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DISTURBANCE DECOUPLING ADAPTIVE CONTROL
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Abstract. With feedforward and disturbance decoupling control, cancellation of
disturbance influences on the output is desired. Several adaptive schemes for

implementing this are discussed. It is found that adaptive control based on
explicit criterion minimization is a very attractive alternative.

Simulations indicate that the method has excellent robustness properties. For
non-minimum phase systems, optimal disturbance rejection is achieved. Self-
tuning control and adaptive LQG feedforward for non-minimum phase systems is

also discussed.
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1. INTRODUCTION: IF FEEDFORWARD IS SO GOOD, WHY IS IT
NOT USED MORE FREQUENTLY?

When disturbances can be measured, their influence may
be cancelled. The usefulness of this idea has been
realized for many years in both process control (Shin-
skey, 1965) and signal processing (Widrow et.al.1975).
Despite of this, optimized feedforward links are not
very common. In process control, feedforward applica-
tions are mostly limited to static gains used to com-
pensate for the static component of a measurable dis-
turbance. The reason seems to be a.combination of four
main problems, described below. These difficulties may
possibly be solved by adaptive control. It will be di-
scussed what requirements the feedforward problem
places on an adaptive strategy.

1. The use of an open loop in feedforward control leads
to robustness problems. Simple manually tuned static
feedforward 1inks sometimes improve control conside-
rably, but in general, design of a good feedforward
compensator requires a very accurate process model.
The man-hours required for modelling can often not be
justified in economic terms. This motivates the use of
adaptive control. Robustness of adaptive control be-
comes of special concern in cases such as this, when
the basic control strategy used is not robust.

2, The main process disturbance might not be directly
measurable. Instead, auxiliary process variables are
used for feedforward, These variables might be cor-
rupted by measurement noise and affected by other va-
riables, especially by the input. If the plant to be
co?trolled is Yinear, the problem can be formulated as
follows:

A system is given in the form

y(e)) [y, Hyy) fult)} fn(t)
(1.1)

w(t) i H. H v(t) ' m(t)
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where Hij are discrete or continuous time transfer
functions. The main output y(t), the auxiliary mea-
surement w(t) and the input u(t) are all scalar sig-
nals. The system is affected by a main disturbance
v(t) and possibly by additional disturbances n(t) and
m(t). Find transfer functions G, and Gy for a regula-
tor

u(t) = -G m(t)-Gyy(t) (1.2)
such that

o the controlled plant becomes stable and
o the transfer function from v{t) to y(t) is zero.

If this is possible, the main disturbance influence on
the main output can be cancelled completely. We will
call cases when Hy =0 feedforward design problems. It
is desirable that adaptive regulators also can handle
cases when Hyy#0. We then have a scalar version of the
disturbance decoupling problem with stability con-

straints. The multivariable version of this problem
has attracted considerable interest in recent years.
For solvability conditions and solution methods, see
e.g.bzgiiler and Eldem (1985). In Ku¥era (1983), a
simple solution for the scalar case is presented. The
solvability conditions are restrictive. For example,
stability of Hy& is necessary for feedforward and sca-
lar disturbance decoupling. In other words, the trans-
fer function from u(t) to y(t) must be minimum phase.
The problem of what to do if such conditions are not
satisfied is rarely discussed in the literature re-
lated to disturbance decoupling.

3. Sampling often leads to non-minimum phase sampled
systems, even when the continuous time system is mini-

mum phase, cf Astrom, Hagander and Sternby (1984). In
such cases, complete disturbance decoupling at the
sampling instants is not possible with a discrete time
regulator. Considerable disturbance rejection may
still be possible, however. It is desirable that if
perfect disturbance decoupling is possible, an adap-
tive regulator should converge to this solution. If
not,it should minimize the disturbance influence.

