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Abstract—We study the design and evaluation of joint pro-
cessing coordinated multipoint (CoMP) downlink transmission.
Precoders will then be designed based on outdated channel
state information (CSI), so interference cannot be eliminated
completely as by an ideal zero-forcing (ZF) solution. We here
strive to design and evaluate realistic linear transmit schemes.
Kalman predictors are used for orthogonal frequency-division
multiplexing (OFDM) channels. They provide optimal linear
predictions and also estimates of their uncertainty. Robust linear
precoders are designed based on these uncertainty estimates. We
introduce and use robust linear quadratic optimal feedforward
control, with the criterion averaged (marginalized) over the
CSI uncertainty. This flexible solution performs minimum mean
square error (MSE) minimization. It can also iteratively optimize
other criteria, such as sum-rate. The prediction- and transmission
performance is evaluated using measured data on 20 MHz OFDM
downlinks from three base stations, for users at fast pedestrian
velocities. Downlink CoMP is here also compared to cellular
transmission, that uses orthogonal resources within cells but
allows uncontrolled interference between cells.

I. INTRODUCTION

Future wireless broadband systems need to improve the
transmission capacity at low capacity locations. Shadowed
areas and interference at cell borders then pose particular
challenges. A potentially powerful but challenging tool is
to use joint coherent transmission, using remote radio heads
or coordination between cellular base station sites [1], [2].
Joint coherent transmission enables spatial interference avoid-
ance. Multiple users can then simultaneously be offered a
larger bandwidth per user than with e.g. joint time-frequency
scheduling designed for interference avoidance. This makes
it an interesting option for highly loaded systems. We here
study the design and evaluation of joint processing coordi-
nated multipoint (CoMP) transmissions, focusing on the (more
challenging) downlink problem.

Global optimization of a joint coherent transmission strategy
with respect to a very large set of widely spaced transmitters
is unrealistic, due to a high computational load and very high
demands on the backhaul capacity. In addition, if distances
between cooperating base stations are very large, receivers
would have trouble with symbol-level synchronization due to
transmission delays longer than the cyclic prefix. However,
sets of N transmitters could form coordinated clusters of
limited size, aiming to suppress the intracluster interference
when jointly transmitting to M users. Such clusters may be
designed to also limit intercluster interference [3].

Ideally, the intracluster interference can then be eliminated
when N ≥M . However, due to signaling delays, the precoders

(beamformers) will be designed based on outdated channel
state information (CSI), which limits the performance. We
here use imperfect channel estimates and strive to design and
evaluate the best realistic linear precoding schemes.

Kalman predictors are used for OFDM channels. They pro-
vide optimal linear predictions and also, importantly, estimates
of their uncertainty. All M users of an OFDM frequency-
division duplexing (FDD) downlink are here assumed to feed
back the predicted CSI and the prediction uncertainty via
the base stations to a central unit (CU), which calculates the
joint precoding matrix. Robust precoders are designed using
linear quadratic optimal feedforward control, by optimizing
a criterion averaged (marginalized) over the CSI uncertainty.
Additional corruption due to e.g. quantization is not explicitly
considered here, but can easily be included in the design. This
flexible solution can iteratively optimize a desired criterion,
such as the sum-rate. After the linear design, a scaling is
adjusted to satisfy per-antenna transmit power constraints.

The robust precoder for flat fading OFDM subcarriers is a
special case of results for dynamic (frequency-selective) sys-
tems, previously developed in [4]. Robust linear precoder de-
sign by averaging over CSI uncertainty has more recently been
highlighted for multiple-input single-output (MISO) transmit
schemes by [5], [6] and for multi-user and multiple-input
multiple-output (MIMO) downlinks in [7], [8].

