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ABSTRACT

An adaptive algorithm for estimating the input to a linear system is presented. This ex-
plicit self-tuning filter is based on the identification of an innovations model. From that
model, input and measurement noise ARMA-descriptions are decomposed, using second or-
der moments. Identifiability results guarantee a unique decomposition. Main tools in the
algorithm are the solution of two linear systems of equations. The filter design is based on
the polynomial approach to Wiener filtering.

1. INTRODUCTION

The need to restore signals, observed through linear systems and contaminated by noise,
arises frequently. In order to find the desired signal, some kind of inverse filtering is needed.
Such filtering is known as deconvolution or input estimation. The problem has been discussed
by many authors39:10:11,14,15

In many applications, it is reasonable to assume some crucial part of the system to be known
a priori or determined in advance by experiments. We will assume the measurement system
(the transducer) to be known here. The input and measurement noise properties may, how-
ever, be unknown, and vary with time. Ahlén has suggested an adaptive approach based on
an innovations model, in order to estimate the input!+. In this paper, we will generalize this
approach to the estimation of filtered inputs. A new algorithm is also suggested for cases
with ARMA-noise, with both MA—and AR-parts unknown. Moir et.al. have developed two
related self-tuning algorithms, which turn out to be special cases of ours. One concerns
signal estimation with known noise spectrum and no observation system!®. The other treats
adaptive deconvolution with white input and noise?®.

2. PRELIMINARIES

2.1 The deconvolution problem

Consider the linear, causal, discrete-time system

B —1
4(8) = Tl = 1)+ (k) )
where ¢~ denotes the backward shift operator (¢~ 1v(k) = v(k — 1)), while ¢ is the forward
operator (qu(k) = v(k + 1)). The input u(k) and measurement noise w(k) are assumed to be
accurately described by the ARMA-processes
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Here, e(k) and v(k) are mutually uncorrelated. They are stationary white and zero mean
stochastic sequences. All polynomials, except B(g™!), are monic. Using measurements of the
output y(k), up to time k + m, we seek the stable, linear and time-invariant estimator

) -1
delt-+ m) = Sy (e m) 3)
of the possibly filtered input signal
) = 2k 1) @

T(g7")

See Figure 1. The estimator is to minimze Ez(k)? 2 E(d(k) — d(k|k + m))?. Depending on
the sign of m, it is a predictor (m < 0), a filter (m = 0) or a fixed lag smoother (m > 0). The
filter ¢*S(¢™1)/T(¢™?) in (4) is stable and possibly noncausal (£ > 0). It is assumed to be
specified by the user, and thus to be exactly known. It can be used to reduce the estimator
gain outside a restricted interesting frequency range®. This type of filter also appears e.g. in
digital differentiation problems”®. There, it represents a discrete-time approximation of the
derivative operator.
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Figure 1: A single channel deconvolution problem, with coloured measurement noise. The
filtered input d(k) is to be estimated, from measurements of the output y(k + m).

2.2 Wiener filter design, using polynomial equations
A procedure for optimizing input estimators in the transfer function form (3) has been

derived®. Compared to Kalman filtering, this approach is simpler for scalar signals, and
is well suited for self-tuning applications. It is based on the following assumptions:
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o The signal y(k) and input u(k) can be described by linear models with structure (1),
(2)- All polynomials in (1) and (2), with degrees na, nb etc, are known.

° The denominators D(z71), A(z~!) and N(z~1) may have zeros inside or on, but not out-
side, the stability limit. The polynomials C(z~*)B(z~1)N(2~1) and M (z"DA(z"Y)D(z™1)
have no common factors with zeros on |z| = 1.

For any polynomial P(g7!) = p, + p1g~! + <o+ Pnpg™ """, define the conjugate polynomial
P(q) = po+p1q + ... + Prpg™. Also, define P(g7') = ¢ P,(g). In the frequency domain,
the complex variable z is substituted for ¢. Polynomial arguments will often be omitted.

