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Abstract
A sensor computes a state estimate of a closed loop linear control system. The state estimate is
packetized and sent to the controller in the receiver block over a randomly time-varying (fading) packet
dropping link. The receiver sends an ACK/NACK packet to the transmitter over a perfect feedback
channel. The energy used in packet transmission depletes a battery of limited capacity at the sensor. The
battery is replenished by an energy harvester, which has access to a source of everlasting but random
harvested energy. Further, the energy harvesting and the fading channel gain processes are described
as finite-state Markov chain models. The objective is to design an optimal energy allocation policy at
the transmitter and an optimal control policy at the receiver so that an average infinite horizon linear
quadratic Gaussian (LQG) control cost is minimised. It is shown that a separation principle holds,
the optimal controller is linear, the Kalman filter at the sensor is optimal, and the optimal energy
allocation policy at the transmitter can be obtained via solving the Bellman dynamic programming
equation to a Markov decision process based stochastic control problem. A Q-learning algorithm is used
to approximate the optimal energy allocation policy. Numerical simulations illustrate that the dynamic
programming based policies outperform the simple heuristic policies.
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1 Introduction

Wireless sensor systems have become much more powerful
than their early predecessors, affordable and compact. They are
increasingly being used in many areas such as environmental
data gathering Akyildiz et al. [2002], industrial process moni-
toring Gungor and Hancke [2009], mobile robots Chong and
Kumar [2003], and for monitoring of smart electricity grids
Gungor et al. [2010]. Since sensors are often located in remote
places, they cannot be connected to reliable power sources and
are instead powered by batteries. In some cases, this indepen-
dence from the power grid may also be beneficial to simplify
the installation process or system changes.

When relying on limited energy sources and hence using only
limited energy for wireless communication, transmitted infor-
mation might be lost randomly due to noise, interference and
fading in the wireless communication channel. It is important to
study the effects of such unreliable communication channels on
filtering and control. An important line of research in this area
started with Sinopoli et al. [2004a], where a Kalman filter rely-
ing on measurements received via a packet dropping channel,
was considered. It was shown that the resulting Kalman filter
and its error covariance matrix are time-varying and stochastic.
The mean state estimation error covariance is guaranteed to
be bounded if the probability of receiving a packet is above
a lower bound. These results were later extended to derive
conditions on the packet arrival rate to guarantee the stability
of the Kalman filter under various generalisations of the under-
lying model, transmission scheme, multiple sensors, delayed
systems, and with more complex transmitters capable of trans-
mission power control etc. in Liu and Goldsmith [2004], Xu
and Hespanha [2005], Huang and Dey [2007], Epstein et al.
[2008], Schenato [2008], Mo and Sinopoli [2008], Quevedo
et al. [2012]. An overview of some of the earlier results can
be found in Schenato et al. [2007]. Other researchers have
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studied how to minimise the expected estimation error, that is,
the performance of the Kalman filter, see for instance Quevedo
et al. [2010], Shi et al. [2011].

The impact of packet dropping links in closed loop control
systems was also investigated. For example, Sinopoli et al.
[2004b] studied a closed loop control system with a linear
Gaussian quadratic optimal controller. If the sensor receives
perfect feedback about the packet loss process (TCP-like case),
the separation principle holds. Further, there exists a critical
arrival probability below which the resulting optimal controller
fails to stabilize the system. Gatsis et al. [2014] studied a sim-
ilar system but assumed that the transmission energy can be
chosen in order to influence the packet arrival probability, and
derived an optimal transmission policy, which minimises the
infinite horizon cost combining transmission power costs and
a quadratic control cost. Sinopoli et al. [2005a] assumed that
the control signal is also transmitted via an unreliable commu-
nication channel. If perfect channel feedback is available at the
actuator, the separation principle holds and the optimal LQG
control is linear. However, without perfect channel feedback,
the separation principle does not hold and the resulting optimal
controller is in general nonlinear - see Sinopoli et al. [2005c]
(apart from some special cases, Sinopoli et al. [2005b]).

