FILTER DESIGN USING POLYNOMIAL EQUATIONS

Mikael Sternad and Anders Ahlén !

The polynomial approach to Wiener filter design will be discussed. using a simple proto-
type problem. An overview is also given over MSE (or H,) filtering problems where
this approach has been used. Furthermore. a new simple way of deriving the relevans
polynomial equations will be presented.

1 Why use a polynomial approach to filtering?

Most of us, on some occation, have to design filters. predictors or fixed-lag smoothers.
which minimize a mean square estimation error. Assume that relevant signals can be
modelled as generated by linear time—invariant stochastic systems. Estimators can then
be designed by the Wiener approach (1], as Nalman filters or by the polynomial approach
{2]-{12]. The resulting estimators are equivalent. but the polynomial approach provides
some advantages. In contrast to a Wiener frequency-domain design, it provides esti-
mators parametrized by a finite number of parameters (polynomial coefficients). The
method furthermore corresponds to a systematic numerical way of evaluating the causal
factor of a Wiener-Hopf solution.

Compared to Kalman filters, the calculations for obtaining the estimators are often
simpler, in particular for smoothing problems with coloured noise. (Calculation of the
solution by hand is possible in low order problems.) Difficulties are also avoided in
singular situations, i.e. when white noise is not present on all measurements. \With
the polynomial approach. estimators are obtained as transfer functions. Thus. classical
filter concepts, such as frequency responses. poles and zeros can be studied directly.

2 A simple estimation problem

Consider estimation of a discrete-time signal in coloured noise. The signal s(¢) is scalar.
but may be complex-valued. It is modelled as an ARMA-process

s{t)=—dys(t = 1) — ... —dygs(t —nd) + elt) + cre(t = 1) + ... = ¢, .e(t — ne)

Let ¢g7! be the backward shift operator (¢7's(¢) = s(t — 1)). The signal can then be
expressed in shift operator polynomial form as

1+ —14__“ e —ncy C -1
s(t) = Ll Toned L= (q”‘)e(t\ (2.1)
(1+dig7V+ ... 4 dpgg™") D(g™")
The signal s(t) is to be estimated from noisy measurements
(I+mg '+ .. +meng™™™) M(g™h
= (t) = si —t 2.2
y(t) = s(t) + (L+ng '+ ...+ nang™™) vlt) = slt) + X(q‘lﬁlk ) (2.2)
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up to time t + m, using a stable linear estimator

Qlg™!)
Rig)’
The problem formulation includes prediction (m < 0), filtering (m = 0) and fixed-lag
smoothing (m > 0). The noises e(¢) and v(¢) are mutually independent and white.
They have zero means and variances A, > 0 and A, > 0, respectively. The ARMA-
models C'//D and M/N are stable. causal and have no common zeros on the unit circle.
The measurements {y(t)} can also be described by the innovations model

B e, Mg
Y= 5 me " = et e

S(tlt+m) =

(t+m) . (2.3)

e(t) + v(t) (2.4)

where the innovations sequence 7(t) has variance A,. For any polynomial P(q~!) =
Po+ P11 +. ..+ Papq ", define the conjugate polynomial P.(q) = pi+piq+.. -+ Prpd"P
Here, ¢ is the forward shift operator and pj is the conjugate of the (possibly complex)
coefficient p;. In the frequency domain, the complex variable z is substituted for g.

Stable polynomials P(z7%) have all zeros in |z| < 1. Polynomial arguments are often
omitted below.

The monic polynomial 3(¢™") in (2.4) is the (polynomial) spectral factor. Use of (2.4)
gives the spectrum of y(t) as ¢, = A\,86./DND.N. = A\.CC./DD. + \,MM./NN..
Thus, B(g~') is seen to satisfy the spectral factorization equation

rBB.=CC.NN, + pMM.DD, (2.5)

where r =, /). and p = ),/).. Under the assumptions on the system, §(z"!) is stable.

The mean square error (MSE) Ele(t)[?, where e(t) £ s(t)—3(t|t+m), is to be minimized.
In Section 3, it will be shown that the optimal estimator is given by the IIR flter

(tt+m) = TN-y(t + m) (2.6)

where Q1(¢™!), together with a polynomial L.(g), can be found as the unique solution
to the single Diophantine equation

¢ "CC.N. =rB.Q, +q¢DL. . (2.7)
Thus, the estimator is obtained by solving (2.5) for #(¢™!) (and ) and (2.7) for Q1(q"?)
{(and L.(g)). The IIR-filter (2.6) is internally stable, since 3(g~1) is stable. It may con-
tain stable common factors. Note that when the noise model has resonances (zeros of
N close to the unit circle), the filter (2.6) has notches at the corresponding frequencies.

Frequency weighting can be introduced into the design, by means of polynomial or ra-
tional filters in the criterion. See [12] or {16].

Closed-form expressions exist for second—order spectral factors [14]. For real-valued
coefficients, the right-hand side of (2.5) is g, + g1(g + ¢™!) + g2(¢* + ¢™2), Then. r and
B(g7!) =14 piq™! + B2q7? will be given by

: 2 g
72%‘3—gz+ (%‘iﬂh) -9 r=<7+\/72—4g§)/2: =L 5=2

r+ g r
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There exist efficient numerical algorithms for polynomiai spectral factorization. Some
can be applied in multivariable problems as well. where 3(¢~!) may be a matrix [13].

