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Abstract: An adaptive algorithm for estimating the input to a linear system is presented.
This explicite self-tuning filter is based on the identification of an innovations model. From
that model, input and measurement noise descriptions are decomposed. Identifiability re-
sults guarantee a unique decomposition. Main tools in the algorithm are the solution of
two linear systems of equations. The basic algorithm can be used for input signals de-
scribed by ARMA-models and moving average measurement noise. An extension of the
algorithm involves use of model reduction and spectral factorization. Simulation experi-

ments illustrate the filtering performance.
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1 Introduction

The need to restore signals observed through linear systems
and contaminated by noise arises frequently. In digital com-
munication, the equalization problem is fundamental. Due
to intersymbol interference caused by the communication
channel, transmitted sequences have to be restored. Nu-
merous papers have been written on this topic. See eg
Qureshi (1985) and the references therein. In sessmology, re-
flection coefficients representing hidden layers in the ground
are sought. Deconvolution algorithms are important tools in
this investigation, cf Mendel (1983). Numerical differentia-
tion of noisy data involves a tradeoff in order to limit noise
amplification. In such problems, a noise corrupted output
of an integrator is measured, and the input is sought, see eg
Ahlén (1986) and Carlsson et al (1987). In control systems,
slow transducers often cause problems. If the transducer
dynamics is eliminated, the total phase lag in the control
system may be reduced. Estimates of transducer inputs
could be used as artificial measurements.

In order to find the desired signal, some kind of inverse fil-
tering is needed. Usually, such filtering is known as deconvo-
lution or input estimation. The problem has been discussed
by many authors, see eg Fitch and Kurz (1975), Demoment
(1983), Commenges (1984), Deng (1985), Ahlén and Ster-
nad (1985, 1989). A close correspondence between deconvo-
lution and feedforward control has also been observed, see
Sternad and Ahlén (1988).

In the areas described above, it is reasonable to assume some
crucial part of the system to be known a priori or deter-
mined in advance by experiments. For example, the wavelet
in seismology, the transducer in control problems or the in-
tegrator in numerical differentiation are known. The input
and measurement noise properties may, however, vary with
time. Ahlén (1986) and Moir et al (1987) have suggested an
adaptive approach based on an innovations model in order

to estimate the input. In this paper, we will develope this
approach, and focus on the problem of estimating the in-
put when the characteristics of the input and measurement
noise vary with time,

2 Preliminaries

Consider the linear stochastic discrete-time system
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where ¢~! denotes the backward shift operator. The input
u(t) and measurement noise w(t) are assumed to be accu-
rately described by the ARMA-processes

o =S ¢ v -1

vt (2)

Be(t): = A, Ev(t): = A, p= A/,

where e(t) and v(t) are mutually uncorrelated. They are
stationary white and zero mean stochastic sequences.

Using measurements of the output y(t), we seek the stable
linear time-invariant estimator of the input

Q¢

a(tt —m) = Rl )

y(t —m) (3)

which minimzes the mean square estimation error

Ez(t)* £ E(u(t) — a(t]t — m))? (4)

See Figure 1. Depending on the sign of m, the estimator is
a predictor, a filter or a fixed lag smoother.
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Figure 1: The input estimation problem. u(t) is to be
estimated from measurements of the output y(t).

In Ahlén and Sternad (1985, 1989), a procedure for opti-
mizing input estimators in the transfer function form (3)
was derived. Compared to Kalman filtering, this approach
is simple for scalar signals, and is well suited for self-tuning
applications. It is based on the following assumptions:

o The signal y(t) and input u(t) can be deﬁf)ed by lin-
ear models with structure (1), (2). All polynomial in
(1) and (2), with degrees na, nb etc, are known.

¢ The denominators D(¢?), A(¢7") and N(¢™!) may
have zeros inside or on, but not outside, the stabil-
ity limit. The polynomials C(¢~1)B{¢~*)N(¢™?) and
Mg Y)A(g7")D(¢!) have no common factors with
zeros on the unit circle.