Wireless sensor systems/networks are often placed in an en-
vironment where energy can be harvested using solar pan-
els, wind mills or other devices capable of harvesting vibra-
tional/mechanical energy. The harvested energy can then be
used to recharge the battery or immediately transmit data.
Since most renewable energy sources are unreliable and hard
to predict for longer time horizons, finding an optimal en-
ergy allocation policy in achieving a long-term performance
measure is a challenging task. Recent literature focusing on
wireless communications with energy harvesting transmitters
have investigated optimal energy allocation policies in order
to optimize various metrics related to information transmis-
sion such as throughput or delay etc. For example, in Sharma



et al. [2010], the authors studied energy allocation policies in
a single sensor node for throughput maximization and mean
delay minimization. Ho and Zhang [2012] studied the optimal
energy allocation policy to maximize the mutual information of
a wireless link. The derivation of an optimal packet scheduling
problem for a single-user energy harvesting wireless communi-
cation system (minimizing the delivery time for all packets) can
be found in Yang et al. [2012]. Optimal off-line transmission
policies assuming limited battery capacities are investigated
in Tutuncuoglu and Yener [2012]. These results are further
generalized in Ozel et al. [2011] considering fading channels
and optimal online policies.

In the context of estimation and control of dynamical sys-
tems, estimation of a dynamical system with a packet dropping
link under energy harvesting constraints was first studied in
Nourian et al. [2014a], where a sensor equipped with an energy
harvester and a rechargeable battery sends its measurements
over a packet dropping link to the receiver. Optimal trans-
mission energy allocation policies to minimise the expected
error covariance in the presence of perfect or imperfect channel
feedback were derived. In Nourian et al. [2014b], the authors
assumed a smart sensor, which at every time step can send
either a quantized version of its local state estimate or its local
innovation via a packet dropping link with a possibly imperfect
packet acknowledgement link.

We extend the results of Nourian et al. [2014a] to a closed loop
control system with a packet dropping link between the sensor
and the controller at the receiver. We study the optimal energy
allocation policy at the transmitter and the optimal control de-
sign at the receiver such that an infinite-time horizon average
LQG control cost is minimised. The “smart” sensor performs
state estimation of the observed linear dynamical system and
transmits the current state estimate (as opposed to the measure-
ments as in Nourian et al. [2014a]) to the receiver via a packet
dropping link. This transmission strategy is chosen based on
the results in Gupta et al. [2007], where it was shown that it
is optimal to send estimates over packet dropping links. The
receiver sends an acknowledgement whether it has received the
state estimate to the transmitter. In contrast to Sinopoli et al.
[2004b, 2005a,c,b], the transmitter at the sensor is equipped
with a rechargeable battery of finite capacity and an energy
harvester, and can choose how much energy should be used for
transmission. The transmission energy is limited by the avail-
able energy at the battery, which fluctuates randomly due to
the stochastic nature of harvested energy. It is assumed that the
time varying fading channel gain and the harvested energy pro-
cesses are described by independent finite-state Markov chains.
Hence, the probability of dropping the packet depends on the
used transmission energy and the current channel gain and is,
therefore, time varying (in contrast to the fixed probabilities
considered in Sinopoli et al. [2004b, 2005a,c,b]). This depen-
dence of the packet loss probability on the random channel
gain forces the transmitter to find a tradeoff amongst spending
energy to transmit the current state estimate, keeping energy in
reserve for future transmissions in good channel conditions, as
well as reducing energy overflow due to a finite battery capac-
ity. It is shown that the separation principle holds and the opti-
mal controller is linear when the receiver acknowledgement is
received without error. The optimal energy allocation policy to
determine the energy used to transmit the current state estimate
to the receiver is obtained by solving an average cost optimal
Bellman equation. In the case where environmental parameters
such as the transition probabilities of the underlying Markov
chains describing the energy harvesting and fading channel
gains are unknown, a Q-learning based suboptimal algorithm
is also provided. The optimal energy allocation algorithm and
the Q-learning based algorithm are compared to various other
strategies, such as sending the current measurement instead of
the state estimate, and two suboptimal heuristic transmission
energy allocation policies.
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Figure 1. Scheme of system model

Section 2 describes the system model, and the optimal con-
trol and energy allocation policies are described in Section 3.
Section 4 describes the Q-learning algorithm and Section 5 de-
scribes two suboptimal heuristic energy allocation policies and
all policies are compared via numerical studies in Section 6,
followed by concluding remarks in Section 7.

2 System Model

A scheme of the system model can be found in Figure 1. A
detailed description of the components is given below.