4. Feedforward filters often tend to be high-pass fil-
ters. They generate large high-frequency 1input signals
and magnify high-frequency components of the measure-
ment noise (m(t) in {1.1)). Since this is unacceptable
in most cases, tradeoffs between disturbance rejection
and input energy are necessary. Adaptive regulators
could achieve this by minimizing a quadratic criterion
with an input penalty.

While these are not the only difficulties faced by de-
signers of feedforward regulators, methods to handle
them would be highly desirable. In section 2, possible
discrete time adaptive control strategies are di-
scussed, Experiences from simulation studies are sum-
marized in section 3. In section 4 it is concluded
that there seems to exist at least one method, namely
adaptive control based on explicit criterion minimi-
zation, which solves the problems mentioned above.

Tbis work was supported by the Swedish Board of Tech-
nical Development under grant 84-3680.




—-~ 2. ALTERNATIVES FOR ADAPTIVE CONTROL

The system (1.1) is considered in discrete time. For
the moment m(t)=0 is assumed, If the time delay in Hyy
is not larger than the time delay in Hyy, (1.1) can be
rewritten as a causal model with w(t) as an input.

P -1
y(t) = (Hyu Hvawvau)u(t)+Hvawvw(t)+n(t)

w(t) = kuu(t)+vav(t)

The following polynomial parametrization will be used:

A Dy(t) = a7*B(q Dult)+q (g™ Nw(t)+c(a e(t)
(2.1)
g™ w(t) = oo™ (g Hult)+a(q™ N v(t) (2.2)

where A,B,... are polynomials in the backward shift
operator q-1 with degrees na,nb,... Nonzero time de-
lays k, d and n are assumed. Consider the disturbances
e(t) and v(t) to be mutually uncorrelated zero mean
white stationary random sequences. (Control perfor-
mance when v(t) is nonzero mean or nonstationary is
discussed in section 3.) The polynomials A, C, H and
G are assumed monic. Since the control problem is re-
stricted to control of y(t), H is required to be
stable. In addition, stability of C and G is assumed.

2.1 Self-tuning regulators

Self-tuners are (mostly implicit) adaptive regulators
designed to minimize a siiding short-time criterion,
see e.qg.Astrom and Wittenmark (1985), Clarke and Gaw-
throp ?1975). Their main output feedback is easily
complemented with a feedforward term, measuring w(t)
in (2.1). Self-tuning regulators employing feedfor-
ward, for example Novatune from ASEA, are available
comercially, cf Bengtsson and Egardt (1984). Several
successful applications have been reported, e.g. by
Allidina et.al.(1981). However, considering the prob-
lems discussed in section 1, self-tuners have two
drawbacks:

- Presence of an input influence on the feedforward
signal (N(q-1)+0 in (2.2)) might lead to instability.
~ Unstable B-polynomials in (2.1) may give problems.

Consider the basic minimum variance self-tuner with
feedforward, applied on the system (2.1),(2.2). For
simplicity, assume dzk and C(q~1)=1. Introduce poly-
nomials F (degree k-1) and S (degree na-1) such that
1= Al R )+ ks(q™h) (2.3)

Us? of (2.3) and (2.1) gives, omitting the argument
q ',

AFy(t+k)+q Ksy(t+k) =
BFu(t)+DFw(t-d+k)+Fe(t+k)+Sy(t)

y(t+k)

At time t, the best estimate of Fe(t+k) is its mean
value, zero. Thus, an optimal output predictor is
given by:

§(t+k|t) = BFu(t)+DFw(t-d+k)+Sy(t)

The polynomials BF, DF and S may be estimated recur-
sively on line by minimizing the prediction error. The
self-tuning minimum variance regulator calculates u(t)
such that the predicted output equals the reference
value. For reference zero, the controller is

BFu(t) = -Sy(t)-DFw(t-d+k) (2.4)

If the estimated rggulator polynomials are true, i.e.
if BF=BF, 5=S and DF=DF, the closed system is given by

