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Abstract

A low-complexity algorithm for channel estimation in
Rayleigh fading environments is presented. The chan-
nel estimator is presumed to operate in conjunction
with a Viterbi detector. The algorithm is based on
simplified internal modelling of time-variant channel
coefficients and approximation of a Kalman estima-
tor. A novel averaging approach is used to replace
the on-line update of the Riccati equation. Compared
to RLS tracking, both a significantly lower bit error
rate and a much lower computational complexity is
attained.

1. Introduction

An inherent difficulty associated with adaptive equal-
ization/detection is that unknown transmitted data
are needed for channel or filter adaptation, but are
not available. They can be replaced by decisioned
data in decision directed mode. In severe fading en-
vironments, there is a potential risk of losing tracking
ability when incorrect decisions are used.

Parameter tracking in severe fading environments
(high Doppler frequencies and low signaling rates)
with an RLS algorithm, often requires the forgetting
factor to be chosen rather small (< .8). With a small
effective memory, the algorithm becomes sensitive to
noise and to incorrect decisions. The “classical” RLS
algorithm is therefore not suitable in such tracking
problems. Algorithms with longer memory are re-
quired.

In fading environments, the coefficients of a FIR chan-
nel model exhibit typical trend or quasiperiodic be-
haviour . By utilizing this information, adaptive al-
gorithms with longer memories can be designed. One
way of building in this a priori information is dis-
cussed in Section 3 and 4. For more details, see [1].

When the transmitted sequences of symbols are white
and the symbols have constant modulus, an algorithm
with high performance and low complexity can be ob-
tained. In this paper, derivation of such a channel
estimator is outlined.

2. Statement of the problem

Consider a received sampled sequence {y(n)}{V It is
generated by transmission of one data burst {d(n)}}
over a HF channel, represented by an equivalent

discrete-time complex baseband channel model

o™ (n)0(n) + v(n)
(d(n)’ ey d(n - m))
(ho(n), ..., hm(n))T

The channel coefficients, hp(n), & = 0,...,m, are
subject to independent Rayleigh fading. This is a re-
alistic assumption for urban mobile radio channels.
The measurement noise, v(n), is white, with zero
mean and variance ¢2. It is uncorrelated with the
symbol sequence {d(n)}. All signals are complex val-

ued.

y(n) (1)
¢ (n)

6(n) =

The objective is to reconstruct {d(n)}¥, ;; from
{y(n)}Y¥ and a known training sequence {d(n)}V*r.
Figure 1 depicts the over-all structure of the com-
bined adaptation and detection. Here, we will focus
on the channel estimation.
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Figure 1 The adaptation/detection structure.

3. Stochastic internal modelling of the
channel coefficients

Channel coefficients, with statistical properties as
predicted by the Rayleigh fading model, can be
generated by feeding white complex Gaussian noise
through a filter of high order (> 5). The cutoff fre-
quency of the filter is controlled by the maximum
Doppler frequency (fm), see e.g [1]. The channel co-
efficients, hy(n), can thus be well described by linear
stochastic models expressed as

zr(n+1) = Fap(n)+ Gep(n)
he(n) = Hzp(n) k=0,1,...,m
Here, the sequences {ex(n)}, k= 0,...,m are mutu-

ally independent white complez Gaussian noises, with

(Training sequence)
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zero means and variances o?_. The matrices I7, G and
H are real-valued. An accurate model would depend

on (fm).

4. State space description of the time-
variant model and a Kalman estimator
By introducing the state vector

X(n) 2 (¥ (n), ..., zhm)T

a state space description of the time-variant model
(1) can be expressed as

X(n+1) = FX(n)+Ge(n) 0(n)=HX(n)
u(n) = &% (n)X(n)+v(n)

where e(n) £ (eo(n), ..., em(n))T and
F & diag(F,....,F) ¢2diag(G,...,G)
H & diag(d,... H)

3i(n) £ (d(n)H,...,d(n—m)H)

Given the a priori information, the optimal adaptive
algorithm for Gaussian noise would be the Kalman
predictor

X(n +1) = f;:((n) + K(n)e(n)
6(n) = HX(n)
K(n) = P(n - 1)®(n)

o} + ®H(n)P(n — 1)®(n)

ern) = y(n) - ¢ (n)f(n)

P(n) = F{P(n-1)-P(n-1)Q(n)
P(n—1)}FT 4+ GR.GT )
a O(n)3" (n)
QM) = I EE(R) P - D)
where R. = diag(c?,,...,0%.).! From a practical

point of view, a Kalman predictor based on the accu-
rate high order model is not attractive. This model
depends on (fm), which has to be accurately esti-
mated since the power spectrum of a channel coeffi-
cient, subject to Rayleigh fading, has a pronounced
peak at fm. The quality of the estimate would be sen-
sitive to errors in estimates of fm. Furthermore, the
computational load would be high, since the matrices
in the state space model would be of high order?. For-
tunately, the high order model can be replaced with
a model of low order, without loosing much in per-
formance.