2.1 Plant Model

The plant is modeled as a simple linear system with state xk ∈
R

n, process noise wk ∈ Rn, and a control input uk ∈ Rp: xk+1 =
Axk + Buk + wk, where it is assumed that (A,B) is stabilizable.
The process noise is assumed to be i.i.d. Gaussian noise with
zero mean and covariance matrix M = E{wkwT

k
} ≥ 0. The

initial state x0 is also Gaussian with mean x̄0, and covariance
P̄0, and A, B are matrices of appropriate dimensions. Similar to

Schenato et al. [2007], we also assume that (A, B) and (A,M
1
2 )

are controllable.

2.2 Sensor

The sensor produces a noisy measurement of the state given
by yk = Cxk + vk where (A,C) is assumed to be observable,
yk ∈ R

q, and vk ∈ R
q is assumed to be i.i.d. Gaussian noise

(independent of x0 and wk) with zero mean and covariance
matrix N = E{vkvT

k
} > 0.

2.3 State Estimator at the Transmitter

We assume a smart sensor with computational capability, and
that the sensor transmitter forwards a state estimate to the
remote estimator/controller. The sensor measurements are used
at the transmitter to estimate the current state xk based on the
information set Ik = {x̂0,yl,γl−1 : 1 ≤ l ≤ k}, where γl denotes
the packet loss process in the sensor-receiver communication
link as well as the channel feedback acknowledgment (due to
perfect channel feedback assumed in this work), which will be
discussed in detail in Section 2.5. Since the transmitter knows
the exact packet loss sequence, it can reconstruct the time-
varying Kalman filter at the receiver, and the exact control input
applied to the plant, which is calculated at the receiver based on
the receiver state estimate. The estimate at the transmitter is



x̂k :=x̂k|k = E {xk |Ik} = x̂k|k−1 + Kk(yk −Cx̂k|k−1), (1)

x̂k+1|k =E {xk+1|Ik} = Ax̂k|k + Buk. (2)

The matrix Kk should be chosen such that it minimises the
error covariance matrix of the state estimation error. The error
covariance matrices at the transmitter are

Pk|k =E
{

(xk − x̂k|k)(xk − x̂k|k)T|Ik

}

, (3)

Pk+1 :=Pk+1|k = E

{

(xk+1 − x̂k+1|k)(xk+1 − x̂k+1|k)T|Ik

}

. (4)

With ek|k = xk − x̂k|k and ek+1|k = xk+1 − x̂k+1|k = Aek|k + wk, this
yields

Pk+1 =E
{

(Aek|k + wk)(Aek|k + wk)T
}

= APk|kAT + M. (5)

Further, choosing Kk = Pk|k−1CT
(

CPk|k−1CT + N
)−1

such that

x̂k = x̂k|k−1 + Pk|k−1CT
(

CPk|k−1CT + N
)−1

(yk −Cx̂k|k−1) leads to

the minimal error covariance matrix after updating the estimate
Pk|k in the standard form

Pk|k =Pk−1 − Pk−1CT
(

CPk−1CT + N
)−1

CPk−1. (6)

The initial covariance matrix is given by P0 = P̄0. Due
to the standard controllability and observability conditions,
we assume that the Kalman filter at the transmitter has been
running long enough to reach a steady state such that the error
covariance matrix at the transmitter is given by P∞, which is
the steady state estimation error covariance Pk|k as k → ∞.

2.4 Energy Harvester and Battery Dynamics

The transmitter has a rechargeable battery equipped with an
energy harvester, that can gather energy from the environment.
The amount of energy available to be harvested at time slot k,
denoted by Hk, is unpredictable and is described as a stationary
first-order homogeneous finite-state Markov process, Ho et al.
[2010]. The energy harvested at time slot k is stored in the
battery and can be used for data transmission. In this paper,
we assume that the energy used for sensing and computational
purposes at the transmitter are negligible compared to the
amount of energy required for transmission. This is particularly
true if data is transmitted over a wireless channel to a receiver
that is a long distance away. The amount of stored energy in the
battery at time k, Bk, evolves according to

Bk+1 = min{Bk − Ek + Hk+1; B̄} (7)

with 0 ≤ B0 ≤ B̄ and where B̄ is the battery capacity, and Ek is
the energy used for packet transmission during the k-th slot.