A main contribution of the present work is the evaluation of
predictor and robust precoder performance based on broadband
channel measurements. We use measured data on 20 MHz
OFDM downlinks from three base stations for users at pedes-
trian velocities. We test schemes in fully loaded systems for
groups of 3 transmitters and 3 users, with channels having
widely varying powers and realistically attainable prediction
errors for pedestrian users. Downlink CoMP is here also com-
pared to cellular transmission, that uses orthogonal resources
within cells but allows uncontrolled interference between cells.

II. CHANNEL MODEL

We assume an OFDM downlink for K subcarriers, M
single-antenna users and N transmitters that may represent
antennas or fixed beams at different base stations. The received
signals, yk ∈ CM×1, at the k′th subcarrier are given by

yk = Hkuk + nk, (1)

where nk ∈ CM×1 is the sum of noise and out-of-cluster
interference (we will henceforth call it noise), modeled as
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i.i.d. random variables with zero mean and known variance.
The vector uk ∈ CN×1 represents the transmitted signals and
Hk ∈ CM×N is the channel matrix with complex channel
gains hkij . The true channel is a sum of the predicted channel
matrix Ĥk and the prediction error ∆Hk

Hk = Ĥk + ∆Hk. (2)

In the following, Ē [·] averages over the distribution of pre-
diction errors, E [·] averages over the statistics of noise and
message symbols, (·)∗ denotes the Hermitian transpose and
(·)ij denotes element (i, j) of a matrix.

III. CHANNEL PREDICTIONS

A. Short term fading models

The downlink transmissions contain known common refer-
ence symbols (CRS), or pilots, with regular time and frequency
spacing, ∆t and ∆f . For each user i, the frequency domain
channels hkij , from all transmitters j = 1, ..N in the cooper-
ation cluster and all CRS-bearing subcarriers f0 + k∆f , are
predicted over a prediction horizon ϑ∆t where ϑ ∈ N. Here,
f0 is the carrier frequency for the first subcarrier in the system.

We consider FDD system downlinks, so predictions must be
based on downlink measurements. We will assume predictors
to be localized in the user terminals. Each terminal predicts a
row of Hk, and feeds back results to the CU via uplink control
channels. The required prediction horizon ϑ∆t corresponds to
the delay that would be allowed for the entire transmission
control loop, including channel predictions, feedback, schedul-
ing, joint precoding and any additional delays.

In the following, Kalman predictors will be implemented
in the frequency domain. Their design requires statistical
models of the correlation properties of the channels over time
and frequency. To represent the correlation over time, we
use autoregressive (AR) processes of order na, adjusted to
approximate the short-term fading statistics of the channel
coefficients. The prediction accuracy is improved by predicting
w > 1 channels at several correlated subcarriers jointly, since
the influence of the noise can then be reduced.

The AR-models of the channels to the M users at w
subcarriers can then be realized in state-space form as

xi(t+ 1) = Aixi(t) +Biei(t),

hi(t) = Cixi(t), i = 1, ...,M.
(3)

Here, the integer t represents the time steps spaced by ∆t,
xi(t) ∈ C(w·na·N)×1 is the vector of state variables and ei(t) ∈
C(w·N)×1 is the zero mean process noise. The vector hi(t) =[
hqwi1 (t), · · · , h(q+1)w−1

i1 (t), hqwi2 (t), · · · , h(q+1)w−1
iN (t)

]T
rep-

resents the channels to user i, from all N transmitters, over a
set of w CRS-bearing subcarriers indexed by q. The correlation
between the fading channels at different subcarriers is repre-
sented by the covariance matrix Q of the process noise ei(t)
and by the matrices Ai, Bi and Ci. Please see the Appendix
for additional details on the modeling.