By(t) = BFe(t) (2.5)
Bw(t) = q "NSe(t)+GBv(t) (2.6)
where

g P8 & g KBH+q ™ IND ;  b=min(k,n+d) (2.7)

Disturbance decoupling (v does not affect y) and sta-
bility is achieved if B and B are stable. Unstable B-
polynomials will give problems. Note that even when B
is stable, B might be unstable if the input affects
w(t) (N+0 in (2.7)). Use of an input penalty, in-
crease of the sampling period or extension of the
prediction horizon often leads to stable control of
non-minimum phase systems, cf Astrom and Wittenmark
(1985). These modifications do however fail in some
cases. Neither good control nor even stability is
guaranteed. The performance of self-tuners is com-
pared with regulation using explicit criterion mini-
mization in an example in section 3.3.

2.2 An LQG approach

An attractive way of avoiding problems with non-mini-
mum phase systems is to minimize an infinite horizon
quadratic criterion, instead of a sliding short-time
criterion. LQG theory, either in a state space or a
polynomial formulation, achieves this. A polynomial
formulation will be discussed briefly in this section.

The infinite horizon criterion
. g N 2. e -1 2
J=E Timyg = (y(t)-r{t-k) “+p(B(q" Ju(t-k)) (2.8)
Koo t=k

is to be minimized with respect to regulator parame-
ters. Here, r{t-k) is ?he setpoint for y(t), p is an
input penalty and A(q”') is a polynomial. To avoid
static errors fg; nonzero setpoints, differential in-
put penalty A(q )=‘I-q'1 is used. In other cases, A=1
is the normal choice. Now, consider the following two

regulator structures.

1. Feedforward/disturbance decoupling:
_-Q R
u(t) = - § |w(t)- ifU(t-n) +Tr(t) (2.9)

(Stability of A in (2.1) is assumed whenever (2.9)
is used.)

2. Combined feedforward and feedback:
Ru(t) = - %(w(t)- %u(t-n)) -Sy(t)+Tr(t) (2.10)

The criterion (2.8) and the regulators (2.9),(2.10)
are also used in section 2.3.

In (2.9) and (2.10), f, R and § are estimates of N, H
and G in (2.2). These regulators are designed to sub-
tract an estimate of the input influence on w(t) from
the feedforward signal. With a correct model, this re-
duces disturbance decoupling problems (N:0) to feed-
forward problems (N=0). The polynomials H, H, G and G
are assumed stable. Regulators structures similar to
EZ.Q))have also been discussed by Brosilow and Tong
1978).

In Sternad (1985), minimization of (2.8) for regulator
probTems with r{t)=0 is considered. One of the conclu-
sions is that optimal feedforward and feedback filters
should have a common denominator (R in (2.10)). In ad-
dition, the disturbance numerator G should be can-
celled by the feedforward filter, This is done expli-
citely in (2.10)..Methods for optimizing P and Q in
(2.9) or R, S and Q in (2.10) are presented. As an
example of these results, let us discuss optimal feed-
forward control.

Assume that

- the system {2.1),(2.2) is exactly known and stable

- the regulator (2.9) is to be used and N(q~1)=0, i.e.
we have a feedforward problem,

- B(z) has no zeros on the unit circle.

Introduce 8(z) as the stable spectral factor from
re(2)a(z” ) = B(2)B(z")4eA(2)(2)F(z DA™Y (2.11)

where r is a scalar and g(z) is monic.




Introduce polynomials Q(z"1) and L{z) with degrees, cf
(2.1),(2.2)

degl{z) = max{degp-1,nb-d+k-1} (2.12)
degQ(z'1) = max{na+nh-1,nd+ng+d-k} (2.13)

as a solution to the polynomial equation

S 9Ke )z a2 = re(z2)a(z DAtz H(z el (2)

(2.18)

Then the feedforward regulator

-1
() = — AL wiw) (2.15)
’ 8(a”)6(q™")

attains the global minimum point of (2.8).

For a proof, see Sternad (1985).