2.5 Communication Channel

A wireless communication channel is used to transmit the state
estimate x̂k to the controller/actuator unit, referred to as Rx
block. The channel is a packet dropping link such that the
estimate is either exactly received (that is for γk = 1) or
completely lost due to corrupted data or substantial delay (that
is for γk = 0), where γk is the Bernoulli random variable
modelling the packet loss process. The received signal is zk =
γk x̂k. The probability of successfully transmitting the packet is

P(γk = 1|gk,Ek) := h(gkEk) (8)

where gk is the time-varying wireless fading channel gain
and Ek is the transmission energy for transmitting the packet
at k over the channel. The function h : [0,∞] → [0,1] is
monotonically increasing and continuous.

We assume that the fading channel gain {gk} is a first-order sta-
tionary homogeneous finite-state Markov fading process where
the channel gains remain constant over each fading block
and are independent of the energy harvesting process Hk, and
known to the transmitter. This can be achieved by the receiver
sending a pilot signal at the beginning of each slot for the
transmitter to estimate the channel from the receiver to the

transmitter. Under a time-division-duplex transmission scheme
(essentially where the transmitter uses the remainder of the
same time slot in which the channel estimation is performed),
the channel from the sensor transmitter to the receiver is the
same due to channel reciprocity.

Based on the channel gain gk, and the current battery level
Bk, the transmitter finds an optimal energy allocation policy
{Ek} in order to minimise a suitable finite horizon control cost.
The details of this optimal energy allocation scheme will be
provided in the next section.

After receiving zk over the lossy communication channel, the
receiver sends an ACK/NACK packet to the transmitter, over a
perfect feedback channel, and is therefore equivalent to γk.

2.6 Estimator/Controller and Actuator in the Receiver block

The controller in the receiver block has access to the infor-
mation set Ic

k
:= {x̂c

0
,zl, γl : 1 ≤ l ≤ k}. As the estimates

from the transmitter Kalman filter are dropped with probability
1 − h(gkEk), the current state estimate is not always available
at the Rx block. Hence, the state estimate at the Rx block,
x̂c

k|k = E[xk|Ic
k
], is given by

x̂c
k := x̂c

k|k = γk x̂k + (1 − γk)
(

Ax̂c
k−1 + Buk−1

)

. (9)

Thus, the estimation error covariance matrix at the Rx block is

Pc
k|k :=E

{

(xk − x̂c
k)(xk − x̂c

k)T|Ic
k

}

=γkP∞ + (1 − γk)
(

APc
k−1|k−1AT + M

)

. (10)

For simplicity, we assume that the Rx block uses the same
initial state distribution, such that Pc

0|0 := P̄0. Since it is

assumed that the Tx block receives the ACK/NACK packet
without fault, a copy of Pc

k|k can be kept at the Tx block.

The task of the controller is to design an optimal control
sequence {uk} based on the information pattern Ic

k
such that

a suitable average control cost is minimised. It is assumed that
the link between the Rx block and the plant is lossless, such
that the correct control signal uk is applied to the plant. This is a
reasonable assumption in case the actuator is directly connected
or located very close to the plant. The optimization problem for
finding the optimal transmission energy allocation and optimal
control policy is described below.

3 Optimal Energy Allocation and Control Policy Design

In this section, our aim is to find the stationary optimal trans-
mission energy allocation policy {E}∗ (if it exists) and the op-
timal control policy {u}∗, that jointly minimise the following
infinite-horizon average LQG control cost (for a given mean
and covariance of the initial state)

J({u}, {E},x̄0, P̄0) = lim
T→∞

1

T

T
∑

k=1

E

{

xT
k Wxk + uT

k Uuk

}

= lim
T→∞

1

T

T
∑

k=1

E

{

E

{

xT
k Wxk + uT

k Uuk

∣

∣

∣Ic
k

}}

.

(11)

We also assume that in addition to (A,C) being observable,

(A,W
1
2 ) is also observable. The results of this section are

largely based on the proof of a separation principle as shown in
Schenato et al. [2007], which leads to a linear optimal control
law, and the optimal energy allocation policy that minimises
an infinite-horizon average receiver estimation error covariance
cost as considered in Nourian et al. [2014a]. Due to space con-
straints, we only provide a sketch of the arguments necessary
for the proof. The detailed proofs will be provided in a longer
version currently under preparation.



