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Abstract

Design equations are presented for robust and realizable decision feed-
back equalizers, for ITR channels with coloured noise. Given a probabilistic
measure of model uncertainty, the mean MSE, averaged over the whole class
of possible models, is minimized. A robustification parameter, which trades
off error propagation against theoretical performance, is also introduced.
The resulting design equations define a large class of equalizers, with DFE’s
and linear equalizers based on nominal models being special cases.

If data sequences {d(n)} are transmitted in the presence of intersymbol interference,
they have to be reconstructed from the received sequences {y(n)}. Equalizers compute
estimates d(n) on a symbol by symbol basis. Their main advantage, compared to the
MLSE Viterbi detector, is a low computational complexity. If channels are slowly time—
varying, filter coefficients can be adjusted during known training sequences, and held
fixed until the next training. For fast time—variations, adaptive structures, for example

the one described by the right—hand figure below, have to be used.

The conventional approach to adaptive equalization is to make a decision—directed ad-
justment of the filter coefficients directly. An interesting alternative, studied in our
project, is indirect adaptation: a model of the channel (and possibly also of the noise) is
adjusted, often with decisioned data d(n) being used as channel model input !.

One advantage of the indirect approach is that in eg. Rayleigh—fading environments,
channel parameters change much more “smoothly” than the optimal values of equalizer
parameters do. Thus, it is much easier for an adaptive algorithm to track them. See
Lindbom (1992). Furthermore, the number of channel parameters is mostly smaller than
the required number of equalizer coefficients. Another advantage is that effects of mod-
elling errors can be minimized analytically in an indirect approach, as described below.

In an indirect approach, equations are needed for optimizing realizable equalizers for
given channel and noise models. For IIR channels with coloured noise, calculation of
linear recursive equalizers was described in Ahlén and Sternad (1989). Equations for the
more high—performance Decision Feedback Equalizer (DFE) were presented in Sternad
and Ahlén (1990). While simple to use, these methods have two main limitations:

IDirect adaptation corresponds to recursive minimization of |d(n) — d(n)|? w.r.t. filter pa-
rameters, using LMS or RLS. Indirect methods adjust a channel model, with output ¢(n), to
minimize |y(n)—4(n)|?. Use of a priori information to improve tracking of time—varying channels

is described in Lindbom (1992) and in the paper in this conference by Lindbom, on page 122.



e They do not take modelling errors into account. The resulting equalizer perfor-
mance can be sensitive to such errors, in particular for channels with resonance
peaks or deep nulls.

e The DFE in Sternad and Ahlén (1990) was optimized under the assumption that
past decisions were correct. Sensitivity to erroneous past decisions was not taken
into account. The resulting DFE’s sometimes have feedback filters with long
impulse responses. Long error propagation events may then occur.

Design equations which take these two problems into account will be presented below.
The robustification is based on stochastic representation of the mismodelling and of
decision errors. We describe the received, discrete—time, complex baseband signal y(n)
as

y(n) = (Bo(q‘l) L AB(¢™)
Ao(g™h) A

with ¢! being the backward shift operator. The transmitted symbols {d(n)} are as-

sumed to be zero mean and white, with variance E|d(n)|?> = ¢2. The noise w(n) is
described by

) d(n — k) + w(n) (1)

w(n) =

No(g™")  Nu(g™)

where v(n) is zero mean and white, with (uncertain) standard deviation o,. In these
time—invariant models, By/Ag and My/Ny represent stable and known nominal models,
while AB/A; and AM/N; are members of model error classes. Coefficients of their
numerator polynomials, eg. AB(q~!) = Aby + Abjg~' + ... + Absyq %, are seen as
(time-independent) stochastic variables, with zero means and known covariance matrices.
The stable denominators A; and N; are fixed. In Sternad and Ahlén (1993), such
representations are shown to be suitable for describing a wide range of model error
types. They are related to the stochastic embedding approach of Goodwin and Salgado
(1989). For example, a FIR channel with white noise is described by

y(n) = (Bo(g™') + AB(q™1))d(n — k) + v(n)

Assume a nominal model §(n) = By(q !)d(n — k) to be estimated by the least squares
method and the order of By to be adequate. Then, elements of the LS covariance matrix
can serve directly as estimates of covariances E(Ab; Abj).

