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Abstract

Poor scalability arises in many vehicle platoon problenidirBctional strings appear to show some
promise for mitigating these problems. In some cases thaséans have the undesirable sidéeet

of non-scalable response to measurement errors. In thex pap examine this problem and show how
information exchange between vehicles may eliminate biaiedifficulties due to measurement errors.
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1. INTRODUCTION the neighbouring vehicles. When assumingjatent measuring
errors for the same inter vehicle distance (due to twiedint

In the field of coordinated systems, formation control is &ensors used in each of the vehicle§yets might accumulate.
well studied control objective. In its simplest form a groupl'he undesirablefeect can be an equilibrium that grows without
of N vehicles (e.g. platoon or string) is required to move ifbound as the string size increases. We show that this problem
one direction and follow a given reference trajectory witle ~ can be avoided if a simple consensus algorithm is implendente
vehicles keep a prescribed distance to neighbouring veshicl Note that a similar problem might arise in caséetient steady

. . . L L state distances are assumed by neighbouring vehiclesinror s
Itis usually desirable to find distributed control soluonsing  yjicity. however, we will concentrate our discussion on mea
local measurements only. In this paper bidirectional tisted g, rement fisets in the reminder of this paper. Similar issues
control of a string is studied, see e.g. Seiler et al. [2004 egarding the @ects of time varying measurement noise were
Barooah et al. [2009]. studied in Bamieh et al. [2012], Hao and Barooah [2012].

Itis well known that error signals can amplify when traveli e remainder of the paper is organised as follows: The model
through the string resulting in growth of the local errormor a4 the notation are discussed in Section 2. Results fromrKno
with the position in the string. Thisfiect is referred 0 as gt 5. [2013] on stability and scalability of vehicle platen
string instability’, e.g. in Darbha and Hedrick [1996],i&8 56 symmarised in Section 3. Section 4 studies stability and
et al. [2004], ‘slinky éfect’, e.g. in Zhang et al. [1999] or' not gyring stapility in case of unknown measuremefisets. The
scalable’, e.g. in Lestas and Vinnicombe [2007]. paper closes with three illustrative scenarios in Secti@mé

It was shown in Seiler et al. [2004], Barooah and Hespantg@nclutions in Section 6.

[2005] that linear symmetric bidirectional strings with aw

integrators in the open loop and constant spacing are always 2. PLATOON MODEL AND NOTATION
string unstable. Lestas and Vinnicombe [2007] examinesza .
bidirectional string with constant spacing and shows thriigg -1 Notation
stability can be achieved with ficiently large coupling with

the leader position We consider a string dfl vehicles driving behind one another.

The mass of thiéh vehicle ism, and its motion can be described
In a different approach a symmetric bidirectional string waby its momentum and positiom; and q; respectively, with
modelled as a mass-spring-damper system in Eyre et al. [1998= 1,2, --- ,N. Thus,

This idea was extended in Knorn et al. [2013] using the theory b =Fi+d, and G =nm’p. (1)

of port-Hamiltonian systems (PHS). It was shown that the ) . .
b y ( ) where F; is the control force on the vehicle ard is the

disturbance. The control forcE; will be chosen such that
only data from a group of neighbours of titt vehicle (both
preceding and following vehicles) are needed. Hence, ragjlo
However, all results discussed above assume perfect and @agmmunication structure is necessary.

curate measurements of all relevant and necessary states, | .

this paper we will study a system with simple, constant mealVe denote the state, steady state and the disturbance column

surement fisets in the sensors measuring the distance towargctors (generally denoted col) byt) = col(x(t), .. ..xn (1),
Xo = COl(Xy,,...,Xn,) @and d(t) = col(d(t),...,dn(t)). The

* This paper was not presented at any IFAC meetings. Corregpauthor: ~ column vector of ones is denoted bydde, is.theith canonical
Steffi Knorn. Tel.+46-18-471-7389. Fax46-18-471-7244. vector of lengthN. Similarly we denote the diagonal matixe

analysis of stability and string stability of systems irstfirm is
significantly simplified. Also, sflicient conditions to guarantee
I, string stability of such systems were derived.