Since we consider the perfect channel feedback case, this
is similar to the TCP-like protocol considered in Schenato
et al. [2007]. In order to show that a separation principle
holds, one can consider a finite horizon version of the above
problem as considered in Schenato et al. [2007]. Following
an almost identical analysis as in Sec. V of this paper, but
with the receiver information set Ic

k
, one can use a value

function approach and a corresponding induction based proof
to show that the value function is a quadratic function of the
control input uk. This implies, that the control cost (11) can be
minimised by solely optimizing over uk while keeping Ek fixed,
the optimal controller is linear and is of the form

u∗k = Lx̂c
k. (12)

It also follows that the tasks of obtaining the optimal Kalman
filtered state estimate x̂k, x̂

c
k
, calculating the optimal control

input u∗
k

at the controller, and computing the optimal energy
allocation E∗

k
at the transmitter can be carried out separately.

Further, since the link between the controller and the actuator
is perfect, the optimal controller gain L has the form

L = L∞ = −
(

BTS∞B + U
)−1

BTS∞A (13)

where S∞ is the solution of the standard ARE

S∞ = ATS∞A +W − ATS∞B
(

BTS∞B + U
)−1

BTS∞A. (14)

Details can be found for instance in Sinopoli et al. [2004b].

It can be further shown that with this optimal controller, min-
imising the cost given by (11) with respect to the energy allo-
cation policy is equivalent to solving the following stochastic
control problem

min
Ek :k≥1

lim sup
T→∞

1

T

T
∑

k=1

E

{

tr
(

Pc
k|k

)}

. (15)

This can be regarded as a Markov Decision Process (MDP)
formulation with state space S = {Pc

k|k,gk,Hk,Bk} and action

space A = {Ek}. More details on MDPs can be found in-
Bertsekas [1995], Altman [1999]. Clearly, just like the optimal
controller, the optimal energy allocation policy can be obtained
at the receiver and fed back to the transmitter provided the
receiver knows the transmitter’s current battery state and har-
vested energy patterns. This is obviously impractical. However,
due to perfect channel feedback, the receiver error covariance
is known at the Tx block, along with its battery state and
harvested energy patterns. Hence, the optimization problem is
solved at the Tx block.

Despite using the optimal time-varying Kalman filter at the
receiver and the optimal LQG controller, boundedness of the
cost function (15) with an unstable open loop system cannot be
guaranteed if the packet dropping probability of the forward
channel is too high. The following theorem shows that the
average error covariance matrix at the receiver is bounded
under suitable conditions.

Theorem 1. Assume the error covariance matrix at the con-
troller Pc

k|k in (10). If there exists a ξ ∈ [0,1) such that

sup
g,H

∫

gk

∫

Hk

(

1 − h
(

gk min
{

Hk,B̄
}))

×P (gk|gk−1 = g) ×P (Hk |Hk−1 = H) dgkdHk ≤
ξ

‖A‖2 (16)

for all k ≥ 0, then there exists an energy allocation policy {Ek}
such that the norm of Pc

k
in (10) is exponentially bounded by

E

{∥

∥

∥Pc
k|k

∥

∥

∥

}

≤ αξk + β (17)

for k ≥ 0 and some non-negative scalars α and β.

Assume the error covariance matrix, channel gain, harvested
energy, battery level and energy consumption at time k are

denoted Pc = Pc
k|k, g = gk, H = Hk, B = Bk, and E = Ek,

respectively, and the corresponding error covariance matrix,
channel gain, harvested energy and battery level at time k+1 are
P̃c = Pc

k+1|k+1
, g̃ = gk+1, H̃ = Hk+1 and B̃ = Bk+1, respectively.

Then the following theorem illustrates that an average cost
Bellman optimality equation can be proved to hold.

Theorem 2. If conditions (W) and (B) of Schäl [1993] (requir-
ing for example, the state space to be a compact set, the state
to action mapping to be upper semicontinuous, the transition
probabilities being weakly continuous, and the cost function
being upper semicontinuous), then the infinite-time horizon
stochastic control problem (15) is given by ρ, which is the
unique solution of the average-cost optimality Bellman equa-
tion

ρ+V(Pc,g,H,B) = min
E∈[0,B]

E

{

tr
(

Pc) + V
(

P̃c,g̃,H̃,B̃
∣

∣

∣ Pc,g,H,B,E
)}

(18)
where V is the relative value function. The optimal average cost
ρ is independent of the initial conditions P0, g0, H0 and B0.