B. Kalman filter and predictor

For each user, the channels over the whole bandwidth are
predicted by a set of Kalman predictors, each of which is using
measurements at groups of w CRS bearing subcarriers

yi(t) = Φhi(t) + ni(t), i = 1, ..,M, (4)

where the vector yi(t) =
[
yqwi (t), · · · , y(q+1)w−1

i (t)
]T

con-
tains the received signals at the w subcarriers for the different
predictors q = 0, 1, .... The measurement noise ni(t) ∈ Cw×1
is assumed zero mean with known covariance matrix Rn.
The matrix Φ ∈ Cw×w·N contains only known reference
symbols and zeros. Reference symbols may be transmitted at
orthogonal time-frequency resources by different transmitters.
Alternatively, to reduce the CRS overhead, we may use quasi-
orthogonal CRS, “overlapping pilots”, as e.g. proposed in [9].
All N transmitters then send CRSs simultaneously. Their CRS
at the w subcarriers are designed orthogonal. If w ≥ N , the
users can then fully separate N flat fading channels.

The equations for updating one of the Kalman filters are
given by e.g. (4.3.1)-(4.3.8) in [10]. The estimates provided
by the filters are then used in the predictors to update the
channel prediction vector ĥi(t+ ϑ|t) at the i′th user through

ĥi(t+ ϑ|t) = Cix̂i(t+ ϑ|t) = CiA
ϑ
i x̂i(t|t),

Pi(t+ ϑ|t) = AiPi(t+ ϑ− 1|t)A∗i +BiQB
∗
i .

(5)

Here, x̂i(t1|t2) and Pi(t1|t2) are the estimate of the state
vector and of the covariance matrix of the state vector at time
t1, given measurements up to time t2.

We will in the following assume that the errors in the
channel predictions ĥi (t+ ϑ|t) have zero means and pre-
diction error covariances described entirely by the matrices
(CiPi (t+ ϑ|t)C∗i ). This is an approximation since it assumes
that the estimated model (3) describes the fading perfectly.

The prediction performance will be evaluated using the
normalized mean square prediction error (NMSE) for the
channel from the j′th transmitter to the i′th user

NMSEij =

∑T
t=1 |hkij(t)− ĥkij(t|t− ϑ)|2∑T

t=1 |hkij(t)|2
, (6)

where T is an appropriate averaging interval. An NMSE of
−x dB implies for example that, if the corresponding channel
represents an interferer, it can be suppressed by at most x dB.

For simplicity, we will in the following exclude time and
subcarrier indices so that hij , hkij(t), ĥij , ĥkij(t|t − ϑ),
n , nk, u , uk and y , yk.

IV. PRECODING SCHEMES

A CU, with full information of the predicted channels and
of the covariances of the prediction errors, designs precoding
matrices R ∈ CN×M for time-frequency resource blocks that
contain at least one CRS-bearing subcarrier. The transmitted
vector, u ∈ CN×1, is then generated by linear precoding

u =
1

c
Rs, (7)
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Figure 1. System model used for precoder design.

where s ∈ CM×1 is the message vector, assumed to have zero
mean, unit covariance and to be uncorrelated with the noise
n. We assume per-antenna transmit power constraints, Pj,max,
that apply to all subcarriers individually. The scaling constant c
is selected to assure that E

[
|uj |2

]
≤ Pj,max for j = 1, ..., N .

An overview of the system model used for precoder design
is shown in Figure 1, where ε, z ∈ CM×1. The desired
received noise-free vector is z = 1

cDs. The target matrix D
is diagonal, representing the ideal of a complete interference
suppression. The targeted received signal magnitudes (the
diagonal elements of D) should be set to realistic levels.
We here do this by adjusting them to the channel amplitude
between each user and its strongest base station

dii = max
j
|ĥij |, i = 1, ...,M. (8)

A. Zero forcing

For full rank channels when M = N , the ZF precoding
matrix, RZF , is designed as

RZF = Ĥ−1D. (9)

The received signal, by (1), (2) and (9),

y =
1

c
(I + ∆HĤ−1)Ds+ n, (10)

is then corrupted by residual interference due to prediction er-
rors, and by noise. Furthermore, we encounter the phenomenon
of “power normalization loss”: Ill-conditioned matrices Ĥ lead
to precoders with large elements, resulting in a large scaling
factor c. This does not affect the SIR but will reduce the power
of the signal as compared to that of the noise. The SNR is
hence reduced, which might lead to poor performance.

