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Abstract—Connected vehicles in large numbers will be
expensive in terms of power and bandwidth unless ad-
vanced transmit schemes are employed. These would rely
on channel state information at transmitter (CSIT), which
rapidly becomes outdated for fading vehicular channels.
We here evaluate the predictor antenna concept, that solves
this problem by using antennas on the outside of vehicles,
with one extra antenna in front of the others. Its estimated
channel is a scaled prediction for the channels encountered
by rearward antennas when they reach that position.

We evaluate this concept on a large set of channel sound-
ing measurements from an urban environment. Recent
investigations of the correlations of these measurements
indicate that the average normalized mean squared errors
(NMSEs) of the complex valued channel predictions should
be around -10 dB for prediction horizons in space of
up to 3 wavelengths. This represents an extension of the
attainable prediction horizon by an order of magnitude,
as compared to Kalman or Wiener extrapolation of past
channel measurements. It represents an accuracy that
would enable e.g. accurate massive multiple input multiple
output (MIMO) downlink beamforming to vehicles.

We here perform predictions on a subset of the measure-
ments with good channel-to-estimation error power ratio
(SNR). The approximate true channels are here available
and we evaluate the performance on a validation data set.
The results confirm that the distribution of the NMSE, over
all investigated propagation environments, is close to that
obtained by correlation-based models and outperforms the
use of outdated channel measurements.

I. INTRODUCTION

Vehicular users and Intelligent Transport Systems are
important drivers for the development of 5G wireless
access [1], [2]. Future wireless networks will need to
support a large number of connected vehicles. This could
become very costly in terms of transmission resources
due to the required coverage and the rapid channel
variation caused by short-term fading: Power, bandwidth
and antenna resources are required to combat the effects
of fading by adequate power margins and diversity.

More power- and spectrally efficient transmission re-
quires channel state information at transmitter (CSIT).
This would, for example, enable the use of fast link
adaptation, fine-grained channel-aware scheduling, adap-
tive transmit beamforming, and Coordinated Multipoint
(CoMP) transmission. In particular, downlink multiple
input multiple output (MIMO) transmission that uses

large numbers of antenna elements (Massive MIMO
and coherent joint processing CoMP) would increase
the spectral efficiency, the power efficiency, the area
coverage/transmit range as well as the link stability
[3], [4]. However, channel measurements would become
outdated for vehicular users due to the rapid channel
variations and the latencies involved in transmission
control (obtaining, distributing and using channel mea-
surements). CSIT that captures the short-term fading is
not used efficiently today for vehicular users.

Could channel prediction provide reliable CSIT for
vehicular users? That depends on the carrier frequency,
the prediction horizon and the velocity. The short-term
fading of radio channels can to some extent be predicted,
based on past measurements of the channel [5]–[7].
A required prediction horizon of L seconds (due to the
transmission control latency) is equivalent to a prediction
over space expressed in terms of carrier wavelengths:

Lfd =
Lv

λ
=
Lvfc
c

[wavelengths] , (1)

where fd is the maximal Doppler frequency in Hz, v is
the vehicle velocity in m/s, λ is the carrier wavelength in
m, c is the speed of light and fc is the carrier frequency.
The relation is illustrated by Fig. 1 for L = 5 ms (left)
and L = 1 ms (right).
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Fig. 1. Required prediction range in carrier wavelengths corresponding
to a prediction horizon of 5 ms (left) and 1 ms (right), as a function
of the vehicle velocity and the carrier frequency.

The transmission control delay that determines L is
at least 5 ms in 4G LTE systems today. It could be
reduced towards 1 ms in latency-optimized 5G new radio978-1-5386-3531-5/17/$31.00 c© 2017 IEEE



standards but will likely be higher if multi-site cooper-
ative transmission is utilized. Transmission to vehicles
that is not designed specifically for short distances is
likely to mainly use frequencies above 1 GHz and below
6 GHz, with new spectral bands around 3.5 GHz being of
interest for 5G. A channel predictor for vehicular users
in evolved 4G and 5G systems would therefore need to
handle prediction horizons in space of 0.5λ− 3λ.

Even the best available schemes for channel prediction
that are based on past measurements, namely Kalman
and Wiener prediction, do not provide adequate accuracy
for Lfd > 0.2λ − 0.3λ for non-line-of-sight channels
[6], [8], [9]. Methods for longer prediction horizons have
been suggested, but they fail to work when evaluated on
channel measurements.1

We here focus on improving the predictability of
the vehicular channel by proposing a modified antenna
system at the vehicle. We have called this framework the
predictor antenna concept:

• First, we assume that external antennas are placed
on the outside of the vehicle, in this case on the
roof. This will in itself improve the channel by
avoiding the outdoor-to-indoor propagation loss. In-
vehicle users can then be served by local (vehicular)
relay nodes [10], or by WLAN.