RNN with diagonal entriesy, ...ay asA = diag@y,...ay). Thus, with (1) and (4) the system dynamics can be written as

i — — T - T
The L, vector norm is denoted bix> = |X| onz( and the [E] _ oS SO]VH(p,A) N IS N ?/ , 5)
L, andL., vector function norms byx(-)|l2 = w/fo [X(t)|2 dt - & Vo

and|Ix()lle = SUR.o IX(t)l, respectively. The gradient ¢ is ~ WhereA,p € RN are the displacement and momentum vectors,
denoted byvH. The transpose of a matrixis denotedA, the 1-€.A = COI(Ay,...,An), p = col(py,...,pn), the control force

inverse ofA by A~! and the inverse of its transpose Ay’ . vector isF = col(Fy,...,Fy), the functionH is given by
H(p.A) = 3p"M~1p, the matrixM € RVN is the constant and

2.2 Control Objectives positive definite inertia matrisv = diag({m,....my) and the
matrix S has the bidiagonal form

The local control objective for each vehicle is to bring dsal 1 0 - .- 0]

error to zero via distributed control based solely on lgcall )

available data. The local error is usually defined as a linear -11

combination of position errors (e.g. distances or displaaes) S=|g -1 . | (6)

towards a limited group of direct predecessors and a limited o

group of directly following vehicles. The controller foreh o010

first vehicle in the string aims to follow a given trajectagy |0 --- 0 -1 1

and also minimise the local position error towards a group of

following vehicles. In the simplest setting the refererigaal is 3. CONTROLLER DESIGN FOR VEHICLE STRINGS
considered to be a ramp with constant velogiyi.e.qp = Vot. USING PORT-HAMILTONIAN SYSTEM THEORY

Note that only a small, limited group at the beginning of the

string have direct access to the reference signal. In otinget We now give a brief review of key results (see for example
there is no global communications, and therefore neither thKnorn et al. [2013]) using Port-Hamiltonian theory for velei
reference position, velocityp, nor any data of the leading platoon results. This is an essential precursor to our taterits
vehicle are available to every other vehicle in the string. on the dfects of measurement errors in such systems.

The overall control objective is to achieve “string staigilior
“scalability”, that is, the norm of the local states of therquete

SF“”‘J are bound_eq_, uniforml_yin the string siie for NONZEro 15 |ocal control is motivated by results from mechanical
disturbances or initial conditions, Darbha and Hedrickfd]p engineering. When the control actions between the vehisles

Definition 1. The equilibriumx* of a distributed system with chosen such that they can be understood as virtual Sprimgs an

N agents id, string stable with respect to disturbanck, if ~ dampers between the vehicles the overall system can benvritt
given anye > O, there exists;(€) > 0 anddz(e) > O suchthat  as a port-Hamiltonian system.

3.1 Local Control

X(0) - X < 61(e) and [[d()ll2 < 62(€) (2) The control forces consist of the “spring forc&?, that de-

implies pends linearly on the position errofs, the “damper force”
[IX(t) = X[lo = SUPIX(t) - X'| < € (3)  F, that depends linearly on the velocity errors between two

forallN > 1 =0 neighbouring vehicles, and the “drag forcEi"’ describing a

virtual friction of vehiclei towards the ground:
Note that in the literature implicitly or explicitly éierent def- Fi=F°-F>, - Fid +F -F,
initions for string stability are known. For instance it tsosvn

—cIA —cIA L _bmilo
in Seiler et al. [2004], Barooah and Hespanha [2005] that a =G A= G - bimTp,

bidirectional vehicle string with nearest neighbour comina- +R(MApi-r -y p) — Rua(m ' p — m 4 pioa)

tion only and tight spacing policy cannot be string stablee T Vi=1--- ,N-1, (7

definition used there is that the norm of x(t) — x* is bounded Ey =FS + F! — Ed

independently oN. In contrast, the_., norm is used in this NTINTIN TN . .

work. =Cn An + Ru(MZ -1 — My pn) —bvmy'pn (8)
such that we can write

2.3 The Uncontrolled System F=-(B+RMIp+eRvo+SClA )

In this section we briefly review how the uncontrolled vegicl With the constant matrices,

string (described by (1)) can be written as a port-Hamilani Ri+R, -R, O 0 ]

system, see e.g. Ortega and Romero [2012]. This will fatdit

the design of control algorithms and the proof of stabilibga R R+ Rs -Rs :

string stability later. R= 0 Ry . o |- (10)