For any polynomial P = P(q"!), let P, = P(q) and P =
g~ " P,. The optimal input estimator is then given by
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where § is the stable monic solution to a spectral factoriza-
tion equation

rB8, = CBNC,B.N, + pMADM, A, D, (6)
with r being a scalar. The polynomial @, together with a

polynomial L., is the unique solution to the linear polyno-
mial equation

qm+dCtBtN$C = rﬁth + lIDL* (7)

with polynomial degrees

nQ; = max(nc—m—d,nd—1) ()
nL = max(nc+nb+nn+m+dnf)—1

With z substituted for ¢, the minimal mean square error is

Ez(t)

(9)
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From a practical point of view, we can hardly expect all
polynomials to be known a priori. In many applications, as
indicated in the previous section, it is however reasonable
to assume ¢~?B(g™')/A(g™!) to be known. In Ahlén (1986,
1988), the identifiability properties of the input estimation
problem was investigated under the following asssumptions

e A(g™Y), B(g™1), d and polynomial degrees ne, nd, nm,
nn are known a priori,

o All polynomials in (1),(2) are asymptotically stable
except the B-polynomial, which may be unstable.

o The polynomial pairs

(4,B),(C,D),(M,N),(B,D)

(. 4),B,D), (4, V), (v,0) 10

are all coprime.

o The only measurable information is ¢,{e}, the spec-
tral density of the output.

Introducing the numbers

AD2nd—nc ; ANZnn—nm (11)

k A max(na+ AD,nb+ AN) ; ¢ 2 2 min(nn,nd)

it was found that

kE>1 (12a)

is necessary, and
k>1¢

is sufficient for parameter identifiability.

(12b)

If the N-polynomial is known a priori, the number of un-
known parameters decrease by nn. We thus set N(¢7) =1
and nn = 0 in (10)-(12), which implies that k£ > 1 is both
necessary and sufficient for parameter identifiability.

3 A self-tuning input estimation al-
gorithm

From (7), we find that C, B, N, D and § are required, but
only B is known. We thus have to estimate (C,D, N, ) in
some way using the output measurements only. Consider
an innovations model of the output y(t). Assuming A, D
and N to be stable, the innovations model is given by

v(0) = o)

where f is the stable spectral factor from (6) and §j(t) is the
innovation sequence. The A-polynomial is known and can
be filtered out. Thus, 8/DN, may be estimated. Unfor-
tunately, C and M are related to § through the nonlinear
equation (6). Note, however that only the product CC, is
needed in (7). A key idea is to formulate (6) as a linear
system of equations in the coefficients of CC, and MM..
Since we have an estimate of B, the system can be solved.
Assume the N-polynomial to be known a priori or equal to
unity. This leads to the algorithm below.

3.1 The basic algorithm

When the measurement noise is described by a moving av-
erage process or ARMA-process with known AR-part, use
the following algorithm.
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Algorithm 1.

Assume A(g™Y), B(¢™Y), N(¢7Y), d, nf, nd, nc and nm to
be known. For each data, .

= A(g)N (g7 )y(t)-

2. Update recursive estimates of the § and D parameters
from the data z(t) using a prediction error method
(PEM) or extended least squares (ELS). Call these
estimates ﬂ and D.

1. Generate the signal z(t)

3. Solve the overdetemined linear system of f,quations in
the coefficients of CC, and M M,, using 8 and D,

AADD,(MM,) + BB.NN.(CC.) = BB,  (13)
with the least squares method, using e.g. smgular
value decomposition. Call these estimates ¢¢é, and
MM,. Before the solution is used in the next step,

check the condition number of the Sylvester matrix
S(AA.DD,,BB,NN,).

4. Solve the hnear polynomlal equation (7) using the es-
timates ﬁ, D and €€,

¢"+C¢C.B.N, = B,Q1 + ¢DL.
with respect to @, and L,, using the degrees (8).

5. Perform the filtering (5), or, alternatively

4(tlt —m) = @) -m
(= m) = 5 L ale —m)

Some comments and interpretations are now in order.

1. We assume the system to be parameter identifiable, i.e.
(10) and (12b) to hold. With a known N(g!), the chances
to have parameter identifiability are good, The correct
polynomial degrees are assumed known. This restrictive
assumption can be avoided. Over-parametrized models is-

discussed in Section 3.3, are

2. For time-invariant systems, the polynomials 4 and D
in the innovations model can always be correctly estimated
asymptotically, by using PEM-identification. See e.g. Ljung
and Sdderstrém (1983). Time-variable parameters may be
tracked by means of a forgetting factor.

3. The estimate 5 is ‘monic. If we let A, = Ey(t) Step 3
gives (using a monic § = g), €&, = (A./A.)CC,. From (6),
it is seen that A, /A, = 1/r. Step 4 will thus be the same as
solving (7), with L scaled by the factor 1/r.