• Second, we propose to place one extra antenna
at sufficient distance ∆d ≥ Lmaxvmax ahead in
the direction of movement relative to the nearest
antenna behind it, where Lmax is the longest re-
quired prediction horizon and vmax is the maximal
vehicle velocity, see Fig. 2. This antenna is called
the predictor antenna.

The electromagnetic field forms a standing wave pat-
tern, and the vehicle moves through this pattern. Refer-
ence signal-based filter estimates or smoothing estimates
of the channel to the predictor antenna can be used
to estimate this pattern. By sampling the wavefield in
advance, the estimated channel can then be used to
predict the channels to be encountered by the rearward
antennas when they reach that position. The prediction
accuracy is with this scheme no longer limited by the
channel correlation properties in time as measured at one
single antenna. It will instead depend on the correlation
between the channel at the predictor antenna and the
channel encountered later by a rearward antenna, when it
has reached that position. Thereby, CSIT can be obtained
for e.g. all antennas of a linear array that are placed
behind the predictor antenna.2

1One such class of methods is based on the extrapolation of a
sparse set of channel impulse response components that are assumed
to vary as sinusoids. Unfortunately, the resulting algorithms tend to
perform somewhat worse than Kalman predictors that are based on
estimated autoregressive models, when applied to measured data. One
such comparison can be found in [4].

2The predictor antenna itself can be utilised for uplink and downlink
communication, but its channel state will be less well predicted than
that of other antennas located behind it.
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Fig. 2. Multiple antennas on the vehicle roof, where the one in front
may act as a predictor antenna.

The predictor antenna concept was proposed in [8],
and preliminary experimental correlations were reported
therein for two measurement locations, using two dipole
antennas on the roof of a vehicle. A similar scheme for
time division duplex (TDD) systems was proposed in
[11]. Much higher correlations, but still only from two
measurement locations, were obtained in [12] for two
monopole antennas placed on a flat metal sheet on a
vehicle roof.

In [13], the correlation statistics was assessed for a
very large set of measurements at vehicular velocities
at 2.53 GHz, obtained in a multitude of urban fading
environments in downtown Dresden, Germany. These
measurements are described in Section IV-A below.

A large part of the measurements contain a sig-
nificant amount of noise, for which the true, noise-
free, channels are unavailable. Therefore, we in [13]
assessed the performance indirectly, via a correlation-
based statistical model that is outlined in Section II
below. The measured correlations indicate that on aver-
age over all measurement locations, a normalized mean
squared error (NMSE) of −11 dB can be obtained for
prediction horizons of 0.25λ and −8.5 dB for horizons
of 3λ. This represents an order-of-magnitude increase
of the attainable prediction horizon as compared to the
extrapolation of time-series.

In the present paper, we focus on a subset of our
measurements that have good channel-to-estimation error
power ratio (SNR). The estimated channels for the
rearward antennas can here approximately be regarded
as the true channels, which can be compared to the
predictions. We perform and evaluate predictor-antenna
based channel prediction, using an algorithm outlined in
Section III. The predictor is adjusted based on data from
an estimation interval and predictions are then performed
in a later prediction interval. Results are presented in
Section IV and are compared to the estimates from the
statistical performance model of [13].

II. PERFORMANCE MODEL

A. Predictor Design and NMSE Performance

The complex scalar channel hm for the main antenna,
at L seconds into the future, is predicted by multiplying
the already estimated, and appropriately delayed, channel



hp at the predictor antenna by a complex-valued coeffi-
cient ah according to

ĥm(t+ L) = ahĥp(t+ L−∆t|t) . (2)

Here, t is the current time, ĥp(t + L − ∆t|t) is a
smoothing estimate of hp based on noisy measurements
up to t and ∆t is the time difference between the
predictor antenna and main antenna passing through the
same position in space. Prediction horizons L ≤ ∆t can
be accommodated without extrapolating ĥp.