Since the explicit control objective is to obtain zero piosit : - . Ru1+Ru —R

errors/ displacements between the vehicles (and therefore an 0 O. N_—lRN N RNN

implicit control objective is for each vehicle to drive with _ ) _ _

velocity Vo), we choose the local displacemenis= g —¢q B = diagls,....by) andC = diag(C,, . . . .cn), where the entries

and the moment@, = my; as the system states. Note tha©f matricesB, RandC are design parameters of the controller

A1 = go— gy Where the position is the product of the constant @nd 0< R.bi.¢; < co for all i.

velocity referencep and time. Using (1) this yields It has been shown in [Knorn et al., 2013, Lemma 1] that given
Ai=G1—G =mip—mip. (4) d = 0the equilibrium W1vo,CS TB1vy) of system (5) in closed



loop with the controller (7)-(8) is asymptotically stab{@he further that both sensors operate independently of eadr.oth
proof can be found in Appendix A at the end of this paper.Jhus, it is possible for both sensors to have a constanndisti
However, this implies that the displacementsfor vehicles offset. Hence the overall measurement of the front distance,
towards the front of the string, grow with the string siésince  Apy;, and the back distance\y,,;, are described by

11...1 Amgi = A + Af’i and Ampi = Ai + Ab,i (16)
gt (01 1y With |Ati] < 6 and|A;| < 6 for all i wheres < o is the upper
. (11) bound on the measuremenffsets. The overall measurement
(1) K 0 i vectors thus are

Am,f =A+ Af and Am,b =A+ Ap. (17)

and hence\’ = ¢ ZE:i byvo. Thus, the system converges to a A " oa ~ 4T - A ~ qT
undesirable equilibriur* = 0 if any b, > 0. This problem WhereAs = [Ary Atz ... Arn| andAp = [0 Abz ... Aun] -
could be avoided by choosing = 0, however, in doing Note that apart from the lead vehicle, no agent measures the
so, |, string stability with respect to disturbances cannot bdistance between the first vehicle and the reference toaject
guaranteed. In the next subsection suitable integralagtit  A;. Thus,Ap; = 0.

be added to the local control to ensuisestring stability with

respect to disturbances of the desired equilibrium. An alternative measurement and communication topology (i.

“distance measurement consensus”), which we consideiifate

Section 4.3, allows basic communication between neighibgur

vehicles. If both vehicles then choose the algebraic mean of

both values instead of their local measurement, the localme

surement reduces thy,; = Aj + A with |A| < ¢ for all i. Thus,
Mhe overall measurement vector is

Am=A+A. (18)

3.2 Integral Action

To avoid undesirable growth of the equilibrium states,dnaé
action is added to the local control algorithm. Thus, the €o
plete control is described by

F=-(B+RM!p+egRivo+S'CTA+Fp (12)
Fia =MKSTC™A - (B+ R)Kz (13) 4.2 Hffect of MeasurementfBets

; T~-1

Z3=-SC7A (14) Results in Subsection 3.2 revealed how string stabilggala-
where K € RMN is a diagonal positive matri = bility of the system can be guaranteed when using apprepriat
diagks, . ...kn). Assume further that the disturbangénclude integral action control laws. However, if exact measuretsien
a constant componedt and a time-varying disturbanci(t) are not available (but unknown, constant measuremgsets
such thatd = d. + dy(t) and there exists a constabt < c are present), the system diverges to fedént equilibrium
satisfying||dq(-)ll < D. Then, it can be shown, [Knorn et al., point.

2013, Lemma 3], that Lemma 2.Consider a string of N vehicles with local control
(1) for dgy(t) = O the desired equilibrium including integral action control given in (12)-(14) asdissed
. A* = (M1v6.0,0) 15 in _Sectlon 3 Assum_e the first vehicle is foIIo_Wlng a refeenc
(p".4%.23) = (Mvo.0.c (15) trajectory with velocityv. If the system is subject to unknown
with @ = K™1(B + R~ (d; — Blvp) is globally asymptot- constant disturbancels and unknown measuremerftset as in
ically stable (despite the presence of constant unknowa7), then the stable equilibrium of the system is

disturbancesl), and - _ ~T4
(2) the equilibrium (15) idl, string stable for disturbances (p A 4) - (MlVO’ -CS A’“) (19)
Ids(-)llz satisfyingld()ll2 < co. with NV
An outline of a proof can be found in Appendix B at the end of A=CA+(S -1C A (20)
this paper. and N N
a=K*(B+R™(d. — Blvp). (21)