4. In the algorithm, there is no need to perform any spec-
tral factorization like (6), since the innovations model is es-
timated directly. Instead, the linear system of equations in
SAtep 3 must be solved. In the transient phase, when ,[? and
D approaches § and D, Step 3 computes the least squares
solution, the solution closest to CC, and M M,. Asymptot-
ically, when ,5 =fand D= D, there is a unique and exact
solution given by CC, = CC, and MM, = MM,

5. To reduce the computational requirements, the linear
system defined by (13) can be transformed into a minimal
order system with nf + 1 equations and nc + nm + 2 un-
knowns. This is achieved by eliminating rows and columns
which are redundant due to symmetry. See Ahlén (1986).

6. Although the system is known to be identifiable when
(10) and (12) holds, it may happen that the estimate D
and BN sometimes have almost common factors as D con-
verges towards D, This will cause a rank deficiency of
S(AA.DD.,BB,NN.) in Step 3. The singular values of
S must be checked. (When singular value decomposition
is used for solving the LS problem, this requires no extra
computations.) If the condition number is large, the Q;-
parameters are not updated.

The computational complexity of Algorithm 1 is presented
in Table 1. The approximate number of mult-add operations
required per sample, assuming all degrees na, nb, ... etc = n,
is estimated. A smoothing lag £ A& _m > 0 is assumed. !
With n = 1 and £ = 2, approximately 700 floating point
mults+adds are required per sample.

Table 1. The computational complexity of Algorithm 1.

1: Prefiltering 2n
2: Identification 30n? + 23n
3: LS solution 56n° + 152n% + 136n

4: Linear system (7) 2(4n+£€+2)°+ $(4n + £+ 2)*

5: Filtering 6n+ £

It should be noted that there is no need to recalculate the
filter (steps 3 and 4) for each sample. Typically, it can be
recalculated every 5’th to 10’th sample.

3.2 An extended algorithm

If N(¢7') is unknown and the noise cannot be described
with sufficient accuracy by a low order MA-model, adap-
tive input estimation becomes more complex. For general

unknown ARMA-noise, we thus suggest the following algo-

rithm,

Algorithm 2,

Assume A(g™Y), B(g7Y), d, nfB, nd, nc, nm and nn to be
known. For each data,

= Ag7)y(?).
2 Identification as in Algorithm 1. Estimate ﬁ /5]\V .

1 Generate the signal z(t)

3 Solve the over-determined linear system of equations
in the coefficients of CNC,N, and DM D.M,

AA,(DMD,M.) + BB,(CNC.N.) = p,

with the least squares | method. Call these estimates]
DMD.,M, and CNC,\N,.

4’ This step is new compared to Algorithm 1. Perform|
spectral factorization on cN C’:I\V., obtained in step 3,
in order to get CN. Use model reduction in in ordex
to eliminate the common factor N of €N and DN.

4-5 Identical to Algorithm 1. Use N instead of N in step
4, and QN instead of Q; in the filter.

1In Step 3 of Table 1, the least squares solution is assumed to be
computed by singular value decomposition, using the Golub-Reinsch
algorithm (Golub and Van Loan 1983). Redundancies due to symmetry
in the linear system are eliminated before computing the solution.
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Compared to Algorithm 1, we have introduced a spectral
factorization and model reduction. The price to be paid for
less a priori information is a more complex algorithm.

3.3 Robustifying modifications

Two modifications of the Algorithms 1 and 2 are required
in order to obtain a safe behaviour.

1. Common factors in the innovations model 3/ ND should
be eliminated by model reduction. Overparametrization can
thus be handeled, and the requirement of known polyno-
mial degrees can be relaxed. Model reduction via balanced
realizations, see eg Moore (1981){}3 one of many alternatives.

2. Rank deficiency in Step 3, caused by (nearly) common
factors in D and B or D and N, must be detected.

With model reduction implemented, we only need to know

_ the relative degrees AD and AN defined in (11). Fes—re—
(} -duced medels;-it-is-possible-to-cherk-the-eonditions-{12)-for
-parameter identifiability.-

It should be mentioned that 8, being an ARMA model nu-
merator, is sometimes rather difficult to estimate. The es-
timates are often noisy when exponential forgetting is used.
The variation of the estimator coefficients (Ql,ﬁ) can be re-
duced substantially by using low-pass filtered ﬁ-polynomial
coefficients in the design calculations.