The MSE-optimal linear deconvolution estimator is given by

Akl +m) = L2241+ m) (5

where 8(q™1), of degree n, is the stable monic solution to a polynomial spectral factorization
equation

8B, = CBNC,B,N, + pMADM,A,D, (6)

with 7 being a scalar. The polynomial Q1(q™"), together with a polynomial L.(q), is the
unique solution to the linear Diophantine equation

¢*""™SCC.B.N, = r$,Q, + ¢DTL, (7)
with polynomial degrees

nQ1 = max(nc+ns—£—7+m,nd+nt—1)

(8)
nl = max(nc+nb+nn+ €41 — m,nf) -1 .
The minimal mean square error is
Ex(k)?2, = Ae [ LL, n pSS,.‘ CMAC'*M*A,,fl_z )

2w J B0« TT. rBB. -z

This solution can be generalized to complex—valued signals and multivariable problems®. A
new constructive techique for deriving polynomial design equations, such as those above, has
recently been developed®. The IIR-filter (5) is stable, since T(271)B(271) is stable. It may
contain stable common factors. Note, that when the noise model has resonances (zeros of N
close to the unit circle), the filter has notches at the corresponding frequencies.

The linear equation (7) corresponds to a linear system of equations in the coefficients of
Q1(¢7") and L,(q). By setting the maximal degrees in ¢~! and in ¢, respectively, equal on
both sides of (7), the degrees (8) of the unknown polynomials are obtained. The number of
equations will equal the number of unknowns. The system of equations is nonsingular, since

«(2) (unstable) and D(2~1)T(2~1) (stable) cannot have any common factors. Consequently,
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a unique solution exists.

The estimator constitutes a Wiener filter, optimized by using polynomial equations. Com-
parison with a classical Wiener solution reveals that the spectral factorization corresponds
to the calculation of a whitening filter. The calculation of the causal part {-}; of the Wiener
filter is performed by solving the Diophantine equation (7)°.

2.3 Identifiability

From a practical point of view, we can hardly expect all polynomials to be known a priori.
It is reasonable, in many applications, to assume ¢~"B(¢~')/A(¢™') to be known. This
will be assumed in the following. Under what conditions is it then possible to determine
the ARMA-models (2), from output data only? The identifiability properties of the input
estimation problem have been investigated?, under the following asssumptions:

e A, B, T and poly‘nomial degrees nc, nd, nm, nn are known a priori.
e All polynomials in (1),(2) are asymptotically stable, except B, which may be unstable.

e The polynomial pairs
(4,B),(C,D),(M,N),(B,D)
10)
(B,A),(B,D),(A,N),(N,D) (

are all coprime.

e The only measurable information is ¢,(¢*), the spectral density of the output.

We then have the following result?. Introduce the numbers

AD&nd—nc ; AN & nn —nm (11)
g 2 max(na+ AD,nb+ AN) ; h = 2min(nn, nd) .
For unique identification of {C, D, M, N, A.,A,}, the condition
g1 (12)
is necessary, while
g>h (13)

is sufficient. If the N—polynomial is known a priori, the number of unknown parameters
decreases by nn. We thus set N(¢~!) = 1 and nn = 0 in (10)~(13). Then, the rather weak
requirement g > 1 is both necessary and sufficient for parameter identifiability.

3. A SELF-TUNING DECONVOLUTION ALGORITHM

When designing an optimal estimator from (7), we find that S,C,B,N,B,D and T are
required. Of these, only B,S and T are assumed to be known a priori. We thus have
to estimate (C,D,N,() in some way, using the output measurements only. Consider an
innovations model of the output y(k). Assuming A, D and N to be stable, it is given by
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B .
y(k) = o9k -
Here, § is the stable spectral factor from (6), and (k) is the innovation sequence. The A-
polynomial is known and can be filtered out. Thus, /DN may be estimated. Unfortunately,
C and M are related to 8 through the nonlinear equation (6). Note, however, that only the
product CC, is needed in (7). A key idea is to formulate (6) as a linear system of equations in
the coefficients of CC, and M M,. Since we have an estimate of 3, the system can be solved.
For now, assume N to be known a priori or equal to unity. This leads to the algorithm below. 0

PR TIRE W WM‘@\*& i K’zr;ﬁ;"frﬁ naeeadde

L ag

3.1 Algorithm for moving average—noise

Algorithm 1.