It should also be noted that when possibly incorrect
decisions are used in the predictor, there is no guar-
antee that a Kalman predictor, based on a model of
high order, will give better performance than a low

1Here, we have assumed that e(n) is a stationary sequence.
This is a reasonable assumption over one data burst.

2If the dimension of F is ns{ny, the dimension of P(n) is
(m 4 ngf(m+ 1)ng.

order based predictor®. We will therefore regard the
madtrices in the state space model as design variables,
rather than very accurate models of the channel co-
efficient dynamics.

5. Steps towards a low-complexity esti-
mator

The dominating computational load of a Kalman pre-
dictor is the recursive update of the Riccati equation
(2). One conceivable way to avoid this update would
be to replace P(n) by the solution to an algebraic
Riccati equation. However, since P(n) depends on
& (n), a stationary P(n) does not exist. Another
way could be to compute {P(n)}_; in advance, and
store this sequence for subsequent use. However, the
sequence {P(n)})_, will be different from data batch
to data batch.

Let us instead regard {P(n)} as a matrix-valued
stochastic process and each data burst as an inde-
pendent realization of this process. Assume the en-
semble mean E[P(n)] to exist. Taking expectation of
(2) gives
E[P(n)] = F{E[P(n-1)]- E[P(n~1)Q(n)
P(n—D)}FT +GR.GT

After the initial transient phase, the time-variations
of P(n) are caused by the time-variant ®(n). Sup-
pose that the mean-value sequence {E[P(n)]} does
not vary much with n for n > ng. Then, we can re-
place the mean value sequence with a constant matrix.

The reasonableness of these assumptions is verified
below. In Figure 2, the trajectories of one element
in P(n), for ten realizations of a symbol sequence, is
depicted. The system is the one described in the ex-
ample in Section 7.
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Figure 2 Trajectories of ten different independent
realizations for one element in P(n) (SNR= 20dB).

An approximation of the asymptotic value of E[P(n)],
which can be calculated at the beginning of each data
burst and utilized in the filtering thereafter, is sought.

3 Actually, an accurate model description of the channel co-
efficients gives substantially better performance only when the
probability of incorrect decisions is low, ie. when the signal to
noise ratio is high.
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If the deviation of the matrix P(n) from E[P(n)], n >
ng, is not too large, a constant approximation P of
the mean value sequence {E[P(n)]} can be computed
by solving the algebraic equation

P = F[P-PQPIF"+gR.G" ©
n)® (n
Q = E[Qn)=E [0,3 fégfn)%(n)]

Now, Q(n) is a random matrix with a finite number
of possible values. The evaluation of the expecta-
tion E[Q(n)] is then relatively straightforward. If the
symbol sequence is white, if d(n) has constant mod-
ulus and if the channel coefficients are subjected to
independent fading, there exist a blockdiagonal so-
lution P = diag(Pyo,..., Pmm) to (3). Equation (3)
can then be written as a system of coupled equations

HTH T
Py = FPpyp—Poy—r——Pip o F
kk { kk ko HPoHT kk}
+ GGTe?,  k=0,...,m (4)
& ol < T
P = ;g+ZHPi£H
£k

where E|d(n)|? = ¢%. The coupling, here isolated
in py, turns out to be quite loose. To simplify the
calculations of {Py}, we regard {p;} as design vari-
ables. The system of equations then becomes decou-
pled and the matrices {Py} can be calculated sepa-
rately. The equations (4) are ordinary algebraic Ric-
cati equations, solvable under mild conditions.

We can expect the approximations above to be rea-
sonable when ||Q(n)|| changes slightly with time. This
is the case when the symbols have constant modulus
(12(n)@H (n)|| =constant) and P(n) is nearly block-
diagonal.

6. The low-complexity algorithm

The on-line computions required are given by

en) = y(n)-¢"(n)(n)
Er(n+1) = Fi(n)+ p(n)Lpd*(n — k)sat[e(n)]
he(n) = Hzy(n) k=0,1,...,m. (5)

The gains Ly k =0,...,m can be pre-computed from
the solutions to
_ Py HTHPy

Py = F{P - FT +4,GG" (6
kk {kk 1+HPkkHT} + 7 (6)

FPyHT B, 2 Pri a o3,

d P .
A1+ HP HT) ¥~ Ty ™77,

Ly,

(A time-varying positive scalar p(n) has been in-
cluded to increase the gain during the transient phase,
imitating the behaviour of {E[P(n)]}). Saturation of
e(n) is used to robustify the algorithm. Here, v can
be used to tune the gain to a specific signal to noise
ratio. Either, {7;} can be changed for each burst or
they can be kept constant over several bursts. Tun-
ing of {y;} can also be used to account for possible

non-stationary behaviour of R..

With second order models {F, G, H}, simple analyti-
cal expressions for the gains Ly exist. Two different
second order models will be discussed next.