B. Robust linear precoding

The robust linear precoding (RLP) scheme is based on a
robust linear quadratic optimal feedforward control solution.
The precoding matrix is designed to minimize the sum of the
weighted mean square control error ε = Hu−z and a transmit
power penalty term, averaged over all prediction errors, noise
and measurement statistics

J = Ē
[
E ‖V ε‖ 2

]
+ E ‖Su‖ 2. (11)

Here, V is a positive definite matrix and S is a positive
semidefinite matrix. As a special case of the result in section
V of [4], it follows that when Ē [∆H∗V ∗V∆H] is known and
Ē [∆H] = 0, the precoding matrix minimizing J is given by

RRLP =
(
Ĥ∗V ∗V Ĥ + S∗S + E[∆H∗V ∗V ∆H]

)−1

Ĥ∗V ∗V D.

(12)
The gain constant c is then adjusted, as in the ZF case, to
satisfy the per-antenna power constraint. This does not affect
the the optimal R w.r.t. (11).

The basic RLP scheme (11), (12) is explicitly designed
to take the second order statistics of the channel prediction
errors into account. The influence of the prediction errors is
quantified as follows. The relation(

E[∆H∗V ∗V∆H]
)
jn

= tr
(
V ∗V Ē

[
∆Hn∆H∗j

])
,

follows from the proof of Lemma 1 of [4]. Here, (·)j denotes
column j of a matrix. Since the users predict the channels
independently we have E[∆h∗ij∆hmn] = 0 when i 6= m.
Using this, and assuming Kalman predictions (5), we find
that E[∆Hn∆H∗j ] is a diagonal matrix where element (i, i)
is given by

((CiPi (t+ ϑ|t)C∗i )k)
nj
.

Here (·)k denotes the submatrix of (CiPi (t+ ϑ|t)C∗i )
from (3) and (5) corresponding to the relevant subcarrier k.

Other covariance terms may be added to the inverse in (12),
describing e.g. the effects of feedback quantization errors.

When M = N , Ĥ is invertible, V = I , S = 0 and ∆H = 0,
then (12) reduces to the ZF precoder (9).

Two out of many possible adjustments of the RLP will be
evaluated and compared here.

1) Minimizing intracluster interference: With V = I and
S = 0 in (11), the transmit power is not penalized and the
errors at all receivers are considered equally important. This
setup minimizes the sum of interference powers.

2) Iteratively optimizing a different criterion: The mini-
mization criterion in (11) represents an auxillary criterion.
Often what we really wish to optimize is a function

f(Ē [E [PS,i]] , Ē [E [PI,i]] , Ē [E [PN,i]]), (13)

where Ps,i is the signal power, PI,i the interference power
and PN,i the noise power at user i. The weighting matrices V
and/or S can then be used as design variables, to be adjusted
by optimizing (13). For example we may set V = I and
set S diagonal, with real-valued adjustable diagonal elements.
This yields a N dimensional search as opposed to global
optimization of R which corresponds to a 2·N ·M dimensional
search for all the real and imaginary parts of the elements of
R. To optimize (13) we can then iteratively adjust the diagonal
real-valued elements ρjj of the penalty matrix

Sρ = diag(ρjj). (14)

In each iteration we calculate the expected values of the
powers as

Ē [E [PN,i]] = σ2
n,i,

Ē [E [PI,i]] =
1

c2

M∑
m6=i

Ē
[
|HR|2im

]
,

Ē [E [PS,i]] =
1

c2
Ē
[
|HR|2ii

]
,

(15)
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where σ2
n,i is the variance of the noise at user i and, assuming

Ē [∆H] = 0,

Ē
[
|HR| 2im

]
= Ē


∣∣∣∣∣∣
N∑
j=1

ĤijRjm +

N∑
j=1

∆HijRjm

∣∣∣∣∣∣
2


=
∣∣∣(ĤR)

im

∣∣∣ 2 +

N∑
j=1

N∑
n=1

((CiPi (t+ ϑ|t)C∗i )k)
jn
RjmR

∗
nm.