If p=0 and perfect feedforward is possible, this will
of course be attained by (2.15). However, (2.15) also
handles problems with input penalties, too small feed-
forward time delays (d<k§ and unstable B-polynomials.
In Sternad (1985), the above result is generalized to
the disturbance decoupling case and to regulators
(2.10) using both feedforward and feedback. It is
straightforward to generalize to CARIMA models and re-
gulators in differential form for nonstationary di-
sturbances.

Implementation of these regulators in an explicit
adaptive form is straightforward.

"LQG-algorithm" N (2.16)
Repeat the following steps at each sampling period:

1. Update recursive estimates of models (2.1) and
(2.2) using e.g. ELS.

2. Solve approximately for g in (2.11) by taking a few
steps in some recursiveva1gor1thm for spectral fac-
torization. See e.g. Kufera (1979).

3, Solve the polynomial equation (2.14) or generaliza-
tions thereof.

4. Compute u(t), using (2.9) or (2.10).

For similar algorithms for feedback regulators, see
Astrom and Zhao-Ying (1982) or Grimble (1984). For
cases when the disturbance w(t) is an AR-process (N=0,
G=1) Peterka (1984) suggests methods to optimize com-
bined feedback-feedforward regulators for both finite
and infinite horizon criteria. Work on an adaptive im-
plementation of the results in Sternad (1985) for re-
gulators of type (2.9) and (2.10) is now proceeding.
Results will, it is hoped, be presented at the work-
shop. However, there is reason for caution. The ex-
treme parameter sensitivity of optimized feedforward
filters makes good parameter estimation critical. Use
of an explicit adaptive strategy, such as (2.16), may
tead to robustness problems. For this reason, it is
worthwhile to investigate other methods to compute LQG
regulators adaptively. In the next section, a very at-
tractive alternative is presented.

2.3 Explicit criterion minimization

This control principle has been developed by Trulsson
and Ljung (1985), based on earlier ideas by Tzypkin
(1971). Let 8y be a vector of free regulator parame-
ters. The main idea is to see the criterion J (in our
case (2.8)) as a function of these regulator parame-
ters. A stationary point dJ/d8,.=0 is sought with some
recursive numerical search metﬁod. We will apply this
jdea to regulators of type (2.9) and (2.10).
Differentiation of (2.8) with respect to 8, gives:

(2.17)

= E{(y(t)-r(t-k)) L 4 Ru(t-k) dZu(t-k))
B e, de,

dJ(Br)

This expression is used when a stationary point is
sought. The signal derivatives dy(t,er)/der and
dKu?t-k,e )/dBy are computed by filtering measurable
signals. K mode] must be identified since model para-
meters are needed in the filters.

“Adaptive criterion minimization algorithm" (2.18)
Repeat the following steps at each sampling period:

1. Update a recursively estimated model with parameter
vector 8,(t).

2. Compute approximate signal derivative filters using
Bm(t) and Gr(t-i). Perform the filterings.

3. Update the regulator parameters er(t) towards a
stationary point du/de.=0.

4, Compute the control signal u(t), using 8,.(t).

1t has been proven by Trulsson (1983) that

-if all signals stay bounded and
-if the parts of 8y used in the signal derivative fil-
ters converge to their true value w.p.1.

Then, under mild conditions on the updating method
for 6, the algorithm (2.18) will converge to a local
minimum of the criterion w.p.1.

Assume furthermore

- ? ligear system and a quadratic criterion, such as
2.8).

- A linear regulator with the right number of parame-
ters, making the minimum point of J unique.