4. MEASUREMENTS AND MEASUREMENT OFFSETS (The proof can be found in Appendix C.) Note that the constant

disturbances, do not influence the equilibrium &. However,
4.1 Background on Measuremengsats A* depends on the constant measureméisets. Namely,

The previous section described how a vehicle string system A" =-CSTA=-CS T(CHAr+(ST-1NC'A)  (22)

with exact measurements can be controlled using local abntimplies

and integral action. Using integral action yields lanstring N Noo

stable system for accurate measurements. A = Z —Apk — Z C—‘Afyk. (23)
- 4 Cx

However, even small measuremeffisets at each vehicle can
accumulate and lead to an undesired equilibrium. As will b
shown below in Section 4.2; string stability of the desired
equilibrium in the presence of measuremefisets and the
control structure above cannot be guaranteed.

hus, even though the system is stable (and by definition also
2 string stable) the resulting equilibrium is highly undabile
as it involves severe safety risks: Note that, the measureme
offsets might accumulate at the beginning of the string. The
distance between the first and the second vehicle in thegstrin
Assume that the distances between the vehitlase measured can grow without bound. If the forward measuremeffiset on
locally by each vehicle using radar sensors. The distanee kadl vehicles is consistentlgreater than the backwards mea-
tween vehiclei and its predecessoA; is measured by both surement fiset, the distance between the first two vehicles gets
vehiclei and the predecessor, that is vehicle 1. Assume smaller when the string size increases. Thus, for an intrgas



string length the cars at the beginning of the string crasbake N =10

the forward measurementteet on all vehicles is consistently

smallerthan the backwards measuremefitet, the displace- 14

ment errors at the beginning of the string grow without bound 12y

whenN increases. Although this case does not result in pile up L

crashes, thisféect is also undesirable since it corresponds to <08

string break up. go.e

In some cases, one might assume thraiaveragethe sum of .‘804 S

forward and backwards measuremefisets will be close to So.2 -

zero even for a long string. However, even if this is true for 0( o

the expected value of the steady state error, the varianite of -0.2)

steady state error will still grow without bound Bsincreases. 04 ‘ ‘ ‘ ‘
To see this, assume all forward and backwards measurement 0 1000  200Q..,3000 4000 5000

offsets are independent, have an expected value of 0 and a

variance of Va(ﬁb,i) = Var(Af,i) = 02 < oo for all i. Further Figure 1. Scenario 1A; for i = 1 (red), 2 (orange),--, 10
assume that the measuremeffsets are uncorrelated to each (purple)
other. Then

- (5r25) = (M, i) 2
Var (A7) =Var( Z &Ab,k) + Var(z _IAf,k) with
Ko O o G a=K™Y(B+R™(d — Blvp). (27)
N6\ R N 6\ R is asymptotically stable. Further, the equilibriuntistring sta-
= Z (a) Var(Ab,k) + Z (c_) Var(Af,k) ble for any additional time-varying disturbandgt) satisfying
K=ir1 k=i VK (Ida()ll2 < co.
N \2
=2 (2 Z (g) + 1). (24) The proof can be found in Appendix D.
k=irl \ K

Hence|, string stability of a bounded equilibrium can be guar-
Note that fori = 1 andck = cfor all k, Var(A’i) grows linearly anteed by establishing a simple consensus algorithm betwee
with N. This dfect could be reduced by choosing decreasinglgeighbouring vehicles. Since the measuremefisets after
stiff springs between the vehicles towards the end of the stringgreeing on the arithmetic mean for both vehicles is eqental
However, to avoid variance growth with string length, thét does not accumulate towards the beginning of the string.
compliance cofficients have to decrease drastically with thel'he disadvantage here is, however, that the boundedndss of t
position within the string. This is clearly undesirablerfra equilibrium crucially depends on inter vehicle communimat
practical point of view and would lead to other complication
such as much slower settling times towards the end of thegstri 5. EXAMPLE
Also, in this setting global knowledge is required sincergve
agent (e.g. vehicle) needs to know its position within thiegt  Two homogeneous bidirectional vehicle strings have be®n si

Unfortunately neither the correct distance between neighf ulated. The fir_st is of lengthl = 10 While_the sec_ond.contair)s
vehicles nor the measuremerffset can be observed throughN = 100 vehicles. In both cases the first vehicle is required