Noisy estimates of the main antenna channel and of
the predictor antenna channel are assumed unbiased and
are here described by the following simplified model

ĥp(t|t− L+ ∆t)
∆
= yp(t) = hp(t) + ep(t), (3)
ym(t) = hm(t) + em(t), (4)

where the channels, hp(t) and hm(t), and the estimation
errors, ep(t) and em(t), are assumed zero mean. Then,
the mean squared error (MSE)-optimal predictor gain ah
in (2) can be derived assuming that the estimation errors
are uncorrelated with the channels and are mutually
uncorrelated, E[em(t)e∗p(t− τ)] = 0.

The MSE-optimal predictor gain is then given by

ah =
c

σ2
yp

, (5)

where

c = E[hm(t)h∗p(t−∆t)] = E[hm(t)y∗p(t−∆t)]

= E[ym(t)y∗p(t−∆t)]
(6)

is the maximal correlation between the two channels
and σ2

yp
= E[yp(t)y∗p(t)] is the average power of the

predictor antenna channel estimates.
The theoretical NMSE E |ĥm(t)− hm(t)|2/E |hm(t)|2,

given the prediction coefficient in (5), is

NMSE = 1− |b|2 γp
(1 + γp)

. (7)

where γp = σ2
p/σ

2
ep is the channel-to-estimation error

power ratio (here denoted SNR) of the predictor antenna
channel and σ2

ep is the power of the estimation error ep(t)
in (3). The normalized physical correlation b between the
predictor antenna and the main antenna is defined by

b =
c

σmσp
, (8)

where σm and σp are the standard deviations of hm(t)
and hp(t). This normalized correlation lies in the interval
b ∈ [−1, 1]. Ideally, b = 1, but the correlation will
be lower in practice. The decorrelation could be caused
by the movement of the vehicle itself which affects the
wavefield, reflections from moving nearby vehicles, and
also lateral and curved motion of the vehicle which affect
the antenna paths, so that they do not coincide.

The theoretical NMSE (7) is derived in [13] and is
visualized in Fig. 3.

-10 0 10 20 30 40 50

γp [dB]

-20

-10

0

N
M
S
E
[d
B
]

Fig. 3. The theoretical NMSE as a function of the channel-to-
estimation error power ratio (SNR) of the predictor channel measure-
ments, γp, by (7). The different lines show the relation for the physical
correlations, b = 1, solid line ( ), b = 0.99, dashed line ( ),
b = 0.98, dashed-dotted line ( ) and b = 0.94, dotted line ( ).
Note the saturation of the NMSE at high γp when b < 1.

B. Practical Issues

To obtain a prediction (2) according to the theory
above, reference-signal based estimates of the predictor
antenna channel can be used. These can be filtered or
smoothed to reduce the estimation error in (3). Estimates
of ah according to (5) and of ∆t in (2) are also required.

We assume that the radio environment around one
position in space is stationary during short intervals.
From this assumption, which will be investigated and
validated in Section IV, it follows that the correlation c
between antennas by (6) should be fairly constant during
the same interval. This would allow the predictor antenna
concept to be practically implemented by estimating the
prediction gain ah (5) from measurements in the first
part of the interval, the estimation interval. The predictor
can then be applied according to (2) during a following
prediction interval.

The delay ∆t in (2) is directly related to the movement
of the vehicle. For a constant velocity v, ∆t = ∆d/v
where ∆d is the antennas distance, which is assumed
known. The velocity of the vehicle and ∆t can therefore
be estimated from the correlations peak of E[ym(t)y∗p(t−
τ)], which should occur at τ = ∆t = ∆d/v.

III. PREDICTOR ALGORITHM

Based on the discussion in Subsection II-B, we here
outline an algorithm of low computational complexity.
It consists of a slow scale part and a fast scale part. An
overview is shown in Fig. 4.

The slow scale part estimates the prediction coeffi-
cient ah (5) and the velocity v from buffered channel
measurements from the predictor antenna and the other
antennas. The prediction coefficient is estimated from
the maximum antenna correlation and the velocity from
the time offset between the antennas at which the cor-
relation is maximized [13]. The slow scale part also
selects coefficients of a lowpass finite impulse response
(FIR) filter which is applied at the fast time scale to
suppress high-frequency estimation errors in yp(t) and
ym(t) above an estimated Doppler spectral bandwidth,
see the discussion below. The parameters ah, v and
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Fig. 4. Flow chart of the main components of the proposed channel
prediction algorithm.

filter coefficients are utilized by the fast scale processing
during the subsequent prediction interval after which
new parameters are estimated by the slow scale part.