Then, the method converges to this unique minimum,
which coincides with the LQG solution. It should be
noticed that non-minimum phase systems present no
special problems. A main motivation for examining the
criterion minimization method is the robustness consi-
deration. Thus, it is of prime importance to investi-
gate experimentally how the algorithm behaves if the
above conditions are not satisfied. What happens, for
example, if 8, or 6 have the wrong parameterization?
Comparing the algorithm (2.18) with the LQG algorithm
(2.16), a recursive regulator update is made instead
of a spectral factorization and solutions of polyno-
mial equaitons. LQG design relies, more or less blind-
lys.on the certainty equivalence principle. Model para-
meters are used as if they were the true ones. Crite-
rion minimization uses both model parameters and
measurements of the control performance. If the model
is wrong, the regulator adaption may be able to com-
pensate for this, to a large extent. This has in fact
been the case in a number of simulation experiments,
described in detail in Sternad (1986) and summarized
in section 3, The four Steps of the control algorithm
(2.18) are described below.

Step 4: Computation of u{t). The regulator structure
Dseg is (2.8) or (2.10). The parameter vector B, is

given by
8. = (QO""'QnQ'p1""’pnp’TO""’Tnt) (2.19)

for (2.9) and
8, = (r1""'rnr'SO"“’sns'QD""'QnQ’TO""‘Tnt)

for (2.10). (2.20)

The P and R polynomials are assumed monic, The polyno-
mials R, A and g are the latest estimates in the model
of (2.2). For a given model parametrization regulator
polynomial orders might be chosen such that optimal
LQG control becomes possible. See e.g. (2.13). It has
turned out, however, that the exact choice of regula-
tor orders is not critical for control performance.

Step 3: Update of regulator parameters. The criterion
TZ.8) s to be minimized with respect to 8., given by
(2.19) or (2.20). Let us rewrite (2.8) in fhe follo-
wing way.

J = % E[(y(t)-r(t-k))2+p(3h(t-k))2] =




0 p/\Bu(t-k)

10 -r(t-
_%Euuy¢u«LNMan( )(ﬂt)”tk)
3 B Te(t) (2.21)

He>

The criterion (2.21) has the same algebraic structure
as the type of criterion minimized in recursive pre-
diction error identification for multiple output sys-
tems., This suggests that such algorithms could mini-
mize (2.21). An algorithm from Ljung and Stderstrom
(1983) is used. It updates B, in an approximate Gauss-
Newton direction. Compared to stochastic approximation
algorithms, updating 8, in the gradient direction,
this should improve convergence.

Define the dimBx2 matrix
de(t,0,)T ( dy(t,6,) qu(t-k,er))

A
v(t,8.) = -
*Op 9 o, o,

(2.22)

r

The algorithm for updating Qr can then be expressed as:

S(t) = A(t)ae (£)P(t-1)u(t) 3 S(0) = A(0)A (2.23a)
P(t) = iy [P(-1)-P(e-1)u(£)S(6)Tu(t) TP(E-1))
(2.23b)
y{t)-r{t-k)
8.(t) = Gr(t-1)+P(t)w(t) - ) 8,.(0) =0
pAu(t-k)
(2.23c)

For updating parameters in an approxmate Newton direc-
tion, an approximate inverse of the Hessian is needed.
Recursions (2.23a and b) take care of this. The gra-
dient -y(t)e(t) is also required. Expressions for ap-
proximate signal derivatives, to be used in y(t) are
needed,

Step 2: Signal derivative filterings. If the model

equals the system, use of the regulator (2.10) on
(2.1),(2.2) gives the closed system

-d -
ay(t) = ifL-13¥¥iillﬁ§21 v(t)+CHRe(t)+q PBTR(t) (2.24)

au(t) = -(AQ+q'dDGS)v(t)-CHSe(t)+AHTr(t) (2.25)

where the polynomial a8 - q KBH+q~9""pN
has already been encountered in (2.7) and

o = AHR+g PBS (2.26)

In addition, hidden modes corresponding to H and G are
present. They are assumed stable and are hence can-
celled.