To limit computational complexity and ensure a more prac-
tical scheme we, in this paper, focus on a one dimensional
search of Sρ. This is carried out in two steps. First we calculate
RRLP as in section IV-B1. Second we find the base station
that is given the highest transmit power with this solution,
nmax and penalize the transmit power of that base station by
setting the elements in (14) to

ρjj =

{
ρ j = nmax

0 otherwise
. (16)

This reduces the difference in required transmit powers at
different transmitters, which reduces the rescaling c needed
to satisfy the power constraints. Then the total signal power,
and thus the SNR, increases, at the price of a decreasing SIR.
The optimal balance with respect to (13) is found in the range
of 0 ≤ ρ < ρmax where ρmax is the smallest ρ that causes a
new base station to have highest transmit power.

In this paper we use an estimate of the sum-rate

M∑
i=1

log

1 +
Ē
[
|HR|2ii

]
∑M
m6=i Ē

[
|HR|2im

]
+ c2σ2

n,i

 , (17)

as our criterion (13) to be maximized.

V. EVALUATIONS BASED ON MEASURED CHANNELS

A. Channel measurements

All simulations are here based on channel sounding mea-
surements carried out by Ericsson Research as described
in [11]. Three single antenna base stations, located at different
sites with 350-600 m distance, were used to transmit to a
measurement van in an outdoor suburban environment. The
measurements, which were obtained with high SNR over a
400 s interval along the measurement route, are used as true
channels in the following simulations. Figure 2 shows the
received signal powers from the base stations. To simulate
a lower maximum velocity and to make the model more
3GPP-LTE like, the data has been upsampled 25 × 3 times
in time×frequency using the fast Fourier transform. The
measurement parameters and the parameters for the upsampled
system are presented in Table I.

B. Simulation method and assumptions

Kalman predictors were used, and adjusted based on the
channel statistics. The fading statistics in time and frequency,
represented by fourth order AR processes, were estimated
separately and periodically every 0.5 s for the downlink
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Figure 2. Power of the received signals transmitted from the base stations
(full lines), noise floors of −120 to −100 dB used for simulations (dotted
lines) and the result of the simulations in Section V-E (gray-scaled bars).

Table I
MEASUREMENT AND SIMULATION PARAMETERS.

Parameter Value for Value for
measurements simulations

Carrier frequency 2.66GHz 2.66GHz
Subcarrier bandwidth 45kHz 15kHz

Number of base stations 3 3
Sampling time

5.3ms 0.64ms(time between CRS)
Maximum speed 30km/h 10km/h

Prediction horizon 5.1ms

channels from N = 3 single antenna base stations. We here
based the AR-models on noise-free channel data from the past
0.5 s. The channel correlation in frequency used to create
the matrix Q in (5) was estimated as the sample mean of
hki

(
hk+fi

)∗
for k = 1, ..K − w + 1 and f = 0, ..., w − 1.

Computational complexity increases with w, so we have used
a low value of w = 4 at the cost of larger prediction errors.
The prediction errors are reduced in a second step, by Wiener
smoothing over estimates from multiple Kalman predictors,
{q} working on adjacent frequency groups. Sets of signal
measurements spanning an appropriate range of SNR values
were created through (4) by the use of quasi-orthogonal CRSs
and by adding white Gaussian noise of five different power
levels, σ2

n, see Figure 2. The noise power was set equal
for all users, yielding Rn = σ2

nI . The channels were then
predicted using a prediction horizon of 72 OFDM-symbols,
corresponding to 5.1 ms in time and 0.08− 0.12 wavelengths
in space at the given carrier frequency and user speed (Table I).
The predictions were carried out for 432 adjacent subcarriers,
using CRS on every ninth OFDM-symbol and every subcarrier.
The NMSE (6) was averaged over each 0.5 s interval for every
subcarrier separately. We have observed that the Kalman filter
converges fast in this setting. Therefore we assume the use of
a stationary Kalman filter.