The fast scale part interpolates and filters the channels
from all antennas and then predicts the channels of
the main antennas. Channel interpolation is optionally
performed e.g. with spline interpolation to provide a
dense and evenly sampled sequence on which the latest
adjusted FIR filter can be applied. Filtered predictor
antenna channel estimates are used to predict all the
main channels L seconds later, by (2). The filtered
measurements for all relevant antennas are also copied
to the buffer to be used at the next iteration of the slow
scale part.

We suggest the use of a lowpass FIR filter of order M
with linear phase and unit gain in its passband. In [13],
the adjustment of the passband to a measured Doppler
spectrum is discussed. Such a filter introduces a delay
of M/2 samples so it represents a smoother: It has to
be applied to measurements M/2 samples in advance of
the time position of the output. (With a filter with unit
passband gain and no net phase shift, the models (3),
(4) will then be reasonable for the smoothed estimates.)
According to (2), the smoothing lag of M/2 samples
should not exceed a time interval ∆t−L when filtering
the predictor antenna signal, so the order M of the filter
for hp(t) should be adjusted to the required prediction
horizon L.

The combined length of the estimation interval and
the following prediction interval should not extend be-
yond the duration for which the radio environment is
stationary as this would reduce the antenna correlation.

The proposed algorithm also requires an initiation
process (not shown in Fig. 4). During start-up, one slow
scale iteration is required to generate the first slow-scale
estimates based on buffered unfiltered measurements.

IV. RESULTS

A. Channel Measurements

The measurements were obtained by driving in down-
town Dresden, Germany, with velocities between 0 km/h
to 50 km/h. The physical layer parameters that were used

are in close compliance with the 3GPP/LTE standard.
Since the focus of the current paper is on channel esti-
mation and prediction, only the demodulation reference
symbols are evaluated. The channel was measured in the
uplink direction using demodulation reference symbols
transmitted every 0.5 ms by roof-mounted antennas on
the vehicle.

The orthogonal frequency division multiplexing
(OFDM) signals, transmitted at 2.53 GHz with 5.4 MHz
bandwidth and 15 kHz subcarrier spacing, were si-
multaneously received and recorded at up to 16 base
stations (BSs) located on five sites with up to six-
fold sectorization, located 100 m - 1000 m from the
vehicle. Each BS was equipped with a two element,
cross-polarized KATHREIN 80010541 antenna which
has 58◦ horizontal and 6.1◦ vertical half power beam
width. Time and frequency synchronization of the BSs
was done through GPS fed reference normals.

A linear array of four monopole antennas was
positioned on the roof of a Volkswagen T4 van
in a straight line in the forward-backward direc-
tion as shown in Fig. 5. Different antenna distances
∆d= {0.25, 0.5, 1, 2, 3}λ were used during different
measurement campaigns. A metal sheet was used below
the antennas in order to have an idealized local surround-
ing that was independent of the particular type of vehicle.

At the BSs, snapshots of 640 ms duration of the
digital received base band signal were stored after
down-conversion, analogue-digital conversion, sample
rate conversion, and filtering. One snapshot was captured
about every minute. All other receiver algorithms such
as synchronization, carrier frequency offset compensa-
tion, OFDM demodulation and channel estimation were
applied offline.

The reference signals from the four antennas of the
vehicle used separate regularly spaced sets of 15 kHz
subcarriers, with reference signals from each antenna
placed on every 4:th subcarrier.3 With a channel esti-
mation period of 0.5 ms, this resulted in 1280 channel
estimates over time on each of 90 subcarriers, each
separated by 60 kHz, per snapshot and antenna.

The measurements were affected by hardware im-
pairments such as gain imbalances on different trans-
mit/receiver paths and phase noise. Thus, a compound
channel including hardware effects, antenna effects, and
the wireless channel was measured.

The channel measurements were obtained in a wide
variety of propagation environments, including narrow
and wide roads with traffic, intersections, dense urban
environments and residential areas.

3That different antennas use reference signals at different subcarriers
will cause a decorrelation between the predictor antenna channel and
the measured channels at the rearward antennas. This decorrelation is
small between adjacent antennas, much smaller than the decorrelation
by other causes. The effect on the results below is a small increase of
the attained NMSE.



Fig. 5. The Volkswagen T4 van on the left hand side and zoomed into
the antenna array on the roof on the right hand side.

B. Channel Measurement Selection

Four subsets of the measurements were removed in
the study performed here.

• Some measurements were affected by distortions of
unknown cause, that generate periodical spikes in
the Doppler spectra.

• Second, measurements at vehicle velocity v = 0
were not used.

• Third, only measurements sets where at least 350
time samples are sampled after the main antenna
has reached the initial position of the predictor
antenna were used.