Assume S(g~1),T(¢™Y), A(¢™), B(¢™Y), N(g™1), ¢,7,nB,nd,nc and nm to be known, such
that parameter identifiability holds. For each data,

1. Generate the signal z(k) = A(g~*)N (¢~ )y(k).

2. Update recursive estimates of the § and D in the ARMA-model z(t) = (8/D)j(t). Use
a recursive prediction error method (RPEM) or extended least squares (ELS)®.

3. Using f and D, the equation (6)
AA.DD. (f—MM,.,) + BB,NN., Gcc*) = BB« (14)
is now seen as a linear polynomial equation in (p/r)M M, and (1/7)CCs. It corresponds

to an overdetermined linear system of equations. Check the condition number of its
Sylvester matrix S(AA.DD,,BB.N N.,). If OK, solve it, in the least squares sense.

4. Solve (7), using the estimates B, D and (1/r)CC, from step 3.
1 - - - 1
g (;cc*) B.N. = B.Q1+ ¢DT (—;L*) (15)
This gives Q1(¢™!) and (1/r)L.(q), with the degrees from (8)-
5. Perform the filtering (3) or, alternatively,

d(klk +m) = E%%z(k +m) .

3.2 Comments and interpretations

1. We assume the system to be parameter identifiable, i.e. (10) and (13) to hold. With
a known N(g~!), the chances to have parameter identifiability are good. The correct poly-
nomial degrees are assumed known, but this restrictive assumption can be avoided. Over—
parametrized models are discussed in Section 3.4.
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2. For time-invariant systems, the polynomials B and D in the innovations model can always
be correctly estimated asymptotically, using the prediction errror method!3. Time-variable
parameters may be tracked by means of a forgetting factor.

3. The estimate [3 is monic. Note that the noise ratio p = A/ Ae is assumed unknown.

4. There is no need to perform any spectral factorization like (6), since the innovations model
is estimated directly. Instead, the linear system of equations in Step 3 must be solved. In
the transient phase, when ﬁ and D approach § and D, Step 3 computes the least squares
solution. Asymptotically, when B = B and D = D, there exists a unique and exact solution.

5. To reduce the computational requirements, the linear system defined by (14) can be trans-
formed into a minimal order system with n3 + 1 equations and nc+nm+ 2 unknowns. This
is achieved by eliminating rows and columns which are redundant due to symmetry’.

6. Although the system is known to be identifiable when (10) and (13) hold, it may happen
that the estimate D and BN sometimes have almost common factors as D converges towards
D. This will cause a rank deficiency of S(AA.DD.,BB.NN,) in Step 3. The linear system
becomes under—determined. The singular values of S must be therefore be checked. (When
singular value decomposition is used for solving the LS problem, this requires no extra com-
putations.) If the condition number is large, the filter should not be updated.

The computational complexity of Algorithm 1 is presented in Table 1. The approximate num-
ber of mult-add operations required per sample has been estimated. All degrees are assumed
equal, na,nb,...etc = n,and § =T = 1. In Step 3, the least squares solution is assumed
to be computed by singular value decomposition, using the Golub-Reinsch algorithm!Z. Re-
dundancies due to symmetry in the linear system are eliminated. With n = 1 and m = 2,
approximately 700 floating point mults+adds are required per sample. It should be noted
that there is hardly any need to recalculate the filter (steps 3 and 4) at each sample.

Table 1. The computational complexity of Algorithm 1.