_ - . to follow a given trajectory withgp = Vot and all vehicles start
y= A_ +A. To see that consider the system with initial values being zero both for the velocityand the dis-

p 0 0Q0Q|p I

A =—SM’108H§]+ A

A 0 0 0/\A the forward and the backwards measurements. Two random

vectors of lengttN = 100 have been generated to simulate the

might help to filter measurement noise it cannot avoid con- ! )
vergence to the undesirable equilibrium due to accumulatéfd the first scenario the measuremeifiiset vectors both are

p placementg. The measurement df is subject to randomised
Olu, y= [0 I I] Al.  (25) (values vary between 0 and 1) measuremefgets both in
0 A
The observability matrix©® = [011;-SM™00;000, measurementftsets. For the shorter platoon, only the first 10
clearly does not have full rank. While building an observeentries of the vectors are used.

measurementfisets. uniformly distributed on [(1]. Thus, on average theftérence
between the forward and the backwards measuremi@to
4.3 Distance measurement consensus is zero. While it seems in Fig. 1 that measuremefiseds

are accumulating in steady state, close examination of Fig.
In the following lemma we will show thal, string stabil- reveals that this is not the case as thg string length ineseas
ity of a bounded equilibrium can be guaranteed if all vehitiowever, the span of the steady state displacements groms fr

cles reach “distance measurement consensus” with theictdir @PProximately 6- 2m forN = 10 to-3 - 1.5m for N = 100.
neighbours. This could have been expected as the variance in this cass gro

Lemma 3.Consider a string of N vehicles with local controlWlth the string lengthN.

including integral action given in equations (12)-(14) as-d In Scenario 2 an additionalfiset of 01m is added to each
cussed in Section 3. Assume the first vehicle is following forward measurement error. As expected in this case (with
reference trajectory with velocity. If the system is subject to unbalanced forward and backward measuremdisets) the
unknown constant disturbancdsand unknown measurementsteady state deviations of delta at the beginning of thagstri
of the form described in (18) then the equilibrium of the syst  increase with the string lengt, Fig. 3.



N =100 N =100

i(t)

g = —
Q2
-2 — e —
-3 -06
-4 ‘ ; : ; -08 ‘ ‘ : ;
0 1000 ZOOHme t 3000 4000 5000 0 1000 ZOOICfmet 3000 4000 5000

Figure 2. Scenario 1A fori = 1 (red), 2 (orange},--, 100 Figure 4. Scenario 3A; fori = 1 (red), 2 (orange},--, 100

(purple) (purple)
N = 100 the string. Hence, scalability of the system can be guaeante
2 ‘ ‘ ‘ despite constant unknown measuremefgeais.
In future work, we intent to extend the presented results by
_ investigating the #ect of non static measurement error, com-
= munication loss and delay between vehicles.
il
§_67 Appendix A. PROOF FOR STABILITY UNDER LOCAL
2 CONTROL
_8l
10 From (9) and (5) the dynamic equations for the closed loop hav
| S the form
1% 1000 2000 3000 4000 5000 p=—(R+BM(p-Mlvo) + S'TC (A - CSTB1v),
Timet (A-l)
- 1.
Figure 3. Scenario 2A; for i = 1 (red), 2 (orange),--, 100 A=-SM7(p-Mlv). (A-2)
(purple) Thus the closed loop has the port Hamiltonian form
In the third scenario it is assumed that neighbouring vekicl [P] = [_(B+ R) ST] VHa(p.A), (A.3)
communicate and exchange their deviation measurement with A -S 0

each other. Then the average value of both measurementsith the closed-loop Hamiltonian function

used in both vehicles. Theffect of this simple additional 1

algorithm can be seen in Fig. 4. In this case, the measurementHc(p.A) =§(p— M1vo) "M ~*(p — M1vo)

offsets no longer accumulate at the beginning of the string, 1 T

and in addition, the variance of the steady state deviations += (A—CS‘TB;VO) ct (A —CS_TBlVO). (A.4)
does not increase. This can easily be explained realisiaig ﬂh . 2 . . .
with this algorithm the deviation between both vehiclesl wil YSing He(p.A) as Lyapunov function, and computing the time
be the algebraic mean of two bounded uniformly distributefl€rvative ofHu(p.4) yields

values. Thus, the resulting deviation in steady state &t ae Ha(p.A) = VTH -(B+R) ST
bounded independently of the string length a(p.A) = f s 0

since B+R) = (_B+ R)" > 0. The biggest invariant set included
in S = {(p.A)Ha(pA) = 0} is (p",A%) = (M1vo,CS™"Blvo).

