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Abstract: An explicite adaptive regulator with disturbance measurement feedforward is
presented. It is based on a polynomial LQG design. In feedback regulators, the optimiza-
tion of a feedforward filter involves the solution of only one additional linear polynomial
equation. The regulator is designed to handle shape-deterministic disturbances, such as
steps, ramps and sinosoids, as well as stochastic disturbances, Computational aspects, the
computational complexity and the robustness against unmodelled dynamics are discussed.
It is argued that the use of feedforward can improve not only the disturbance rejection,
but also the stability robustness of an LQG feedback regulator.
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1 Introduction

A feedforward regulatof\§ utilizes measurements of impor-
tant disturbances. When there is a delay between distur-
bance and controlled output, the regulator reacts on the
disturbance before it begins to affect the controlled vari-
able. Complete disturbance cancellation may sometimes be
achieved. Addition of feedforward filters to feedback regu-
lators is a simple way to improve control performance, at
moderate extra computational cost.

LQG optimization is a good framework for the design of
combined feedback and feedforward regulators. It provides
tradeoffs between input energy and disturbance rejection,
Control of systems with input delays or non-mimimum phase
dynamics becomes straightforward. Several alternative ap-
proaches do however exist, such as generalized minimum
variance control (GMV). See Astrom and Wittenmark (1973),
Clarke and Gawthrop (1979), Allidina et. al. (1981) and
Tahmassebi et. al. (1985). Compared to adaptive algo-
rithms based on infinite horizon LQG criteria, GMV often
attains inferior asymptotic performance. This is the case
in particular for non-minimum phase systems, cf. Modén
and Séderstrom (1982) and Sternad (1987). The quest for
improved performance has led to the modification of GMV
into Generalized Predictive Control (GPC), Clarke et. al.
(1987), Perez and Kershenbaum (1986). As the prediction
horizon increases, the performance of GPC approaches that
of infinite horizon LQG control from below.

LQG optimization can be based on polynomial equations
(KuZera 1979). The polynomial equations approach to the
design of combined feedback-feedforward regulators has re-
ceived considerable interst recently. See Peterka (1984),
Sebek et. al. (1988) and Sternad and Soderstrém (1988).
LQG self-tuners with disturbance measurement feedforward
have been proposed by Sternad (1986),(1987) and Hunt et.
al. (1987).

The purpose of this paper is to discuss the following aspects
related to adaptive feedback/feedforward control based on
LQG design:

¢ While LQG design is based on a stochastic disturbance
description, random step sequences, ramp sequences and si-
nusoids can also be handeled. Disturbance measurement
feedforward can be combined with integrating feedback, al-
though some care must be taken with the regulator calcu-
lation and implementation.

o Feedforward control may be used to improve the stabil-
ity robustness of feedback regulators. Assume that a given
amount of disturbance rejection is desired. The regulator
design is based on an uncertain and/or underparametrized
model. When most of a disturbance can be eliminated by
feedforward, the high-frequency gain of the feedback can be
reduced, The feedback can be designed to maintain robust
stability, rather than high disturbance rejection. (With an
incorrect model, the feedforward control performance will
of course be non-ideal, but this can never make the system
unstable.)

¢ LQG feedback control laws place some poles (the ‘ob-
server poles’) at disturbance model zeros. It will be argued
that this is a bad idea when used in adaptive control. With
other (suboptimal) observer poles, the robustness can be
increased, often with only a small deterioration of the dis-
turbance rejection.

The paper is organized as follows. For the control prob-
lem defined in Section 2, the polynomial LQG solution is
presented in Section 3. A self-tuning implementation is de-
scribed in Section 4. Some user-choices which affect the
robustness of the control law are discussed in Section 5.
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2 The control problem

Let the plant be described by the following linear discrete
time model

A(g7Y)y(t) = Blg™")u(t — k) + D(g " w(t —d) + C(q“)e((tg
1

where the output y(t), input u(t), measurable disturbance
w(t) and unmeasurable disturbance e(t) are all scalar sig-
nals. No unstable common factors are present in A(g™")
and B(g™*). All polynomials in the backward shift operator
¢!, except B(g~1), are monic.

The disturbances w(t) and e(t) are modelled by

(@)
o(t) = ;é:)n(t)

where H(¢™!) = Hg(g™*)Hy(¢™"). We assume v(t) and n(t)
to be mutually uncorrelated and zero mean. They are white
noises or random spike sequences, While C(¢~1), G(g™!) and
Hs(g™?) are assumed to be stable, Hy(¢™") and F(g™*) have
all their zeros on the unit circle. The disturbance models
thus include

1. Stationary stochastic disturbances. (F or Hy = 1)

2. Drifting stochastic disturbances. If w(t) e. g. has sta-
tionary increments, it is modelled by Hy = 1 — ¢!
and a white noise v(t).

