms. A brief review of the use of coeffi-
cient prediction filters in the adaptation can be found
in [6]. In this paper, we suggest new algorithms with
simpler and less ad hoc setting of parameters in the
adaptation. The internal models used here might be
viewed as coefficient prediction filters embedded in a
Kalman filter formulation.

The ideal estimator would be one with almost the
same performance as the Kalman predictor, but with
a computational complexity comparable to that of the
LMS algorithm. It will be possible to design estimators
with these properties, if transmitted sequences of sym-
bols are white and the symbols have constant modulus.
In this paper, derivation of such channel estimators is
outlined. For more details, see [7].

2. STATEMENT OF THE PROBLEM
Consider a received sampled sequence {y(n)}. It
is generated by transmission of one data burst {d(n)}}
over an urban mobile radio channel, represented by an
equivalent discrete-time baseband (FIR) channel model

ym) = PH()6(n)+ o(n) 8
po(n) = (d(n)...d(n—-m))
67(n) = (ho(n) ... hm(n)).

The noise, v(n), is assumed to be white with zero
mean, variance o2 and independent of the symbol se-
quence {d(n)}. The channel coefficients, {hx(n)},,
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are Gaussian processes with zero means, variances o7,
and subject to independent Rayleigh fading. All signals
are complex-valued. Here, the objective is to recon-
struct {d(n)},,;, from {y(n)}{’ and a known train-
ing sequence {d(n)}i"*r, by estimating the channel re-
sponse.

3. INTERNAL MODELLING AND
THE KALMAN PREDICTOR

It is well known that the autocovariance function of
a channel coefficient subject to Rayleigh fading is given
by 02, Jo(27 fm/ fs £), where Jo(-) is the Bessel function
of the first kind and of order zero, fn, is the maximum
Doppler frequency, f, is the sampling rate (> fm) and
£ is a time lag. Channel coefficients, which approxi-
mate the statistical properties of the Rayleigh fading
model, can be generated by feeding white complex-
valued Gaussian noise through a linear filter, here ex-
pressed in a state space form

zr(n+1) =
hk(n) =

Fzi(n) + Ger(n)
Hzi(n) k=0,1,....m. (2

The sequences {ex(n)}7., are mutually independent

white complex-valued Gaussian noises (independent fad-

ing), with zero means and variances o2, Jo(-) is sym-

metrical around £ = 0, so the matrices F, G and H

are real-valued. The cut-off frequency of the filter is

controlled by the maximum Doppler frequency (f).
By introducing the total state vector

X(n) = (zg(n), N N CO)

a state space description of the time-variant model (1)
can be expressed as

X(n+1)
y(n)

where e(n) = (eo(n), . .., em(n))T and

FX(n)+Ge(n)
& (n)X(n) + v(n),

8(n) = HX(n)

F 2 disg(F,..,F) G2 diag(G,...,G)
H £ diag(H,..., H)
®H(n) 2 (d(n)H,...,d(n—m)H).

Above, diag(-) indicates forming a diagonal matrix with
the arguments on the diagonal. Given the a priori
information (2), the optimal adaptive algorithm for
Gaussian noise would be the Kalman predictor

en) = y(n)— " (n)d(n)
K@) = P@ee + 8" ()Pme)
X(n+1) = FX(n)+K(n)e(n) 08(n)= HX(n)

P(n+1) = F{P(n) - P(n)Q(n)P(n)}FT
+ GR.GT (3)
Q) 2 (n)a” (n)[o? + & (n)P(n)&(n)] ™",

where R, = diag(o? ,...,02 ). From a practical point
of view, a Kalman predictor based on a very accurate
model description of the channel coefficients dynamies
is not attractive. This model depends on fm, which has
to be accurately estimated since the power spectrum of
a channel coefficient, subject to Rayleigh fading, has a
pronounced peak at f,,. The quality of the estimate
would then be sensitive to errors in estimates of fr.
Furthermore, the computational load would be high,
since the matrices in the state space model (2) must
be of rather high order. Fortunately, the high order
model based estimator can be replaced by simplified
estimators with much lower complexity and with less
sensitivity to exact location of the peak at fm, with-
out losing too much in performance. In the sequel, we
will regard the matrices {F, G, H} as design variables,
rather than very accurate models of the channel coef-
ficient dynamics.