If the input properties in certain frequency bands are of in-
terest, a filtered input @(t) = (S(g~!)/T(g7*))u(t) can be
estimated, instead of u(t) itself, with simple substitutions
in the algorithm. See Ahlén and Sternad (1989). Low pass
filtering will reduce the high-frequency gain of the estima-
tion filter (5).

4 A numerical example

We illustrate Algorithm 1 by a simple example.

Example 1. Assume the true system to be given by

Alg™Y) = 1-09¢7? B(¢™') = 1+0.25¢7?
C(¢') = 1+05g7" D(g7') = 1-0.7¢71
M(¢l) = 1.25 d = 1

An optimal one lag smoother (m = —1) is to be designed.

The system is parameter identifiable according to (10)-(12).
Assume correct model orders and the identification to give
consistent estimates § = # and D = D. Thus

B¢ = 1-04314¢71 +0.1739¢7> ; r=6.38
ADA,D, = 0.63¢* — 2.608¢ + 3.9569 — 2.608¢~" + 0.63¢>
BB, = 025¢-+1.125+0.25¢!

According to Step 3, we have to solve

063 | 025 0 0 _ 0.1739
—2.608 | 1.125 025 O o ~0.5064
3.9560 | 025 1125 025 || & | =] 12164
—2608 | 0 025 1125|| % —0.5064
068 | o 0 o025 |L® 0.1739

The least squares solution, in this case exact, is
[Mo €1 T @7 =[0.2449 0.0784 0.1959 0.0784)7

which correspond to /\ = 01567, C = 1+ 0.5¢7, m? =
X, = 0.25. Note that &, = 1/r and A, = m?/r.

As the left hand side of (7), we obtain

CC,B,N, = 0.0196¢" + 0.1273¢ + 0.2155 -+ 0.0784¢™"

Since nQ; = nC = 1 and nL = 1 according to (8), the
polynomial equation in Step 4 is found to be

0.0196¢% + 0.1273¢ + 0.2155 + 0.0784¢™ 1 =

(0.1739¢° —0.4314¢+1)(Q, + Q147 1) +9(1—0.7¢7 1) (b1g+ &,)

Multiplying both sides by ¢~
ers of ¢! gives

? and evaluating for equal pow-

1 0 01739 0 A 0.0196
-0.7 1 —0.4314 0.1739 £ | | 01273
0 -07 1 —-04314 | | Q, | ~ | 0.2155
0 0 0 1 (o) 0.0784
The solution is
@:i(¢7Y) = 0.4322+0.0784¢7"

= 0.2613 — 0.0556¢7!

b~
=
—
D)
—
N
|

Thus, the optimal one lag smoothing input estimator (5) is

0.4322 — 0.3106¢™! — 0.0705¢~2

2Lt +1) =
ale+1) 1— 04314~ + 0.1739¢™2

y(t+1)

The corresponding loss is found to be Ez(t)? = 0.82.

b Simulations

Consider Algorithm 1 described in Section 3.1. Three ex-
amples will be presented in order to illustrate its behaviour.

Example 2: The system is described in Example 1. Cor-
rect model orders are assumed and SNR = 100. Identifica-
tion with ELS is used from t = 0 — 200 and PEM from
t = 201 — 1000. A forgetting factor A(t), starting with
A(0) = 0.95 and increasing to unity, is used.

Example 3: Same as in Example 2 up to t = 500. At
t = 500, D(g™*) changes abruptly to D(¢g™!) = 1 - 0.9¢".
(The SNR then changes from 100 to 590.) The forgetting
factor is increasing towards 0.98.

Example 4: Same as in Example 2. The mnovatlons model
is overparametrized. It is assumed that nﬂ =3 and nd = 2.
The forgetting factor is increasing towards unity.

In all examples described above, one future data was used
(m = —1). The initial parameter estimates were b=

and ﬂ = 1. The covariance matrix was initialized as a umt
matrix.

Figure 2a,b show the true and estimated input for Exam-
ple 2, t = 0 — 200 and 800 — 1000, respectively. In Figure
2c, the corresponding input estimation filter parameters are
displayed.