. . Th L lle’s Invariance Principl .g. [Khalil
This paper studies théfect of unknown, constant measuremenli-hg(s)’re% 4_2]8)?[ ((:aasn be 2hgwcr:16that thcepsssggrﬁ is[ as?m,ptift)igal
offsets on scalability of bidirectional vehicle platoons. gt i stable and the equilibrium reached j£ %)
shown that under some assumptions measurenfiset® might o
;C%‘ﬂ]rggﬁrtzbfet éhe.beg'””'”g of the string. This might lead, .\ & PROOF OUTLINE FOR STABILITY ANLL,
quilibrium state as the distances betwsen t STRING STABILITY WITH INTEGRAL ACTION
vehicles can grow without bound even though the measurement

errors are assumed to be individually bounded.

]VHd <0 (A.5)

6. CONCLUSIONS

B.1 Asymptotic Stability
It is shown that in this case it is ficient to implement a

simplistic consensus algorithm to guarantee a bounded eqgth show that global asymptotic stability first define the dualt
librium. In case neighbouring vehicles agree on a measuremeng change of coordinates

(instead of each vehicle using their individual measurejnen 10— M1ve + MK (e — B.1
offsets do notgliect the behaviour of other vehicles in the string. A4 =p Vo + (2 - a). (B.1)
Thus, measurementffsets do not accumulate at any part of 2 =A. (B.2)



Combining (A.1), (13) and (14) and using (A.2) yields Thus, the closed loop dynamics have the port Hamiltoniam for
7z =-(B+RM 1z +STC 12, (B.3) - (B.4). UsingH,(2) as Lyapunov function, and computing
p = — SMlz + SK(zs - ) its time derivative yields (B.5) sinc&{-R) > 0. The biggestin-
2= 1+ >Rz~ @) _ variantsetincluded it§ = {2H,(2) = 0} is (,.2,.;) = (0.0.0).

Thus, the closed loop dynamics have the port Hamﬂtomanmfor-rhus, by LaSalle’s Invariance Principle (see [Khalil, 200te-

72} —(B; R) SOT g orem 4.4]) it can be shown that the equilibrige),z;,z;) (and
Z - _0 ST o VHA(2) (8.3) in original coordinates iép*,A*,z;) = (M;vo, - CS*TA,Q)) is
totically stable.
with the Hamiltonian function asymprotically stable
H, () = %z{M’lzl N %250’122 N %(23 —0)"K(z - ). (B.4) Appendix D. PROOF OF LEMMA 3
Using H,(2) as Lyapunov function, and computing the timeAs the measurement df is subject to unknown measurement
derivative ofH,(2) yields offset, equations (12)-(14) change to
H.(2) =~V Hy, ((B+ R)VH,,(2) < 0 (B.5) F=-(B+RMp+eRivo+S'CHA+A)+Fju (D.1)
since @+R) = (B+R)T > 0. The biggest invariant setincluded Fix =MKSTC™ (A + A) - (B+ R)Kz (D.2)
inS = {z|Hz(z) = 0} is (zj,g,z;) = (0,0,@). Thus, by LaSalle’s 73=—STc? (A + 5). (D.3)

Invariance Principle (see [Khalil, 2001, Theorem 4.4]xhde
shown that the equilibriurﬁzj,é,g) is asymptotically stable.

Th*|s mellis that the equilibrium in the original coordiaatis be followed to show that the equilibriu(aj,é,z;) _ (0.0.) is

(p A ’ZE) = (M1vo.0.0). asymptotically stable. This implies that the equilibriumtihe

B.2 b String Stability original coordinates isép*,A*,z;) = (Mlvo, - 5,@). Note that
allmeasurement errors are bound by s@éimiEhus, although the

To show that the system Is string stable, choose the Hamil- system converges to an undesired equilibrium, the equifitor

tonian function (B.4). Thus, in presence of dynamical distu states do not diverge. Further, similar steps as above can be

bancedly(t) the closed loop dynamics have the port Hamiltofollowed to show that the equilibrium Is string stable.

nian form

-S 0 S

7z
73 0 -STo

After the following change of coordinates = p - M1vo +
MK (zz—a) andz, = A+A, very similar steps as in Section C can
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