Introduce an IIR decision feedback equalizer

S(g™) Qg™
ra "™ )

d(n —t|n) = din—10—1) (3)

where ¢ is a user—chosen smoothing lag and d(n) is decisioned data. The denominator
polynomials R(¢ ') and P(qfl_) are assumed to be monic and required to be stable. The

errors in the decisioned data d(n) will be treated as uncertainty and represented by an
additive white noise r(n), uncorrelated with d(n — j) and v(n — j) for all j 2

d(n) =d(n) + £(n) ; Elx(n)|* =nog . (4)

2This is, of course, a simplification. In reality, the error x(n) is non-stationary since decision
errors tend to occur in bursts. There may also exist correlations to past noise samples, in
particular to those that caused the error. These nonlinear and time—varying effects are neglected
here, to obtain a user—friendly tuning parameter.



The scale factor 7 is used to trade off error propagation against theoretical performance,
with n = 0 representing a belief in error—free decisioned data. Use of a small positive
value of 7 often gives a lower bit error rate 3. Now, a single equalizer is to be optimized
with respect to the whole model error class. We will minimize an averaged MSE criterion

J = EE|d(n — ) —d(n — t|n)|? (5)

where E represents expectation over noise and F is an expectation over the model error
distribution in (1) and (2). This type of criterion has been used in connection to other
filtering problems, e.g. by Chung and Bélanger (1976). Note that not only the range
of uncertainties, but also their likelihood is taken into account by (5); common model
deviations will have a greater impact on an estimator design than do very rare “worst
cases”. Compared to the use of a minimax design, the conservativeness is thus reduced.

For an ensemble of systems (1),(2), simple design equations have been derived for min-
imizing the criterion (5) with respect to the coefficients of (3), assuming (4). (A novel
derivation technique, described in Ahlén and Sternad (1991), was used.) For polynomials

P(g™1), let P, = P*(q). Define polynomials H(¢™'), A(¢g~!) and N(¢™') as
H éB()x‘llj\f()]\rl ; A é14()141 ; N é NON1

Define double-sided polynomials BB, (q,¢~") and MM,(q,q~") by

!
:
1>

BB, BoBoy A1 A1, + E(ABAB,) Ay Ags

(6)

MM, 2 MyMy.N, Ny, + E(AMAM,)NyNo,

Here, E(ABAB,) and E(AMAM,) are easily computed from the covariance matrices.
Finally, define p = E(02)/02. Let the scalar 71 and the stable monic polynomial 3(g~!)
be the solution to the averaged spectral factorization

r18B, = NN,AgAopE(ABAB,) + nNN,BB, + (1 + n)pAA, MM, . (7)

Let {Q(q71),S1(¢7 1), L14(q), Lo« (q)} be the unique solution to the coupled polynomial
equations

B+q'1+nQ = ¢ "HS +BLu. (8)
_q—@—l—an* + q(l + n)LQ* — _Tlﬁ*sl + q—e-i-kH*Ll* . (9)

Then, the equalizer (3), which minimizes (5), is given by @ from (8) and
S=SNA; R=0p3; P=p . (10)

Solution of the spectral factorization (7) is straightforward. The coupled equations
(8),(9) can be solved in precisely the same way as the corresponding equations (3.3a,b)
in Sternad and Ahlén (1990). Convert them to systems of linear equations. Then, a
new system of linear equations is created by combining all equations with known left-
hand sides. This system is solved for the coefficients of S; and Li,. Subsequently, Q
is obtained from (8). The degrees are nS1 = nL; = {—k,nQ = nLy = max{nH,n3}—1.

3For a related suggestion, using a linear combination of a zero forcing linear equalizer and a
zero forcing DFE, see Jenq (1979).



Note that, apart from the nominal model, p and 1, only the second order moments of the
model error distributions need to be known. If not known, A, N1, and the covariance
matrices of AB and AM can still be used as “robustness tuning knobs”. In the case of no
model uncertainty, we set AB = AM =0,A; = N; =1 in (6)—(10). An increase of the
covariance matrix of AB or AM will result in more cautious feedback and feedforward
filters, with lower gains and lower, broader, spectral peaks. An increase of 1 reduces
the gain of the feedback filter @Q@/P. The equations (3)—(10) define a class of robust
equalizers, with linear equalizers and DFE’s as special cases:

o If n = 0 (perfect decisions assumed), and with no model uncertainty, the IIR DFE
discussed in Sternad and Ahlén (1990) is obtained . In this (and only this) case,
the solution of a spectral factorization (7) is not required. (We get 5 = AygMy.)

e If n — oo (decisioned data are very unreliable), |Q(¢ !)| — 0. Then, (7), (9)
reduce to the design equations for a robust linear equalizer S/ R, derived in Sternad

and Ahlén (1993). (Divide (7)-(9) by n and set r = r1/n, which is finite.)

e When n — oo and no model uncertainty is assumed, we obtain the ordinary linear
recursive equalizer.
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