4. STEPS TOWARDS A LOW
COMPLEXITY ESTIMATOR

The dominating computational load of a Kalman
predictor is the recursive update of the Riccati equa-
tion (3). One conceivable way to avoid this update
would be to replace P(n) by the solution to an alge-
braic Riccati equation. However, since P(n) depends
on ®H(n), a stationary solution does not exist. An-
other way would be to compute {P(n)}1’ in advance,
and store this sequence for subsequent use. However,
this is not possible, since the sequence {®H (n)}} will
be different from data batch to data batch.

Let us instead regard {P(n)} as a matrix-valued
stochastic process, and {P(n)}Y in each data burst as
independent realizations. Assume the ensemble mean
E[P(n)] to exist. Taking expectation of (3) gives

E[P(n+1)] = F{E[P(n)]- E[P(n)Q(n)
P} FT + GR.GT.

After the initial transient phase (n > no), the time-
variations of P(n) are caused by ®H(n). If the devi-
ation of the mean-value sequence {E[P(n)]}n>n, from
E[P(no)] is not too large, a constant approximation
P of the sequence {E[P(n)]}n3n, can be computed by
solving the algebraic equation

P = F[P-PQP\FT +GR.G" (4)
Q = EQ()
Qn) & &(n)d¥(n)[o? + ®7 (n)Po(n)] .
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An approximation of the asymptotic value of E[P(n)),
which can be calculated at the beginning of each data
burst and utilized in the filtering thereafter, is thus
sought. Now, Q(n) is a random matrix with a finite
number of possible values. The evaluation of the expec-
tation E[Q(n)] is then relatively straightforward. If the
symbol sequence is white, d(n) has constant modulus
and the channel coefficients are subject to independent
fading, then there exist a positive definite symmetri-
cal block diagonal solution P = diag(Pop, . . ., Pmm) to
(4). Equation (4) can then be written as a system of
coupled equations

_ _ . HT _
Py = F{Py—-Pyp——ue P FT
kk { kk khgk"{"HPkkHT kk}
+ GGTafk k=0,...,m (5)
a 02 N -
o = ;;--FZH.P"HT,

a itk

where E|d(n)|*> = 03. We can expect the coupling,
here isolated in g, to be quite loose when o2/ 0'3 >
z:’;k HP;HT. Let us regard g; as design variables.
The system of equations then becomes decoupled and
approximative solutions to Py; can be calculated sep-
arately. The equations (5) are then ordinary algebraic
Riccati equations, solvable under mild conditions. We
can expect the approximations above to be reasonable
when ||Q(n)|| is nearly constant. This is the case when
the symbols have constant modulus (||®(n)®# (n)|| is
then constant) and P(n) is nearly block diagonal.

5. THE LOW COMPLEXITY ALGORITHM
The on-line computions required are given by

e(n) = y(n) - o (n)d(n)
#x(n+1) = Fip(n)+ Led*(n — k)e(n)
hi(n) = Héw(n) k=0,1,...,m.
The gains Ly, can be pre-computed from the solutions to
PurHTHPy | 7 T
= F —_— 8%
Pe {Pkk 14+ HP HT F+mGa

FPHT A Py A 03.
Ly = = %

oZ(1+ HPGHT) "H = o T =7

Here, 7 can be used to tune the gain to a specific
signal-to-noise ratio. Either, 9; can be changed for
each burst, or be kept constant over several bursts.
Tuning of y; can also be used to account for possi-
ble nonstationary behaviour of R.. The recursions are
asymptotically stable for all choices of 7x > 0. Note
that this modelling approach provides extrapolation in
time, &x(n +7) =(F)"2x(n) 7=0,1,2,....

With second order models {F,G, H} simple ana-
lytical expressions for the gains L exist. Two second
order models will be discussed below.

Lightly damped AR(2) models

In Rayleigh fading environments, the channel coeffi-
cients behave as narrow band noise with a spectral peak
(cf. Jo(-)). The simplest models, which describe such
oscillatory behaviour, are lightly damped second order
AR models with real-valued coefficients

1
hi(n) = Tl +a2q‘2ek(n) (6)
a; = —2rgcoswy as= r:‘;.

The pole locations are rzeX7¥¢. The pole radius (rq) re-
flects the damping and w, is the dominating frequency
of the coefficient variation. Note that wy ~ 27 f, /1.
If fm is unknown, the spectral peak should be well
damped to obtain a robust model.