3. Shape-deterministic or piecewise deterministic signals,
such as random step sequences, ramp sequences or si-
nusoids which occationally change magnitude or phase.
A stationary random spike sequence, such as a Ber-
noulli-Gaussian sequence is then a reasonable model
for v(t) or n(t).

The goal is to minimize an infinite horizon criterion
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The input penalty p > 0 and the polynomial A(q“) are
chosen by the designer. They define a frequency depen-
dent tradeoff between input energy and disturbance rejec-
tion. Note that the choice of input filter is not completely
free: the factor F(¢”!) must be present whenever e(t) is
described by an unstable model. If e(t) e. g. is a drifting
stochastic signal, a drifting input u(t) will be needed. To
keep the criterion finite, the input must then be filtered by
F(g7') = 1—g¢ ' in (3). For the same reason, Hy(g~') must
be a factor of A(g™)F(g™"), unless it is a factor of D(g™?).

It can be shown (Sternad 1987) that the optimal linear reg-
ulator structure with feedback and feedforward is given by

R(¢)F(gMu(t) = - w(t) = S(g7u(t)  (4)

See Figure 1. The polynomial P(g~*) is required to be sta-
ble. Note that the factor R(¢g™!)F(g™?) is present in both
the feedback and feedforward signal paths, The filtering by
F(g7') is consistent with the internal modelling principle
(Francis and Wonham 1976). When F(¢7') =1 - ¢~%, we
have an integrating regulator with feedforward term.
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Figure 1. The system and regulator structure.

In Sternad and Séderstrdm (1988), a polynomial equation
was presented by which the feedforward filter {P, Q} can be
optimized, given any stabilizing feedback {R,S}. The use
of PID-control, pole placement feedback or no feedback at
all are some examples. Based on that equation, an LQG
self-tuning feedforward filter has been designed which com-
plements existing (adaptive or non-adaptive) feedback reg-
ulators (Sternad 1987).

In this paper, we will however discuss the optimization of
the total regulator (4), with respect to (3). The design con-
sists of a simple two-step procedure: the feedback {R,S}
is first optimized with respect to the unmeasurable distur-
bance e(t), using well known methods {KuZera 1979, Peterka
1984), The feedforward filter {P,Q} is then calculated so
that w(t) is rejected in an optimal way. This separability is
made possible by the use of the regulator structure (4), and
by the (assumed) noncorrelation between w(t) and e(t).

3 The optimal regulator

In order to obtain a convenient notation, substitute z for
¢! and define , for any polynomial P(z), P, = P(2"!) and
P = z"P,. The polynomial arguments will in general be
omitted in the following.

Introduce the spectral factorization

rBB, = BB, + pAFAAF. 4, (5)

where r is a positive scalar, and 8 is a stable monic polyno-
mial in z with degree nfB. To assure that a stable § exists,
we require B to have no zeros on the unit circle when p = 0.
When p > 0, B and AF A should have no common factors
with zeros on the unit circle.




Theorem 1

Assume that Hy is a factor of AFD, and that a stable spec-
tral factor 8 in (5) exists. The regulator (4) then attains
the global mifmijum value of (3), under the constraint of
stability, if {P, @, R, S} are calculated as follows:

Let R.(27%),S.(27!) and X (2) be the minimum degree solu-
tion with respect to X of the coupled polynomial equations

B8R, —z ¥'B, X
rBS, +zA F. X

pAALAFC, (6)
2*BC, (7)

where f is the stable spectral factor from (5).
Let P = G, and let Q,(27!) and L(z) be the solution of

2" D F.G.X = rfQ. + C,H,2L (8)
w]

Outline of proof: Refer to Sternad and Sdderstrom (1988).
Tt is straightforward to show that all results there apply also
when Hy # 1, if Hy is a factor of AFD. Multiply (1) by
F: (AF)y(t) = ¢ *B(Fu(t)) + ¢*(DF)w(t) + Cn(t). Since
n(t) is a white stationary random sequence, Theorem 4 in
Sternad and Sdderstrom (1988) can be applied to this model
structure. Thus, the signal Fu(t) is used instead of u(t) in
regulator and criterion. AF is substituted for A and DF
for D in all equations. The Theorem then follows.