1: Prefiltering 2n
2: Identification 30n? + 23n
3: LS solution 5612 + 15202 + 1367

4: Linear system (2.7) i(d4n+m+2)°+35(4n+m+ 2)2

5:  Filtering 6n 4+ m
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3.3 An extended algorithm

If N(¢™!) is unknown, and the noise cannot be described with sufficient accuracy by a low
order MA—model, adaptive deconvolution becomes somewhat more complex. For general un-
known ARMA-noise, we suggest the following algorithm. It is applicable when the degree of
either B(g~1) or A(g™!) is sufficiently high.

Algorithm 2.

Assume S(g~1),T(g7'), A(g™Y), B(¢™Y), ¢, 7,nB,nd, nc,nm and nn to be known, such that
parameter identifiability holds. Assume that (18) below holds. For each data,

1 Generate the signal z(k) = A(g7")y(k).

2 Do recursive identification, as in Algorithm 1. Estimate B/ DN.

3 Solve the over-determined linear system of equations in the coefficients of (p/r)DM D, M.
and (1/r)CNC.N,

AA, (—f—DMD*M*) + BB. (%CNC*N*) = BB (16)

with the least squares method.

4 Consider equation (7), multiplied by N:

¢+ ™S B. (%CNC’*N*) = B(NQ1) +¢DNT (%—’i) - (17)

Solve it, with respect to Q2(¢”1) & N(gM)Qi(¢") and (1/r)L.(g). Use the known
S, B and T, the estimated {3, DN}, and (1/7)CNC.N, from Step 3.

5 Perform the filtering

cZ(k[k +m)= QZ(Q‘I)

—_—t gk +m) .
- T(gM)Be™) (k+m)

0

For (16) to be solvable, its number of equations must not be smaller than the number of
unknown coefficients:

onB +1> 2(nd +nm)+ 1+ 2(nc+nn)+1 .

This is equivalent to nf8 > nd+ nm+ nc+ nn. Since nff = max{nc+ nb+nn,nm+na+ nd},

this condition holds if either of
nb > nd+nm

(18)

na > nc+nn

holds.
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Note, that in Step 4, B.(z) (unstable) and D(z"*)N(z71)T(2~") (stable) cannot have any
common factors. Compared to (7), the number of equations and the number of unknown
coeficients have both been increased by nn, and are thus still equal. Consequently, a unique
solution {Q2,(1/r)L,} exists. Compared to the case of known N, the numbers of unknowns
in (16),(17) have increased, compared to (14),(15). Furthermore, the chances to have param-
eter identifiability are reduced. This is the price to be paid for less a priori information.

3.4 Improving the robustness

Two modifications of the Algorithms 1 and 2 are required, in order to obtain a safe behaviour.

e Common factors in the innovations model 3/D (or B/ N D) should be eliminated by
model reduction!?. OQverparametrization can thus be handled, and the requirement of
known polynomial degrees can be relaxed.

e Rank deficiency in Step 3, caused by (nearly) common factors in D and Bor D and N,
must be detected. No such problems can occur in (16) in Algorithm 3, since A and B
are known. If the stability of 8 and the innovations model denominator are monitored
during the identification, the solvability of (15) and (17) pose no problems.

With model reduction implemented, we only need to know the relative degrees AD and AN,
defined in (11). For reduced models, it is possible to check the conditions (12),(13) for pa-
rameter identifiability.

It should be mentioned that 8, being an ARMA model numerator, is sometimes rather dif-
ficult to estimate. The estimates are often noisy when exponential forgetting is used. The
variability of the estimator coefficients (Ql,ﬁ) can be reduced substantially by using low—pass
filtered ﬁ—polynomial coefficients in the design calculations.

4. A NUMERICAL EXAMPLE
Example 1. Assume the input generation and the measurement system to be given by

C(g™Y) 1+05¢7'  _ B(gH) _ _;1+025¢7"
D) 1-01¢t T AgY) ¢ 1-09¢7T

with M(¢g™') = N(¢") = 1 and A, = 1.563).. An optimal one-lag smoother (m = 1) is to
be designed. The system is parameter identifiable according to (10)—(13). Assume correct
model orders and the identification to give consistent estimates, i.e. ﬁ = f from (6) and
D = D. Thus,

Blg™Y) = 1-0.4314¢7" +0.1739¢™2
AADD, = 0.63¢% —2.608q + 3.9569 — 2.608¢"" + 0.63¢™>

BB. = 0.25¢+1.125+0.25¢7" .