• Finally, the performance evaluation is based on
the approximation hm(t) = ym(t). Therefore only
measurements with SNR ≥ 10 dB (before filtering)
for all antennas were used.

The resulting numbers of available, relevant and utilized
measurements (measurement location-base station pairs)
are shown in Table I. The evaluation in [13] was per-
formed for a larger set, denoted ”Long” in Table I, where
only the first three subsets were removed.

TABLE I
NUMBER OF MEASUREMENTS FOR DIFFERENT ANTENNA

DISTANCES ∆d

Campaign Available Relevant† Long* SNR ≥ 10 dB

∆d = 0.25λ 459 115 115 77
∆d = 0.5λ 490 305 305 207
∆d = 1λ 519 355 355 220
∆d = 2λ 577 358 348 265
∆d = 3λ 543 346 322 221
† Measurements for vehicle velocities v > 0 and with the variance

of the high-frequency tails of the Doppler spectra less the 0.5 dB.
* Measurements that fulfil † and with velocities so that at least 350

time samples are sampled after the main antenna has reached the
initial position of the predictor antenna.

C. Algorithm Performance

The algorithm described in Section III was applied to
the measurement set described in Subsection IV-A. No
interpolation was applied to the measurements, as the
channel sampling (0.5 ms) is already regular and dense.

Half of the available measurements, 0.32 s, are used as
the estimation interval and the other half as the prediction
interval.

All pairs of adjacent vehicle antennas were used as
predictor antenna - main (rearward) antenna pairs. The
errors in our predictions are measured as the differences
between the predictions and the FIR smoothed channel
measurements of the rearward antenna at the correspond-
ing position. FIR smoothers of order 20 were applied to
both the predictor antenna and the main antenna channel
estimates. The FIR smoothing improved the SNR of
the channel by approximately 9 dB in general for our
measurements, so the SNR γm = σ2

m/σ
2
em ≥ 19 dB for

most utilized measurements. Prediction NMSE estimates
above −16 dB were therefore only little perturbed by
remaining estimation errors for the rear antenna.

Fig. 6 shows the NMSE distribution when the predic-
tion antenna is applied on the 220 measurements selected
in Subsection IV-B for antenna distance ∆d = 1λ.
The channels at all subcarriers are predicted individually.
The NMSE performance is evaluated by four different
methods:

1) Optimal: A statistical method based on the optimal
predictor coefficient. Using the theory in [13], we calcu-
late correlation-based estimates of the NMSE that should
be attained when using an optimal data-based prediction
coefficient.4 We will refer to this case as the optimal
case.

2) Theory: A statistical method that includes the
effects of nonstationarity between the estimation interval
(the first half of the measurement set) and the prediction
interval (the second half). The optimal prediction co-
efficient estimated within the prediction interval differs
from the prediction coefficient that can be estimated in
the estimation interval. This corresponds to a reduction
of prediction performance. We refer to this case as the
theoretical case.

The nominal prediction horizon for the optimal and
theory case is 1λ. (As no actual predictions are produced
by these methods, we do not have any defined prediction
horizon in time.) The antenna distance 1λ allows for
predictions of up to λ/v s in time.

3) Simulation: The performance of the algorithm in
Section III using prediction horizons of 8 ms and 24 ms.
We will refer to this case as the simulation case.

4) Outdated: Uses the latest channel measurement
from the main antenna as prediction, ĥm(t+L) = ym(t).

Fig. 6 shows that there are only small difference be-
tween the theory case and the simulation. Both perform-
ing slightly worse than the optimal case. These results
shows that the predictor antenna concept is practically
implementable as estimating the prediction coefficient
in advance (Theory and Simulation) does not in general
reduce the prediction accuracy significantly, as compared
to using the optimal one (Optimal).

4While the corresponding results in [13] were based on the entire
length of 0.64 s of the available measurement sets, the present ones
are based on statistics from the second half only.
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Fig. 6. NMSE distribution for measurement sets with antenna distance
∆d = 1λ and prediction horizon L = 8 ms for the theoretically opti-
mal predictor coefficient ( ), theoretically pre-estimated predictor
coefficient ( ) and simulated predictions ( ).
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Fig. 7. NMSE distribution for measurement sets with antenna distance
∆d = 1 λ, prediction horizon L = 8 ms and v > 25 km/h for the
theoretically optimal predictor coefficient ( ), theoretically pre-
estimated predictor coefficient ( ), simulated predictions ( )
and outdated channel measurements ( ).