Remarks:
Properties of the feedback:

The variables in (6) and (7) have degrees (nz 2 deg X etc. )

nz nf+k-1

ns = max{na+nf-1lnc—k}

f

©
nr = max{nb+k —1,nc+degA} if p#0
nb+k—-1 if p=0

Multiply (6) by A.F, and (7) by 2*B, and add them. Op-
timal feedback is then seen to imply pole placement in SC:

BC = AFR + 2*BS (10)

If A and B had no common factors, an optimal feedback
could be calculated from the implied pole placement equa-
tion (10). With common factors, this will not be possible
(KuZera 1984). The equations (6) and (7) however give the
correct solution, as long as the common factors are stable.

Assume F(g7!) = 1 - ¢} 2 A(g™1). According to (2),
F = A models the dynamics of step and Wiener process
disturbances e(t). In the regulator, F' = A represents inte-
gration. Nothing prevents us from using integration i. e. to
set F = A in (4)-(8) also when e(t) is stationary. We cannot
then attain the minimal criterion value, because the regula-
tor has incorrect structure, but it may be advantageous to
use integration anyway. When the feedforward filter is im-
perfectly designed, static control errors will then be taken
care of by the feedback,

The feedforward controller calculation:

Note that the solution of only one additional Diophantine
equation, namely (8), is needed for optimizing a feedforward
filter. Since B (stable) and 2™C,2z"*H, = CH (unstable)
cannot have common factors, (8) is always solvable. The
degrees of Q,(z7) and L(2) are uniquely defined by the
requirement that they should cover the maximal occuring
powers in z~! and z, respectively, in (8):

nQ

I

max{nd +nf +ng+d,nc+nh}—1

(1)
nL

max{0,k —d} +nf —1

The polynomial L is not used in the controller. The de-
lay d affects the achievable control quality significantly. It
can be shown that application of feedforward can always
improve the control performance when d > 0, compared to
feedback from y(t) only. The improvement is a nondecreas-
ing function of d. It is advantageous to place the auxiliary
w(t)-sensor so that the disturbance is captured as early as
possible, i. e. d is large.

The solution can be generalized to multiple measurable dis-
turbances. If the measurement w(t) is influenced by the
input u(t — n),n > 0, this effect could be subtracted inter-
nally, inside the regulator. See Sternad (1986),(1987).

Numerical aspects:

A common special case is when the measurable disturbance
is drifting or of random step type, and an integrating reg-
ulator is used. Then, Hy = F = A, Since A, becomes a
factor of both the left and right term in (8), it must also be
a factor of Q,. With @ = @A, equation (8) is reduced to

2741 D,G.X = Q.. + C,Hs,zL (12)

In this case, the controller {4) must be modified slightly. It
can be implemented in differential form, using an explicite
differentiation of the measurable disturbance w(t):

R(Au() = ~(aw(0) - su(t)

(13)

u(t)

Alternatively, one can use a structure with the feedforward
filter separated from the differentiation:

u(t — 1) + Au(t)

Ru(®) = - Zu() - 2400 (14)

If (8) were used, small numerical errors and finite word-
lenght effects would cause @ # QiA. This could lead to
large errors in the low-frequency gain of the feedforward
filter —Q/RAP in (4). Design from (12) and realization
according to (13) or (14) avoids such problems. Equation
(8) must however be used in the general case, when Hy # F.

The regulator (4) or (13)/(14) must be realized minimally,
as a single dynamical system having two inputs and one out-
put. A reliable algorithm for spectral factorization can be
found in Kulera (1979). It is iterative, requiring typically




3-10 iterations. The coupled equations (6),(7) represent an
over-determined set of simultaneous equations in the coeffi-
cients of R, S and X. The system will however have a unique
solution with the polynomial degrees (9). (Some equations
are linear combinations of the others.) This (exact) solution
can be found by computing the least-squares solution to the
overdetermined system.

4 The LQG self-tuner

For systems with unknown or time-varying dynamics, an ex-
plicite LQG self-tuner has been developed (Sternad 1987).
It is based on recursive system identification using the Re-
cursive Prediction Error Method (RPEM), Ljung and Soder-
strom (1983). The controller is redesigned periodically ac-
cording to Theorem 1. A similar algorithm has been sug-
gested by Hunt et. al. (1987). Upper bounds on all polyno-
mial degrees are assumed known, together with the unstable
disturbance model factor F(g~?). The regulator, comple-
mented with a servo filter, is summarized in Table 1 below.

1. Read new samples of y(t), w(t) and a set-point r(t).
2. Update models of y(t) and w(t) with the structure
Ay(t) = Bu(t) + Dw(t) + Ce,(t) (15)
Huw(t) = Ge,(2) (16)
using two RPEM routines for single output systems.
3. Compute r and S(g™!) from the spectral factorization.
4. Determine R(q™"),S(¢™") and X(¢7*) from (6),(7).