SPIE Vol. 1565 Adaptive Signal Processing (1991)/ 137




According to Step 3, with (p/r)MM. =T, and (1/r)CC. £ ¢1q+ 7T, +T1g7", we have to

solve (14):
063 | 025 0 0 — 0.1739
—2.608 | 1.125 025 0O iy —0.5064
3.9569 | 025 1.125 025 '51 = | 1.2164
2608 | 0 025 1125 || 2 ~0.5064
063 | O 0 025 ! 0.1739

The least squares solution, in this case exact, is
[Mo @ € @)F =[0.2449 0.0784 0.1959 0.0784]7 .

(From these parameters, CgH) =1+ 0571, r = Ag/Ae = 6.38 and p = AufAe = 1.563
could be obtained.) As the left-hand side of (15), we obtain

¢t~ (1/r)CCyxB.N. = 0.0196¢* + 0.1273¢ + 0.2155 + 0.0784¢7" .

Since nQ; =nc=1landnL =1 according to (8), the polynomial equation in Step 4 is found
to be
0.0196¢% + 0.1273¢ + 0.2155 + 0.0784¢ ™" =

1
(0173067 — 04314q + 1)(@o + Qua™) + a1~ 0.747) (7 ) (g + &) -

Multiply both sides by g~? and evaluate for equal-powers of g~'. This gives

1 0 0.1739 0 4/ 0.0196
-0.7 1 —0.4314 0.1739 Lfr | | 01273
0o -0.7 1 —0.4314 Q. | | 02155
0 0 0 1 Q1 0.0784

The solution is
0:(¢"Y) = 0.4322+0.0784¢7"
1
—T-Ll(q“l) = 0.2613 —0.0556¢7" .
Thus, the optimal one-lag smoothing input estimator (3) is

. 0.4322 — 0.3106¢~* — 0.0705¢~2
a(klk+1) = =7 (13144 + 0.1739¢2

y(k+1) -
The corresponding MSE is found to be Ez(k)? = 0.82. Use of the inverse system as estimator,
Q/R = A/B, would have resulted in Ez(k)? = 1.56.

5. SIMULATIONS

Consider Algorithm 1, described in Section 3.1. Three examples will be presented in order to
illustrate its behaviour. In all examples described below, one future data was used (m=1).
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The initial parameter estimates were D) = 1 and 3 = 1. The covariance matrix was initialized
as a unit matrix.

Example 2: The system is described in Example 1. Correct model orders are assumed and
SNR = 100. Identification with ELS is used from & = 0—200 and RPEM from & = 201—-1000.
A forgetting factor A(k), starting with A(0) = 0.95 and increasing to unity, is used.

Example 3: Same as in Example 2, up to k = 500. At k = 500, D(g™!) changes abruptly
to D(¢”') = 1 —0.9¢7 1. The forgetting factor is increasing towards 0.98, from A(0) = 0.95.

Example 4: Same as in Example 2. The innovations model is overpaxametnzed It is as-
sumed that nﬂ = 3 and nd = 2. The assumed relative degree nf — nd gives né = 2. The
forgetting factor is increasing towards unity.

Figure 2a,b show the true and estimated input for Fzample 2, k = 0—200 and &k = 800—1000,
respectively. In Figure 2c, the corresponding input estimation filter parameters are displayed.
Reasonable estimates of the input are obtained already after 100 data. Beyond k = 800, the
estimator performs very well. This can be verified by comparing the estimated parameters
Ql, ﬁ at time k = 1000 with the ones derived in Example 1. We have

(B1 B2 Qo Q1)=(—0431 0.174 0.432 0.078)

(B B2 Q0 Q1)i1000 = (—0.345 0.185 0.416 0.157) .