The linear equation (2.7) corresponds to a linear system of equations in the coefficients
of Q1(¢™") and L.(q) See e.g. [7]. [10]., {11] or {12] for some examples. By seiting the
maximal degrees in ¢~ and in ¢, respectively. equal on both sides of (2.7). the degrees
of the unknown polynomials are obtained. The number of equations wiil equal the
number of unknowns. The system of equations is nonsingular. since 3.{z [unstable)

and D(z7') (stable) cannot have any common factors. Consequently. a unique solution
exists.

Thus, the optimality requirement determines the structure and degree of the estimator.
The methodology cannot be utilized for optimizing filters with a prespecified restricted
complexity and degree. (A well-known closed—form expression exists for optimal FIR-
filters. No corresponding expression is known for IIR-filters of fixed degree.)

Comparison with a Wiener solution reveals that solution of (2.5) corresponds to the
calculation of a whitening filter (the inverse of the innovations model (2.4)). The cal-

culation of the causal part {"}, of the Wiener filter is performed by (2.7). See {12].

Multivariable generalizations of the problem above are treated in {4] and [6]. Estimation
of internal states is described in [2], [3] and [6]. [nput estimation. or deconvolution, has
been treated in (7],{12] and (16}, and adaptive algorithms have been developed [8]. A
closed-form solution for the optimization of IIR filters in decision feedback equalizers
(DFE’s) was recently presented in [9]; the use of the polynomial approach was cru-
cial for obtaining that result. Design of discrete-time differentiating filters, based on
continuous-time or discrete-time signal models, has been investigated in [10] and [11].

In most estimation problems of interest, the solution can be calculated from one polv-
nomial (matrix) spectral factorization. followed by the solution of one linear polvnomial
(matrix) equation *. One exception is the optimization of DFE’s described in [9]. It
turns out to require no spectral factorization. Only a very simple linear syvstem of
equations needs to be solved. Another type of exception concerns signals described by
strictly unstable models. Then, the solution of two coupled linear polynomial equations
is sometimes required, to assure stationarity of the estimation error.

3 A novel technique for deriving design equations

Polynomial design equations for filtering and LQG control are traditionally derived
using a “completing the squares”-argument. See e.g. [4],[5],[6] or [12]. In [12], a new
and simpler constructive methodology is presented. It is based on the evaluation of
orthogonality in the frequency domain. and leads to the goal in only a few well-defined
steps of calculation. The problem considered is described by the right-hand figure
below.

’In addition, coprime factorizations. which represent a kind of commutation operation {or poly-

nomial matrices. have to be performed in some multivariable estimation problems. See e.c. [12] or
[16].
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The signal f () is the estimate of the (possibly complex) signal f(t), based on measure-
ment of y(t+m). The error Ele(t)]? is to be minimized, where e(t) = f(t) — f(t|t + m).
The signal n(t) is a variational term. The orthogonality principle requires the minimal
estimation error to be orthogonal to any admissible variation n(t), i.e. Ee(t)n*(t) = 0.
For scalar problems, this can be assured in the following way.

1. Parametrize the system by rational transfer functions. Define a polynomial spec-
tral factorization from an innovations model of y().

o

Introduce a variation of the estimate as n(t) = G(¢7')y(t + m). Here, G is an
arbitrary transfer function, with the constraint that G should be causal and stable
and n(t) should be stationary. Express Ee(t)n*(t) in the frequency domain by
means of Parseval’s formula and simplify it, using the spectral factorization.

3. Fulfill the orthogonality requirement Ee(t)n*(t) = 0 by cancelling all poles inside
the integration path by zeros. This leads to the Diophantine design equation(s).

In the example of Section 2, Step 1 is already completed. Step 2 gives (see the left
figure above) Fe(t)n*(t) = E(s(t) — $(t))(Gy(t + m))* =

(=52 0) (oG ) o)

Ae f (z""RCC.NN. — QrBg.) , dz
=1 RDD.NN. i

(3.1)

2

In Step 3, we note that the stable polynomials R, D and N have zeros in |z]| < 1, while
the poles of G, and the zeros of D.N, are in |z| > 1. Thus, all poles inside |z| = 1 of
the integrand of (3.1) are eliminated if (and only if)

z“™RCC.NN. — QrBp. = zRDNL.

for some polynomial L.(z). Now, N must be a factor of @QrB8.. Set Q = @, N. Cancel
N and substitute g for z:

R(¢"CC.N. — qDL.) = QirBB. .

Evidently, R must be a factor of Q,r8p8.. Since f. is unstable, while Q, is part of the
estimator numerator, set R = f. Thus, (2.6) and (2.7) are obtained.

This procedure is simple to apply also in multi-signal estimation problems [12] and
in multivariable feedback and feedforward control problems, see [13]. Application to
estimation problems with marginally stable signal models is discussed in [11].
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