The model (8) can be represented in an observable
canonical state space form by the matrices

F:(:Z; é) Gz(é) H=(10).

Analytical expressions for the gains Lj are given by

e = FP,HT = 1 ( —a1p11 + p12 )
oi(1+p11) ~ o2(1+p11) —azp11 !

where p;; and pis are elements of Py, given by

ag .é_ 14 af + ag + Tk
¢ A a—2a+ V(@0 + 2a5)? — 4a?(1 + a;)?
2
_ C+\/C2“4a§_1 ___aap
r = - 9 y P12 = ————1+02 _Hmpu-

The expressions for py; and p; are derived in [7]. This
estimator will be recognized as “KLMS” below. The
number of real-valued arithmetic operations per itera-
tion in the KLMS algorithm is summarized in the table
below. It is compared to LMS tracking of hi(n).

Add. Mult.
KLMS 8(m+1) 12(m+1)
LMS 4(m+1)  6(m+1)

An integrated random walk model

In fading environments, the channel coefficients typ-
ically exhibit trend behaviour, i.e. they continue in
some direction for a while. A simple way to incor-
porate such behaviour is to model the coefficients as
integrated random walks

h;-(n) = hk(n - 1) + I—_Iq_—lek(n). (7)
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This model can be represented in a state space form
by the matrices

F=(3 i) G:((l)) H=(10),

corresponding to the state vectors

2T (n) = (2V(n) 22 (n)) = (hi(n) he(n+1) — hi(n)).

Analytical expressions for the gains Lj are given by
FPuHT _ 1 (p11+P12 )

21 +pu) o3(1+pu) P12

where py; and p;; are elements of Py, given by

Ly =

¢ Iy 447+ /(16 +7)
- 2
+/C7 -4
P = C__2C____1 12 = V7e(l+pn1)

Note that z(n) is formally assumed to be a nonsta-
tionary process when defining the “nominal model” (9).
However, the actual estimates #x(n) will be station-
ary, since stationary data are assumed. Note also that
the forward difference approximations of the deriva-
tives are estimated via ig)(n).

6. A SIMULATION STUDY

Consider transmission of data bursts of 170 sym-
bols over a two taps Rayleigh fading channel (m = 1).
The first 14 symbols constitute the training sequence.
The channel coefficients change independently. We re-
strict attention to the case where the variance of the
coefficients are equal, i:e. E|ho(n)]? = Elhi(n)|*. The
maximum Doppler frequency is 83 Hz and the symbol
rate is 25kHz (= f;). The symbols take the values
{£1 % j}, equally likely, and correspond to the set of
bits {00,01, 11, 10}. The symbols are differentially en-
coded. (This specification is similar to the proposed
North American digital mobile radio standard. Here,
we disregard the 7/4-shift in /4-DQPSK.)

The channel estimator is used in conjunction with a
Viterbi detector. As internal (design) model we choose
(8), with r4 = .998 and wg = .015. (The autocovari-
ance function associated with this model approximates
Jo(.021 £) reasonably well for £ < 100.)

In Figure 1, the performance (bit error rate) is com-
pared for the “KLMS” algorithm (dashed), the Kalman
predictor (dashed-dotted) based on the second order
model, the RLS algorithm with forgetting factor (dot-
ted), and using known channel states in the Viterbi
algorithm (solid). With RLS tracking, the best per-
formance, shown in the figure, was achieved with for-
getting factor 0.7. (LMS tracking gives similar perfor-
mance as RLS.) The difference between the Kalman
predictor and the simplified algorithm is negligible.

The results were based on simulations of 1000 bursts
(312000 unknown bits), each at 15, 20 and 25 dB
SNR. Time-varying coefficients were generated by fil-
tering white complex-valued noise. The filters used
were a second order slightly damped filter, followed by
a T’th order Butterworth filter. It was ascertained that
the level-crossing statistics corresponded closely to the
Rayleigh fading model.

83 Hz Doppler shift

10!

Bty

T

15 20 25
SNR (dB)

Figure 1: BER versus SNR of adaptive Viterbi based
on the KLMS (dashed), the Kalman predictor (dashed-
dotted), RLS tracking (dotted) and known channel (solid).
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