Use of these expressions and differentiation, as ex-
plained in Trulsson and Ljung (1985), gives the signal
derivative filters, For the combined feedback-feedfor-
ward regulator (2.10), with parameter vector (2.20),
they are given by:

ay(t) _ -a B gy, Bultek)

AHR | poil
v, s ar, 5 ult-k-£)

. dBult-k) _ _ MHE oo oo
S e TY(tkm)

() _ g %8 .
azsm . 'SE__ y(t-m)

(2.27)
b ~
-a g . Tul(t-k AHE ;
%?‘%TMWﬂiu%JJ-EWN+”

dRut-k) _
ot

- 19%35 r(t-1) )

o
@l
—
A e
—

where £=1,...,0r, m=0,...,ns, j=0,...,nQ, 7=0,...,nt
and

wy(£) = w(t)-q™"  u(t) (2.28)

If the feedforward regulator (2.9), with parameter
vector (2.19) is used, the signal derivatives are

ay(t) _ -q° . sBuf{t-k) % .
—%Q—J.—-ﬁarw'l(t-‘]) H ﬁgjr-'pwﬂt'k‘\])

aza(’it) ] +9;:§o (e 5 aZ:(:—k) <+ & e

(2.29)

where j=0,...1nQ and i=1,...,np. Derivatives with re-
spect to T(q™') are the same as in (2.27).

The filters in (2.27)-(2.29) depend on the true system.
If parameters from the model are used, this gives ap-
pzo§imate signal derivatives, which can be used in
y(t).

Step 1: System identification. Models with the para-
metrization (2.7) and (2.2} are updated using two re-
cursive prediction error algorithms for single output
systems, cf Ljung and Sgderstrom (1983), Stability
monitoring of C, H and G is provided. Normally, the
system is identified in open loop for the first 20
samples. This period is also used for filling the sig-
nal vectors, to be used in the signal derivative fil-
terings. This start-up procedure improves the tran-
sient behaviour of the regulator parameters.

Remarks: In the criterion (2.8), the equation (2.23c)
and the signal derivative_components (2.27)/(2.29),
the input u is delayed with respect to the output.
From simulations, this has been found to be important.
If the criterion

J = SELY()-r(t-k)) 2o (Bu(£))?)

is used (giving k=0 in (2.27)/(2.29) and (2.23c)), the -
algorithm diverges if large input penalties p are used. ;)
If k>1 is used, no problems occur. The time delay need

not equal the dealy in the true system. Under-estima-

tion of the delay creates no problem (unless the esti-

mate is zero). Since a{q-!) from (2.26) is a denomina-

tor polynomial of both the signal derivative filters

and the closed model (2.24),(2.25), stability of o must

be monitored. As suggested in Trulsson (1983), stabi-

1ity is checked both before the filterings

(2.27)/(2.29) are performed and when a new regulator

update has been made. These checks are necessary for

assuring a good behaviour of the algorithm.

3. SIMULATIONS

The examples of section 3.1 illustrate the behaviour
of systems controlled by adaptive criterion minimiza-
tion. Experience from simulations with this algorithm
are summarized in section 3.2, Performance is compared
with self-tuning control in section 3.3.

3.1 Disturbance decoupling using explicit criterion
minimization

Example 1. Consider the following system, where exact
disturbance decoupling is possible:

1 2

(1-0.5q" '-0.25q +o.125q'3)y(t) =
= g7 1(1-1.7¢71-0.197)u(t)+q " (2-2q7+0.5q”

(1-q'1+0.25q'2)w(t) = q"u(t)+(1+o.5q")v(t) (3.1)

2)u(t)

The disturbance v(t) is white noise with standard de-
viation 0.1. A regulator problem with r(t}=0 is con-
sidered. The goal is to cancel the influence of v(t)
on the main output y(t). An adaptive criterion mini-
mizing regulator of type (2,10) is used. Both mode}
and regulator (nr=2, ns=0, nQ=2) have the right para-
metrization. Figure 1 illustrates the uncontrolled
output. Figure 2 shows a typical behaviour of the
controlled output. Both model and regulator parameters
converge quickly. The regulator parameters are shown
in Figure 3. The first 20 samples are used for identi-
fication only.
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Figure 1. Output y(t) of the open system (3.1), with
gtandard deviation oy=0.33.
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Figure 2, Output of the adaptively controlled system.
The vertical scale is the same a&s in Fig. 1.
At time 500, oy is 0.008 and decreasing.
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Figure 3. The regulator parameters.