For evaluation of the precoding methods, M = 3 single
antenna users were scattered over the measurement route
in Figure 2. The precoding schemes were evaluated for the
432 subcarriers, using the predictions obtained for all five
σ2
n levels, as the users moved forward along the route for

0.5 s. The performance was averaged over the 0.5 s for each
subcarrier at 545 different sets of user starting positions along
the measurement route.
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Figure 3. CDF for the prediction NMSE of the channel of the best (black solid
lines), the second best (purple dashed lines) and the worst (blue dotted lines)
base station, grouped w.r.t. SNR as 0 <SNR< 10 dB (stars), 10 <SNR<
20 dB (diamonds), and 20 <SNR< 30 dB (pluses) .
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Figure 4. The prediction performance for the channel from the weakest base
station as a function of the SNR for that base station and the WTR. Black
indicates that all realizations achieved an NMSE ≤ −8dB and pale yellow
that none did so. White areas correspond to no data.

C. Prediction performance

Channel prediction for downlink CoMP has to be performed
for channels with very different powers. Figure 3 shows
cumulative distribution functions (CDFs) for the NMSE of
the predictions. The results are sorted into groups, best (with
highest SNR), second best and worst base station every 0.5 s,
since different base stations provide the strongest signal. The
SNR, which here represents the ratio of the CRS power to the
noise power, is averaged over 0.5 s. The channels from best
and second best base stations usually have a good NMSE,
much lower than for the channels from the worst base station,
even when they all belong in the same SNR range.

In Figure 4 we see the performance of the predictions of the
channel from the worst base station as a function of its SNR
and of the weakest-to-total signal ratio (WTR). The WTR is
the SNR when only the worst base station transmits divided by
the SNR when all three base stations transmit non-coherently.
It is clear that the prediction performance depends both on
SNR and WTR. It is the WTR dependence that causes the
large gap between the CDFs of the best and worst base stations
in Figure 3. This dependence arises due to our use of quasi-
orthogonal downlink CRSs. For frequency selective channels,
the received CRS vectors will not be orthogonal over the w
subcarriers (w = 4 corresponds to 60 kHz). Therefore, since
the measured channels are not perfectly flat fading, there will
be some interference between the predictions of the three
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Figure 5. CDF of the SIR of the individual users, using ZF (blue dotted lines),
RLP with S = 0 (black solid lines), RLP with S = Sρ (purple dashed lines).
The users are sorted into groups of the SNR each user would experience
if it received non-coherent JT from all base stations with no intracluster
interference. The intervals are 0 <SNR< 10dB (stars), 10 <SNR< 20dB
(diamonds), and 20 <SNR< 30dB (pluses).
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Figure 6. CDF of the rate of the individual users. Lines and markers represent
the same as in Figure 5.

channels. This effect is most severe for the channel from the
weakest base station and it increases with a decreasing WTR.
A similar behavior can be seen for the second best base station.

D. Precoding schemes

The Shannon spectral efficiency (rate) for the i′th user,
Ci = log2 (1 + SINRi), is calculated for all five noise power
levels, every subcarrier, and each set of starting positions.

The resulting average performance of the precoding
schemes, averaged over 545 sets of user positions, is shown
in Table II. We see that the RLP scheme with S = 0 attains a
higher average SIR than both ZF and RLP with an iteratively
adjusted S = Sρ. This is expected since a minimization of
the interference, averaged over the prediction errors, should
also increase the SIR. However, with respect to the sum-rate,
which was the optimization criterion used for the iterations,
RLP with S = Sρ outperforms RLP with S = 0 and ZF by
13% and 41% respectively. Studies have also been made on
optimizing more than one diagonal element of Sρ but these
have only resulted in minor improvements.