The estimation error variance E(u(k) — #(k))? was estimated from the data series, for
k = 101 — 1000. We compa.red the use of both estlmated and true parameters to gener-
ate u(k) above. This gave Ez(k)2m = 0.96 and Ez(k)ztrue = 0.85. This should be compared
with the theoretical minimal variance Ez(k)? = 0.82 from (9).

10
10

e
=]

8} — u(t)
o ~e- u(t]{t+1)

— u(t)
--— a(t|t+1)

oE:
.2.-:
A}
N
.8..
430 "20 40 62) 8‘0 100 120 140 160 180 00 4300 820 840 8&0 880 960 920 940 960 980 1000
Figure 2a. Example 2. True and estimated Figure 2b. k = 800 — 1000.

input, &k = 0 — 200. Correct model
order, SNR=100, A(k) — 1.
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Figure 2c. Exampie 2. Input estimator parameters Br, Q1x, for k = 0 — 1000.

In Figure 3a, the true and estimated input for Ezample 8is shown, for k = 450 — 650. Figure
3b displays the filter coefficiens f and Q1. Regarding Figures 3, we conclude that the input
estimator performs well. As can be seen from Figure 3b, the parameter estimates follows
the underlying parameter change in D. The [-parameters were slightly low—pass filtered
in order to obtain smooth variations in §;. When the system changes, the signal to noise
ratio improves from 100 to 590. Although there is not a dramatic improvement in the ob-
tained input estimate, it can be detected. From k = 550, there is an improved fit in the peaks.

.
o

— u(t)
—ew a(t|t+l) -

‘ 550 600 650 ) 10 200 300 40 500 60 700 B0 900 1000
Figure 3a. Example 3. True and estimated Figure 3b. The coefficients of
input, k = 450 — 650. Correct model order Dy and of the input estimator
assumed. At time k = 500, D(g™1) polynomials ﬁk, 1, for k = 0 — 1000.
changes from 1 — 0.7¢7! to 1 — 0.9¢7 .

(k) — 0.98.

Ezample 4, with Figures 4a and 4b, illustrates the difficulties with overparametrization. In
Figure 4a, a typical interval of the simulated data is shown. The result is not very nice and
should deter every serious user. However, this may be avoided, as pointed out in Section 3.4.
Figure 4b show the trajectories of the superfluous zeros of D and B From k = 500, they
follow each other closely. There is almost a common factor in the estimated transfer function
B / D. It can be eliminated by model reduction. The model order is then reduced to that of
Example 2, and we can expect a nice behaviour.




& — u(t)
st LT a(t{e+1)

5 A :
S

e 750 60 70 780 9 800 100 300 300 400 500 60 700 810 900 1000
Figure 4a. Example 4. True and estimated Figure 4b. Trajectories of superfluous
input. Overparametrized innovations zeros of § and D.

model, nf} = 3, nd = 2. k = 740 — 800.

6. CONCLUSIONS

The deconvolution problem has been considered in an adaptive framework. The input to a
known system has been estimated, form noisy measurements of the output. The properties
of the input and the measurement noise were assumed unknown. They have been estimated
from output data only. We have presented an algorithm based on identification of an inno-
vations model. Identifiability results guarantee a unique decomposition of input description
and measurement noise. Two linear systems of equations are the main tools for designing a
predictor, a filter or a fixed-lag smoother. The adaptive algorithm was illustrated by a nu-
merical example and simulation experiments. Simulations with correct model order behaved
well. An example illustrated difficulties with overparametrization of the innovations model.
It was concluded that the difficulties may be avoided by model reduction.

An alternative application of Algorithm 1 is on-line spectral estimation of a signal which
is observed through a linear system, with MA-noise. (Off-line estimation, assuming white
noise, has been discussed by Tugnait!8.)

The proposed method is not without limitations. Lack of identifiability may prevent its use
in some situations. Since only second order statistics is used, non-minimum phase properties
cannot be estimated from output data only. This is a limitation in some applications, such
as digital channel equalization.
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