In [13] it was found that the right-hand tails of the
NMSE distribution were almost eliminated when looking
at measurements at which the velocity was 25 km/h or
higher. In Fig. 7, we see the same NMSE distribution as
in Fig. 6 but only for the measurements at which the ve-
locity is 25 km/h or higher. Almost all of the predictions
with an NMSE above −7 dB have here disappeared.5

The figure also shows the uselessly bad NMSE obtained
when the outdated channel measurements are used as
8 ms predictions.

The results in Fig. 6 and Fig. 7 are based on mea-
surement with an antenna separation of ∆d = 1λ and
can provide a prediction horizon in time of at least
8 ms for velocities up to 50 km/h at 2.53 GHz. The
corresponding NMSE distributions for the 221 utilized
measurements with antenna separation of ∆d = 3λ are
shown in Fig. 8 and Fig. 9. These measurement provide
a prediction horizon of at least 24 ms up to 50 km/h.

5The cause of the reduced performance in some of the cases at
lower velocities is under current investigation. It should not be a major
problem as there are other solutions that work well for low velocities,
for example Kalman predictions.
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Fig. 8. NMSE distribution for measurement sets with antenna distance
∆d = 3λ and prediction horizon L = 24 ms for the theoretically op-
timal predictor coefficient ( ), theoretically pre-estimated predictor
coefficient ( ), simulated predictions ( ).

−20 −15 −10 −5 0 5
0

2

4

6

8
·10−2

NMSE [dB]

D
is

tr
ib

ut
io

n

Optimal
Theory
Simulation

Fig. 9. NMSE distribution for measurement sets with antenna distance
∆d = 3λ, prediction horizon L = 24 ms and v > 25 km/h for the
theoretically optimal predictor coefficient ( ), theoretically pre-
estimated predictor coefficient ( ), simulated predictions ( ).

Although the shape of the NMSE distribution is dif-
ferent for the measurements with ∆d = 3λ as compared
to ∆d = 1λ, the trends are the same between the
methods and also the effect of placing a lower limit
on velocities. This also applies to measurements with
∆d = {0.25, 0.5, 2}λ (not shown here), for which
statistics for the optimal case was presented in [13].

V. DISCUSSION AND CONCLUSIONS

We have evaluated the use of predictor antennas
directly on a large set of channels that were obtained by
channel sounding in different urban propagation environ-
ments. We found that the method works well at medium
vehicular velocities of 25-50 km/h for OFDM channels
at 2.53 GHz in non-line-of-sight as well as line-of-sight
environments. The results confirm that the distribution of
the NMSE is close to that indicated by the correlation-
based model that was introduced in [13].

The obtained prediction accuracy, typically a NMSE
of −13 dB to −7 dB, is of a quality that could support
many important adaptive transmit methods, but not all
schemes that require accurate CSIT. For example, it



would not support single-antenna link adaptation that
uses very high order modulation.

Still, the obtained accuracy will support the most
important envisioned schemes that promise large gains.
In particular, as illustrated in [2], the use of coher-
ent downlink transmission from massive antenna arrays
would greatly increase both the power efficiency and
the spectral efficiency when serving connected vehicles.
It is here of interest that coherent transmit beamform-
ing is quite robust to channel estimation errors, and
can utilize imperfect CSIT. The NMSE of a channel
formed by maximum ratio transmit beamforming that
uses N antennas with equal average channel powers
and equal channel estimation error accuracy will be
a factor 1/N of the individual channel NMSEs [14].
For example, if we predict downlink channels from 64
antenna elements with the here obtained typical average
NMSEs of −10 dB, the combined beamformed downlink
transmit channel should be known with an NMSE of
approximately −28 dB.

The predictor antenna scheme is quite flexible, and
can be used in both TDD and frequency division duplex
(FDD) systems.

In FDD systems, the downlink channel would be
estimated based on downlink reference signals.

For TDD downlinks, the predictor antenna would
transmit uplink reference signals and the downlink chan-
nels could be obtained at the base station by channel
reciprocity. The downlink frames, where no uplink ref-
erence signals can be received, should then not be too
long. A downlink frame duration corresponding to a
movement of more than 0.4 wavelength in space will
generate difficulties for the channel interpolation, unless
advanced interpolation schemes are used. This is under
current investigation.

To summarize, the predictor antenna concept has been
found to work well, when using a rather straightforward
implementation with low complexity. With such antenna
systems, connected vehicles could be served in a spec-
trally efficient and power efficient way by 5G wireless
infrastructure.
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