5. Set P(g~!) = G(g™), and calculate Q(¢™") and L(g™")
from (8).

6. If needed, design a servo filter T(¢™!)/E{g™?).

7. Compute the control action:

RFu(t) = —%w(t) —s+Er) ()

8. Shift all data vectors, and go to step 1.

Table 1. An LQG feedback-feedforward self-tuner.

Remarks:

Step 2. The regressors of the model (15) are filtered by

F(g™!)
N(g™) (18)

where N{g™1) is a stable polynomial. Filtering by F(¢™*)
is necessary to avoid biased estimates. With N(g™?), the
filter can be modified to improve the estimation accuracy in
important freqency regions. The estimates of G and C must
be projected into stable regions. The usual precautions of
a control error dead-zone and covariance monitoring have
been implemented. They guard against estimator wind-up
and identification based on insufficient information,

Step 8. The servo filter T/E has been designed by can-
celling poles and stable zeros so that a reference model
Ym(t) = (¢7¥Bm/Am)r(t) is approximated. This works well,
but results in a rather high-order filter. Other approaches
are discussed in Sternad (1987).

Step 7. When appropriate, the regulator (13) or (14},
based on equation (12), should be used instead of (17).

2: Identification 37n?

+ 36n
3: Spect. fact. (per iteration) 3n? +3n
4: Feedback optimization 36n° +87n? +135n
5: Feedforward opt. on® 4 14n?
7: Control 8n
Table 2. The approximate number of mult-add opera-

tions required per sample, assuming all model polynomials
to have equal degree n. A least squares solution is computed
in step 4.

The computational burden of this algorithm is one order of
magnitude higher than for GMV. See Table 2. With mod-
ern microcomputers and signal processors, this should be no
significant restriction in most control applications. There is
no need to recalculate the regulator at each sample. Steps
3-6 can be placed in a background process which provides
a new regulator every m’th sample. For m = 5 — 10, this
results in only a small degradation of the adaptation tran-
sient when the system dynamics changes. (It has recently
been shown by Shimkin and Feuer (1988) that it can in fact
be advantageous to update the regulator infrequently.)

Example 1

Let (1/1— ¢~")v(t) be a square wave disturbance with unit
amplitude and period 60. It disturbs the system

(1— 08¢~ )y(t) = (b + bag™Jult — 2) + (1 + 20~ Yw(t — 1)

w(t)_1-o.3q-1( 1 v(t))

T 1-09g71\1-g!

Comparing with (2), we have G = 1-0.3¢7}, Hs = 1 —
0.9¢7! and Hy = 1 — ¢~*, while e{t) = 0. The polynomial
by + bsq~? changes from 1+ 0.1¢g™" to 0.5 -+ 0.05¢™! at time
300. A correctly parametrized LQG self-tuner is applied, us-
ing an input penalty p = 0.5 and A = 1 — g%, with F =1,
i. e. no integration, A forgetting factor of 0.98 is used. After
an initial open loop identification period of 20 samples, the
regulator quickly converges.

10 «

0 300 500
Figure 2. The input u(t) in Example 1.
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Figure 3. The controlled output y(t) in Example 1. The
disturbance w(t) is cancelled almost completely, although
the delay difference k — d = 1 prevents perfect cancellation.
At t = 300, the system gain is halved. At ¢ = 400, the
control performance has recovered.
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5 Robustness_improving user choices Figure 4. The output standard deviation ay in Example 2,

The robustness against unmodelled dynamics of a self-tuner
is affected by properties of both the estimator and the con-
trol law. Simple considerations regarding the LQG control
strategy, which in general improve the robustness of a self-
tuner, are illustrated by the following example.

Example 2.

The system
(1-1.2¢7* +0.52¢7y(t) = ¢"*(1 + 0.8¢7 )u(t)

+¢72(1 - 0.2¢7Yw(t) + (1 — 0.2¢7)e(t)

is affected by measurable and unmeasurable drifting stochas-
tic disturbances (1 — ¢~} )w(t) = v(t), (1 — ¢~ Ve(t) = n{t).
The white noises v(t) and n(t) have standard deviations 0.3
and 0.1, respectively. Thus, the largest disturbance is mea-
surable, and Hy = N= A,

The control error standard deviation was measured (after
convergence) in simulation runs with four self-tuners. Inte-
grating regulators with the structure (13), and with r(t) =0
and A = 1 were used. The results are shown in Figure 4,
as functions of the input penalty p. Curve (1) represents
the performance of LQG feedback and feedforward. When
p — 0, the disturbance w(t) is cancelled completely by the
feedforward control action. When only feedback is used,
curve (2) is obtained. The disturbances w(t) and e(t) are
then treated as one unmeasurable noise. The performance is
obviously degraded without disturbance measurement. Cor-
rectly parametrized models were used in these experiments.
Curve (3) and (4) result if an underparametrized B is used
(nb = 0 instead of nb = 1). For input penalties p < 1, the
closed-loop system then becomes unstable.