Example 2. The robustness of the criterion minimiza-
tion method, when applied to the non-minimum phase
system

(1+2q'1)u(t-2)+w(t-3)+(1+0.7q'1)e(t)
v(t) (3.2)

is investigated. For a regulator of type (2.10) the
optimal regulator degrees are nr=2, ns=0, nQ=2. When
v(t) and e?t) are uncorrelated white disturbances, the
regulator quickly converges to a minimum variance re-
gulator for non-minimum phase systems, combined with
an optimal feedforward.

(1-0.95¢" Ny (t)
w(t)

In the following simulations, v(t) and e{t) are white
noises with standard deviation 0.1 until time 100. At
that point, v(t)=w(t) becomes a square wave with amp-
1itude 1 and period 60. {An open system disturbance
of amplitude 17 would result from this.) In Figure 4
the system is controlled adaptively. An input penal-
ty p=1, 3(q”1)=1 is used in this and the following
simulations.

24

-0

250 ’ " 500

Figure U4, Output for the adaptively controlled sys-
tem, Model and regulator have correct para-
metrization.

We now investigate the sensitivity to under and over-

parametrization. In the simulation presented in Fig, 5,

- An auxiliary output model (2,2) is used. H, N and G
are assumed to be a first order., This might create
problems for the identification

- The delay k is underestimated in the filterings
(2.27): k=1, while the delay of the true system is 2.

~ The regulator is under-parametrized (nr=1,ns=0,nQ=1).

Figure 5. Output for under-parametrized regulator and
underestimated time delay.

In Figure 6 another variant is tested:

- The main output model (2.1) is over-parametrized.
Polynomial orders na=2, nb=4, nd=4 and nc=2 are used.

- An auxiliary output model is used, as above.

The delay k is overestimated in (2.27): k=3.

The regulator is over-parametrized (nr=3, ns=2, nQ=3).

’x

-2 4

250 500
Figure 6. Output for over-parametrized regulator and
model and overestimated time delay.

In this example at least, the robustness seems satis-
factory.

Example 3. A test is made with an extreme example:

The unstable non-minimum phase system

(1-297"41.5¢"2)y(t) = q (142974272 u(t)

+q'2(1+0.5q-1)w(t)+e(t)
w(t) = v(t) (3.3)

with poles in 1£0,711 and zeros in -1zi. Let both v(t)
and e(t) be white disturbances with standard deviation
0.1. The result of using the regulator (2.10), with
nr=2, ns=1, nQ=2 and p=1 is shown in Figure 7. A model
with the right parametrization is used. The standard
deviation is 0.25 in the interval [300,1000].

O-A}N WW’\I—-"\W’\——W
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Figure 7. Controlled output of the open loop unsteble
non-minimum phase system (3.3).

3.2 Summary of simulation results using adaptive cri-
terion minimization

A significant number of simulation experiments are de-
scribed in Sternad (1986). The following preliminary
conclusions have been drawn from them. Compare with
the requirements discussed in section 1.

o Feedforward and feedback control of non-minimum
phase systems works without problems. When regulator
and model have the right parametrization, conver-
gence to the LQG-optimal regulator is almost always
achieved,

0 SISO disturbance decoupling (w(t) affected by u(t-n))
is handTed without probTems.

0 Use of an input penalty improves the output beha-
viour in the transient phase.
0 Systems with unknown time delays give no problems if

the degree of the model B-polynomial is chosen large
enough.