An integrated random walk model

In fading environments, the channel coefficients ex-
hibit typical trend behaviour, ie. they continue in
some direction for a while. A simple way to incor-
porate such behaviour is to model the coefficients as
integrated random walks 4

he(n) = ha(n —1) + i——_—lq_—lek(n)

This model can be represented in a state-space form
by the following matrices

F:(é }) G:(‘l)) H=(10)

Analytic expressions of the gains Ly are then given
by
= FpkkHT _ 1 <ﬁ1,1 +ﬁ1,2 )
oi(1+p11) 31+ p1,1) P1,2

where py1; and py 3 are elements of Py and given by

¢ 2 4+ + /7 (16 +71)
- 2
V(%2 -4 _
i1 = C—%——l P12 =/7(1+p1,1)

Lightly damped AR(2) models

In Rayleigh fading environments, the channel coef-
ficients behave as narrow band noises with a spec-
tral peak. (The autocovariance function of a chan-
nel coefficient, subject to Rayleigh fading, is given
by a Bessel function of the first kind and zero order,
Jo(27 fin/ fs T), where f; is the symbol rate and 7 is a
time lag.) The simplest models, which describes such
oscillatory behaviour, are lightly damped second or-
der AR models with real coefficients

1
hk(n) - 1+ alq_l ¥ azq_zek(n) (7)
a; = —2rgcos(wg) az= r3

The pole locations are rge¥7¥¢. The pole radius (ra)
reflects the damping and (wg) is the dominating fre-
quency of the coefficient variation. If fr, is unknown,
the spectral peak should be well damped, to obtain a
robust model. We use r4 = 0.995, wy = 0.02 below.

The model (7) can be represented in an observable
canonical state-space form by the following matrices

(3 8) o= (1) nao

4The integrated random walk model is a natural and simple
extension of the random walk model when the coefficients have
lowpass character. Kalman filtering based on an integrated
random walk model constitutes a simple form of so called mul-
tistep algorithms, see eg [2].




Analytic expressions of the gains Ly are given by

—aip1,1+ D12
—azP1,1

_ FPuHT 1 (
YT () oi(1+p1,1)

where p; 1 and py 2 are elements in Pyx and given by

C é g — 2&2 + \/((1’0 + 2(12)2 — 40.%(1 + az)z
2
A 2., .2
g = l4a +ay+ vk
_ . C+\/C2—4a%_1 _ _ aiyas 13
Pi - 9 D12 __——_1+az+ﬁ1,1 1,1

Given 7, the gains Ly can be calculated once, for
each data burst. It might even be sufficient to have
one set of pre-calculated gains for all data bursts.

7. An example

Consider transmission of data bursts of 168 symbols
over a two taps Rayleigh fading channel (m = 1). The
first 14 symbols constitute the training sequence. The
taps change independently. The maximum Doppler
frequency is 83Hz and the symbol rate is 25kHz. The
symbols take the values {1+ j,~-147,-1—7,1~-j},
equally likely, and correspond to the set of bits
{00,01,11,10}. ® The variance of the sequence is
then o3 = [d(n)|? = 2. The symbols are differentially
encoded ©.

The channel estimator is used in conjunction with a
Viterbi detector. In Figures 3. and 4., simulations of
two extremes of a range of situations, to be expected
in practice, are summarized. The performance is
compared for the low-complexity algorithm (dashed),
the Kalman predictor (dashed-dotted), both based
on second order oscillative models, the ”classical”
RLS (dotted), and using known channel states in the
Viterbi algorithm (solid).

With ”classical” RLS-tracking, the best performance,
shown in the figures, was achieved with forgetting fac-
tor 0.7. The difference between the Kalman predic-
tor and the simplified algorithm is almost negligible.
In Figure 5, the performance of the low-complexity
algorithm based on the AR(2)-model (dotted) is
compared with the integrated random walk model
(dashed).

The number of real-valued arithmetic operations per
iteration in the low-complexity (*KLMS”) algorithm,
based on the integrated random walk, is summarized
in the table below. It is compared to LMS tracking
of hy(n).

5 All results are based on simulations of 1000 bursts (350000
unknown bits) at 15, 20 and 25 dB SNR. Time-varying coef-
ficients were generated by filtering white complex noise. The
filters used were a second order oscillative filter, followed by
a 5'th order lowpass filter. We generated 10 batches of 100
bursts each. It was ascertained that the level-crossing statis-
tics for each batch corresponded closely to the Rayleigh fading
model. This reduced the variance of the results significantly.

8 This specification is similar to the proposed North Ameri-
can digital mobile radio standard. We disregard the w/4-shift
in /4-DQPSK.

X +
KLMS 8(m+1)+2 7(m+1)
LMS  4(m+1)+2 4(m+1)
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Figure 3 Performance of adaptive Viterbi when
Elho(n)|* = Elhs(n)?

101

2
% 10
m

T T T T

T

103 :
15 20 25

Figure 4 As Fig 3., for Flat fading, E}h1(n)|? = 0.
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Figure 5 Comparsion between the use of a damped

oscillatory model (dotted) and an integrated random
walk model (dashed), E|ho(n)|? = E|h1(n)}>.
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