Reasonable estimates of the input are obtained already after
100 data. Beyond ¢ = 800, the estimator perform very well.
This can be verified by comparing the estimated parame-
ters Q,(1000), ﬁ(lOOO) with the ones derived in Example 1.
We have (81 2 Q, Q1) = (—0.431 0.174 0.432 0.078)
and (ﬂl ,32 Qo Ql)lOOO ( -0, 345 0. 185 0. 416 0. 157)
The loss (4) was estimated from E2(f)? = R (u(t) -
a(t|t +1))? using both true and estimated para.meters This
gave Ez(1)?,,, = 0.96 and E%(1)?,,, = 0.85, which should be
compared with the theoretical minimal variance Ez(t)? =
0.82 from (9). The close values verify the performance.

— u(t)
N -=- a(t|t+1)

i
0
i

20 40 &0 80 100 120 140 160 180 200

Figure 2a. Example 2. True and estimated input, t =
0— 200, correct model] order, SNR=100. The forgetting fac-
tor A(t) — 1.
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Figure 2b. Same as in Figure 2a, but for ¢ = 800 — 1000.
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Flgure 2¢, Example 2. Input estimation filter parameters

B(t), @1(t), t = 0 — 1000, with correct model order and
SNR=100. The forgetting factor A(t) —

In Figure 3a-3b, the true and estimated input for Example
3 is shown for ¢ = 450 ~ 650 and ¢ = 800 — 1000. Figure 3¢
displays the filter coefficiens 4(t) and @ (2).

Regarding Figures 3, we conclude that the input estimator
performs well. As can be seen from Figure 3¢, the param-
eter estlma.tes follows the underlying parameter change in
D. The ﬂ-para.meters were sllghtly low pass filtered in order
to obtain smooth variations in Q. Although there is not a
dramatically improvement in the obtained input estimate,
see Figure 3a, it can be detected. From ¢ = 550, there is an
improved fit in the peaks.

— u(t) 4
--- at|t+1)

o
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Figure 8a. Example 3. True and estimated input, ¢ =
450 — 650. Correct model order assumed. At time ¢ = 500,
D(g™") changes abruptly from 1—0.7¢" to 1 — 0.9, The
SNR thus increases from 100 to 590. A(¢) — 0.98,

8r — u(t) .
st -—- a(t|t+1)
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Figure 3b. Same as in Figure 3a, but for £ = 800 — 1000.

L5

500 600 700 800 900 1000
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Figure 8c. Example 3. D(t) and input estimating filter
parameters 3(t), @1(t), for ¢ = 0 — 1000, correct model or-

der. The forgetting factor A(t) — 0.98.




Example 4 with Figures 4a and 4b illustrates the difficulties
with overparametrization. In Figure 4a, a typical interval
of the simulated data is shown. The result is not very nice
and should deter every serious user. However, this may
be avoided, as pointed out in Section 3.3. Figure 4b sho
the trajectories of the superfluous zeros of D and ﬁ . From
t = 500, they follow each other closely. There is almost a
common factor in the estimated transfer function 4/D. It
can be eliminated by model reduction. The model order is
then reduced to that of Example 2 and we can expect a nice
behaviour.

8t — u(t) .
6 - u(t|tHl)

40 750 760 770 780 . 790 800

Figure 4a. Example 4. True and estimated iAnput. Over-
parametrized innovations model, nﬁ = 3, nd = 2. The
a priori known relative degree of C/D leads to né = 2.
SNR=100, ¢ = 740 — 800. The forgetting factor A(t) — 1.
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Figure 4b. Trajectories of superfluous zeros of # and D.
P s

Overparametrized innovations model ng8 = 3, nd = 2.

6 Conclusion

The input estimation problem has been considered in an
adaptive framework. We have presented an algorithm based
on identification of an innovations model. Identifiability re-
sults guarantee a unique decomposition of input description
and measurement noise. Two linear systems of equations
are the main tools for obtaining the input estimate. The
estimator may be a predictor, a filter or a smoother. The

adaptive algorithm was illustrated by a numerical exam-
ple and simulation experiments. Simulations with correct
model order behaved well. An example illustrated difficul-
ties with overparametrization of the innovations model. It
was concluded that the difficulties may be avoided by model
reduction. Since only second order statistics is used, non-
minimum phase properties cannot be estimated from output
data only. This is a limitation in some applications, such as
digital channel equalization. Presently, work is carried out
on the problem of eliminating slow transducer dynamics by
means of input estimation.
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