The reason for this behaviour is explained by Figures 5§
and 6. Figure 5 shows Bode magnitude plots of some under-
parametrized models obtained at the end of the simulation
runs. Compare them with the true system. The gain at high
frequencies isaﬁi’éer—estimated, because the system zero can-
not be modelled. For low p, the regulators have large feed-
back gains at high frequencies, cf. Figure 6. (This is often
the case for minimum variance regulators.) The combina-
tion of large feedback gain and an incorrect model at high
frequencies leads to instability.

as a function of the input penalty p.

(1): Feedback and feedforward. B of correct order 1.
(2): Feedback only. B of correct order 1.

(8): Feedback and feedforward. B of order 0.

(4): Feedback only. B of order 0.
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Figure 5. (1): Transfer function magnitudes for some
under-parametrized models. (2): The true system.
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Figure 6. Transfer function magnitudes of feedback filters.
(1): p=0. (2): p=0.5. (3): p=10.
(4): p = 0.5, with pole placement in Co.

One way of reducing the high-frequency feedback gain is to
modify the polynomial C{g™!) used in (6)-(7). Instead of
the estimate €, a fixed polynomial Co = (1 — 0.5¢7")? was
used. This decreased the feedback high-frequency gain (cf.
(4) in Figure 6). The performance for high p deteriorated
somewhat, but the robustness for low p improved (Figure 7).
The regulator now became stable for p > 0.2.
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Figure 7. The output standard deviation oy versus the in-
put penalty p, when estimated polynomials ¢ and the fixed
prespecified Cp = (1 —0.5¢71)? are used for pole placement.
(1): Feedback and feedforward. C used. B of order 1.

{2): Feedback only. C used. B of order 1.

(3): Feedback and feedforward. Co used. B of order 0.
(4): Feedback only. Co used. B of order 0.
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Let us summarize three robustness-enhancing user-choices:

o By increasing p from zero, the control signal variations
and the high-frequency gains of both feedback and feed-
forward filters are reduced. Large reductions can often be
achieved with only minor deterioration of the disturbance
rejection. This increases the robustness against unmod-
elled high-frequency dynamics. Problems with hidden inter-
sample output oscillations are also avoided.

o Use of feedforward can increase the stability robustness.
This is possible when high disturbance rejection is required,
and the main system disturbance is measurable. See e. g.
Figure 4: if oy below 1 is required, this could be attained
in the ideal case by a high gain (low p) feedback. Insta-
bility would however result in the underparametrized case.
With both feedback and feedforward, a low gain regulator
(p = 10 — 300) can be used. It easily attains the required
performance, also in the underparametrized case.

e With LQG control, poles are placed in gC, cf. (10). The
polynomial C could be interpreted as the observer dynam-
ics in a state space formulation. Use of a fized prespecified
observer polynomial Cp, with 1/Cp being low-pass, has sev-
eral advantages. While the zeros of 8 can be modified via
p, we do not have any control over the zero locations of
C in the true system. 1/C might very well be an extreme
high-pass filter. Furthermore, the coefficients of C are the
hardest ones to estimate. Estimated C-polynomials some-
times tend to contain a factor 1 — g~!, which gives bad pole
placement. (This happens when regressors are differenti-
ated to avoid bias due to a non-zero mean disturbance e(t},
but e(t) is stationary.) With a suboptimal pole placement
BCo, the feedback disturbance rejection may deteriorate.
This matters less if feedforward can be applied: compare
the difference between curves (1) and (3) to that between
curves (2) and (4) in Figure 7.

6 Conclusions

An explicite adaptive controller with disturbance measure-
ment feedforward has been presented. It is based on polyno-
mial LQG design and is capable of handling nonstationary
and deterministic disturbances. The roles that the input
penalty, the observer polynomial and feedforward control
play in determining a compromise between ideal case perfor-
mance and robustness have been exemplified. In simulation
studies, the algorithm has been found to behave very well
in general, One (seldomly occuring) remaining problem is
that A and B may get unstable common factors when mod-
els are over-parametrized. The test of schemes such as that
of De Laminat (1984) to avoid these situations is a focus of
current research,
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