The stationary optimal solution to the stochastic control prob-
lem (15) is then given by

Eo(Pc,g,H, B) = argmin
0≤E≤B

E

{

tr
(

Pc) + V
(

P̃c,g̃,H̃,B̃
∣

∣

∣ Pc,g,H,E
)}

.

(19)

4 Q-Learning

Note that the Bellman equation to determine the optimal energy
allocation policy cannot be used if some of the underlying sys-
tem parameters are not completely known such as, for instance,
the transition probabilities of the Markov process generating
the channel gains or the energy harvesting process. Hence, find-
ing algorithms, which do not rely on the complete knowledge
of the underlying system, is an important task. Assume that
the state space is discrete or can be approximately discretised.
In the current work, this corresponds to a discretised approxi-
mation to the space of error covariance matrices, whereas the
channel gain, the harvested energy, the battery level and the
allocated energy usage are assumed to take values in a finite-
discrete state space. Since the fading channel gains and har-
vested energy are independent Markov processes, the average-
cost optimality Bellman equation (18) can be simplified to the
Q-Bellman equation

Q∗(Pc,g,H,B,E) = E
{

tr
(

Pc)}+
∑

g̃,H̃,B̃

P(g̃|g)P(H̃|H)P(B̃|B,H,E) min
Ẽ∈A(B̃)

Q∗(P̃c,g̃,H̃,B̃,Ẽ) (20)

where A(B̃) is the set of all feasible choices of Ẽ given B̃.
Note that P(x|y) is the probability of x given y. As discussed
in Sutton and Barto [1998] and Prabuchandran et al. [2013],
equation (20) can be solved using the stochastic approximation
based Q-learning algorithm. Assuming that the probabilities
P(g̃|g), P(H̃|H) and P(B̃|B,H,E) are unknown, but that the
states can be observed it is given by:

Q0(Pc,g,H,B,E) = 0 ∀Pc,g,H.B and E ∈ A(B) (21)

and for all k ≥ 0

Qk+1(Pc,g,H,B,E) = Qk(Pc,g,H,B,E)+ γ(k)

·
(

E
{

tr
(

Pc)} + min
Ẽ∈A(B̃)

Qk(P̃c,g̃,H̃,B̃,Ẽ) − Qk(Pc,g,H,B,E)

)

(22)

where now {P̃c,g̃,H̃,B̃,Ẽ} is the next state, whereas {Pc,g,H,B,E}
is the previous state at which E ∈ A(B) is selected according to
the ǫ-greedy method:

E =

{

argminE∈A(B) Qk(Pc,g,H,B,E) w/ prob. 1 − ǫ
chosen randomly ∈ A(B) w/ prob. ǫ

(23)



The algorithm in (22) converges to the optimal Q values if the
step sizes γ(k) for all k ≥ 0 satisfies γ(k) > 0,

∑

k γ(k) = ∞
and

∑

k γ
2(k) < ∞, and the convergence is guaranteed for all

ǫ > 0, Sutton and Barto [1998], Prabuchandran et al. [2013].
The algorithm spends more computational effort in exploring
the effect of possible choices of E if ǫ is large. However, a
small value of ǫ is usually preferred as it allows to exploit the
knowledge of which choice of E leads to the minimal expected
cost based on Qk.

5 Heuristic Policies for Energy Allocation

It is well known that solving the backward dynamic program-
ming equation or the Q-learning algorithm to determine the
optimal energy allocation policy requires a large computational
overhead. Hence, it is often desirable to find suboptimal poli-
cies, that require much less computational effort.

We consider two suboptimal policies in this work for compari-
son purposes. The first simple suboptimal policy is a “greedy
policy” which sets Ek = Bk,∀k. Hence, at every time step
all available energy is used to transmit data regardless of the
channel gain.

A second simple heuristic policy is the “inverted channel pol-
icy”. Assume the required transmission energy such that the
expected drop-out probability of the communication channel
with channel gain gk is equal to a desired probability γ̄, is de-
noted by Eγ̄(γ̄,gk). Then, the inverted channel energy allocation
policy follows the simple rule Ek = min{Bk,Eγ̄(γ̄,gk)}.