The differences of the schemes can be studied more closely
in Figure 5 and Figure 6, which shows the CDFs for the
SIR and rate respectivly, for the individual users. Here users
are sorted by the SNR they would experience if all three
base stations would transmit non coherently to that user only.
From the rate results we observe large gains with RLP at
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Table II
AVERAGE PERFORMANCE FOR THE PRECODING METHODS.

Method SIR [dB]
∑
i Ci [bps/Hz]

ZF 21.0 9.4
RLP, V = I ,S = 0 22.1 11.8

RLP, V = I S = Sρ 21.4 13.3

high SNR and small gains at low SNR. This indicates that
RLP would work best in combination with clustering schemes
that reduce the interference floor [3]. From the SIR CDFs
we see that the RLP schemes let users with low channel
quality experience a very low SIR in order to improve the
SIR for users with high channel quality. In contrast, ZF does
the opposite. However, the effort by ZF to improve the SIR
does not results in noticeable improvement in the rates for
the weak users. Their channel quality remains noise limited.
In contrast, the users with high channel quality are often
interference limited, so from a sum-rate perspective the system
gains more by decreasing their interference.

There are three reasons as to why the RLP schemes priori-
tize users with high channel quality.
• High channel gain users will have smaller prediction

errors, causing the RLP to prioritize them.
• Our choice of V = I indicates that all interference com-

ponents are equally important to minimize. The resulting
residual interference power then tends to be equal for
different users and will affect the users with low channel
gain more than users with high channel gain.

• When we use Sρ, the received signal power is part of the
criterion and the scheme does not waste transmit power
overcoming a poor channel. This effect is not present
when using S = 0.

One could argue that from a fairness point of view, ZF is
superior to RLP. However, the SIR improvement that ZF
achieves for the worst users is still not sufficient to improve
the rate for those users. We found that the situations for which
the RLP suppress the weakest user were often characterized by
one base station having a very poor channels to all three users.
In these cases we basically have two transmit antennas trying
to send to three receiver antennas. It would then make sense
to instead remove one user and let it use other transmission
resources.

E. Comparison of joint transmission and cellular transmission

Both RLP and ZF are joint transmission (JT) CoMP
schemes where we assume that all transmitters have access to
the same information. We will now compare JT, using the RLP
scheme with S = Sρ, to localized transmission where every
user is then allocated to its strongest base station, at all sub-
carriers for the full 0.5 s. Three users are randomly positioned,
as in the previous section. When m users belong to the same
base station they are served on orthogonal resources, using
every m′th subcarrier. Our test environment in Figure 2 then
comprises three single antenna base stations, each transmitting
at maximum power independently of the other base stations,
in a cellular system assumed to use frequency reuse 1.
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Figure 7. CDF of sum-rate over sets of user positions, noise levels and
subcarriers for ZF (blue dotted lines), RLP with S = 0 (black solid lines),
RLP with S = Sρ (purple dashed lines) and cellular transmission (green
dashed-dotted lines).
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Figure 8. The distribution of difference between the rate performance of a
cellular approach and the CoMP scheme (RLP with S = Sρ) from a system,
i.e. sum-rate, perspective (left) and a user perspective (right). Columns to the
left of zero indicate that CoMP is the better of the two and columns to the
right of zero indicate that the cellular approach is the better of the two.

In Figure 7, we see that the sum-rate is improved when
using RLP JT instead of cellular transmission from an average
of 11.7 bps/Hz to 13.3 bps/Hz, corresponding to a 13%
improvement. The improvement for the lowest sum-rates (5%
percentile) is 24%.