o If the auxiliary output w(t) is corrupted by addi-
tional measurement noise (m{t) in (1.1)), the regu-
Tator compensates by relying less on this signal, as
it should,

o The influence of v(t) on y(t) can be effectively

eliminated even when v(t) is non-stationary without

explicitely using an Tntegrating regulator. (If
needed, the regulator converges to an integrating
one spontaneously.) The combined feeback-feedforward
strategy (2.10) has, so far, shown excellent robust-
ness properties. In many cases, control has been
good even when estimation has failed. For example,
if G in (2.10) is totally wrong (but stable), adap-
tion of R, S and Q may compensate for this. The
robustness of feedforward only (2.9}, while not bad,
is clearly inferior to (2.10). For robustness

reasons, (2.10) should be used Tnstead of (2.9).

Very good control results are achieved with under-

parametrized regulators. Explicit criterion minimi-

zation 1s an attractive approach to restricted com-
plexity optimal control problems. This has also been
observed by Goodwin and Ramdage (1979) and by Stan-

kovi¢ and Radenkovié (1984).

o Over-parametrized regulators present no problems.
Unstable common regulator factors are prevented by
the stability monitoring of a. Estimator windup in
(2.23) can be avoided by turning off the adaption if
some P-matrix diagonal element exceeds a bound.

0 Over-parametrization of the model raises no problems,
if a robust identification method is used. Severe
under-parametrization is sometimes dangerous. If,
for example, the auxiliary output w(t) is affected
by the input, while N(q~1)=0 in the model, the algo-
rithm often diverges.

o Divergence sometimes occurs when tight bounds are
used on the input. The optimization (Z.23) then has
problems with Jocal minima.

(=]

3.3 Comparison between explicit criterion minimization
and self-tuning controllers

Example 4. Control performance for the non-minimum
phase system

(1-.50" ")y (t)=(.5+1.25q" +.5q Z)u(t-1)+(2-1.5¢" Jw(t-2)
(1-0.9¢" w(t) = (1-0.3g"Nv(t)

is investigated, when v(t) is white noise. In Figure 8
,normalized input and output standard deviations ou/ov
and oy/ov are shown. The point (1) corresponds to the
open system. The curve from (1) to (2) is the result

of adaptive criterion minimization for different o,
measured in the time interval [500-1000]. The perform-
ance is the same for regulators (2.9) and (2.10). It

is virtually identical to the result of LQG-optimal
feedforward, calculated from (2.11)-(2.15).

Since B is unstable, a minimum variance self-tuner
will be unstable. It can be stabilized with an input
penaity p>0.17. The curve from (1) to (3) gives the
performance of a self-tuner with input penalty in the
interval {«,0.6], Performance is clearly worse than
with LQG or criterion minimization. The point (4) is
achieved by a self-tuner with p=0 and extenden predic-
tion horizon k=2, It almost achieves minimal oy, but
requires a large input. For comparision, the result of
minimum variance feedback {point (5)) and optimal
static feedforward u(t) = -0.24w{t) (point (6)) is
also shown,

oy (1)
av «(5)

(3)

0 1

Figure 8. ou/ov

For some non-minimum phase systems, self-tuners with
input penalty almost achieve LQG-optimal performance.
This is the case e.g for system (3.2). For others,
their performance is markedly worse. In general, self-
tuners have slightly better transient performance than
explicit criterion minimization, which has to adapt
more parameters (both 8, and er).

4, CONCLUSIONS

Robustness problems and the need of good modelling 1i-
mits the use of feedforward, despite the promise of
this control principle. Use of adaptive algorithms may
remove these limitations., Of the adaptive methods di-
scussed, the self-tuners are simple and will work well
in many cases. The explicit criterion minimization ap-
proach can be applied to a larger class of problems:
Optimal feedforward of non-minimum phase systems can
be realized easily. Feedforward signals influenced by
the input can be used without problems, Simulations
indicate that a combination of feedforward with feed-
back, optimized with adaptive criterion minimization,
has good robustness properties.
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