6 Numerical Examples

In this section, we evaluate the performance of various optimal
and suboptimal energy allocation policies. A scalar system with
parameters A = 1.1, B = 1, C = 1, M = 1, N = 1 and Px0

= 1
is considered. It is assumed that the sensor uses a binary phase
shift keying (BPSK) transmission scheme, Proakis [2001], with
b = 4 bits per packet. Therefore, (8) has the form

P(γk = 1|gk,Ek) = h(gkEk) =















∫

√
gkEk

−∞

1
√

2π
e−t2/ddt















b

. (24)

The battery capacity is varied between 1mW and 5mW. The
fading channel gain and harvested energy are given by inde-
pendent 3-level discrete Markov chains with values {0,0.5,1}
and {0,1,2}, respectively, and the transition probability matrix
for both processes is taken to be the same (for simplicity)

T =















0.2 0.3 0.5
0.3 0.4 0.3
0.1 0.2 0.7















. (25)

Seven different scenarios have been simulated. In the first two
scenarios, the optimal solution is obtained using dynamic pro-
gramming to solve the average-cost Bellman optimality equa-
tion approximately using suitable discretisation of the relevant
state spaces. While in the first scenario (red dashed line) the
measurement is sent via the noisy communication channel, the
state estimate is sent in the second scenario (red solid line).

In the third, fourth and fifth scenarios the Q-learning algorithm
is used and the current state estimate is send via the commu-
nication channel. The learning horizon is increased from 104

(third scenario, QL1, green dashed dotted line) to 106 (fourth
scenario, QL2, green dashed line) and to 108 (fifth scenario,
QL3, green solid line).

The sixth and seventh scenarios consider the two heuristic
policies described in Section 5. In scenario 6 (blue) the greedy
policy is used whereas in the seventh scenario (black) the in-
verted channel policy with γ̄ = 0.7 is used. This average packet
loss probability is calculated based on the previous simulations
by averaging over the time-varying packet loss probabilities
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Figure 2. Average error covariance Pc vs. battery capacity,
‘mes’ = send measurements, ‘est’ = send estimates, ‘DP’
= dynamic programming, ‘QL’ = Q-learning horizon,
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Figure 3. Average control cost J vs. battery capacity (for a
detailed legend refer to the caption of Fig. 2)

h(gkEk) for a given time-slot k, where Ek corresponds to the
optimal energy allocation policy obtained by dynamic pro-
gramming.

The average error covariance and average control cost for all
scenarios (averaging over 106 time steps) are shown in Fig. 2
and Fig. 3, respectively. It can be observed that in the first five
scenarios (dynamic programming and Q-learning) the average
control cost and error covariance matrix decrease if the battery
level increases. It can also be seen that sending measurements
leads to a slightly worse performance compared to sending
the state estimate, as expected. When the learning horizon
of the Q-learning algorithm increases, the performance also
improves but is worse than those obtained by using dynamic
programming and sending measurements or state estimates.
The performance of the two heuristic policies are much better
than the Q-learning algorithm for low battery capacities but do
not improve when increasing the battery capacity. Hence, it is
only beneficial to invest in computation time to run the dynamic
programming or the Q-learning algorithms for larger battery
capacities.

7 Conclusions

This paper studied a linear control system with a packet drop-
ping link between the smart sensor (calculating the current state
estimate) and the controller. Since the link is a time-varying
fading channel, the probability of receiving the current state



estimate is time-varying. The receiver at the controller sends
an ACK/NACK packet to the transmitter to acknowledge the
arrival of the packet. It is assumed that this feedback is received
without faults. The transmitter at the sensor is equipped with a
finite battery and an energy harvester to gather energy from its
environment. The objective is to design a jointly optimal sensor
transmission energy allocation and optimal control policy to
minimise an infinite-horizon average LQG control cost.

Because of perfect channel feedback, the separation principle
holds. Hence, the Kalman filters at the sensor and a linear
controller are optimal, and the transmission energy allocation
policy minimizing the expected average estimation error co-
variance can be obtained by standard dynamic programming
techniques for solving the average-cost optimality equation. In
case certain underlying system parameters such as the transi-
tion probabilities of the associated Markov processes are un-
known, we employ Q-learning based suboptimal energy alloca-
tion algorithms. We also proposed two simple heuristic energy
allocation algorithms. All these algorithms are compared by
numerical studies illustrating that the optimal energy allocation
policy obtained by dynamic programming outperforms several
suboptimal policies especially for higher battery capacities.
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