However, all user groups are not helped by switching
from cellular to RLP JT. The average rate over all sub-
carriers (including those subcarriers where the rate is zero
due to no transmission) of the cellular approach C̄celli is
now compared to the average rate over all subcarriers for
the RLP scheme, C̄RLPi . Figure 8 shows the distribution
of the difference between the two schemes from a system
perspective (left) and from a user perspective (right). The
system perspective is represented as the difference in sum-rate,
∆
(
ΣMi Ci

)
= ΣMi C̄

cell
i −ΣMi C̄

RLP
i , and the user perspective

is represented as the difference in Shannon rate for each user,
∆Ci = C̄celli − C̄RLPi . We find that that although RLP JT
outperforms cellular transmission on average, 48% of the users
would benefit from cellular transmission and in 33% of the
situations simulated, the system would benefit from cellular
transmission.

A system that could switch between the two schemes at
a 0.5 s basis could hence achieve a higher sum-rate than a
system using only one of the schemes. In our simulation,
switching would result in an average sum-rate of 14.0 bits/s/Hz
which correspond to a 20% improvement from cellular trans-
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mission and a 5% improvement from RLP JT. Calculating
the 5% percentile of the sum-rate over all subcarriers (i.e.
without averaging over all subcarriers), we find a 45% gain
compared to always using cellular transmission and a 17%
gain compared to always using RLP JT.

The gray-scaled bar at the bottom of Figure 2 shows the
fraction of users at a given position that benefit from RLP JT.
CoMP tends to be most beneficial to users who have at least
two transmitters with good SNR. Otherwise, it is not obvious
from these results that CoMP would always be better or worse
at a specific geographical position. Therefore it is important
to have a tool to evaluate if a user should belong to a joint or
a localized transmission scheme.

VI. CONCLUSIONS

We have studied how well we can simultaneously predict
channels from three transmitters with different fading statis-
tics, using Kalman predictors and quasi-orthogonal CRSs. We
also introduce robust feedforward control precoder designs and
evaluate them on the measured channels. Prediction accuracy
is in general high for the considered 5.1 ms horizons at
high pedestrian velocity. However, non-orthogonality between
reference signals due to frequency selective channels reduces
the performance for the weakest channels. Fully orthogonal
CRS patterns would remove this effect. One major benefit of
the Kalman predictor is that it provides channel error statistics.
We have seen, by comparing RLP to ZF, that taking such
statistics into account in the precoder design improves the
user rates. The scheme can be further improved by iterative
adjustment of the transmit power penalty matrix, S.

Though JT RLP outperforms cellular transmission on av-
erage, results indicate that further gains are possible with a
system that can switch between the two approaches every
0.5 s.

Open issues : The possibilities for influencing the perfor-
mance by using the penalty matrices S and V in (11) were
only touched upon in this study. Studies are ongoing on how
to adjust these matrice’s parameters for different purposes.
Moreover, our results will be compared to global optima with
respect to all elements of R.

Of the possible optimization criteria, the sum-rate is widely
used and is therefore convenient for producing results that
are comparable. However, the use of the sum-rate produces
a tendency to suppress the users with weak channels that
would need the rate improvement most. In ongoing work, other
criteria are investigated.

With more than N potential users, an appropriate user
grouping and scheduling scheme, that allocates the frequency
domain resource blocks to sets of spatially compatible users,
should be used in combination with the precoder. Such joint
designs are studied in ongoing work.
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APPENDIX

AR model parameter estimates are obtained at the receiver
using autocorrelation over time and the Yule-Walker equations.
To improve the accuracy, AR models are estimated for data
series subsampled with the step ϑ equal to the prediction hori-
zon. Poles {pl} of the ∆t-spaced model for hkij are calculated
from the subsampled model. As described in Chapter 4 of [10],
the model (3) is constructed as follows. First, the AR process
is realized in diagonal state space form, with diag(pl) as state
update matrix. The vector of channels from one transmitter
at all w subcarriers is then formed in block diagonal form.
The same AR parameters are used for all subcarriers. These
submodels are combined in block diagonal form to obtain
the model (3) for all channels from the N transmitters.
Submodels for transmitters at different sites require different
AR parameters.

The computational complexity is reduced to a level that is
realistic for use in terminals by the matrix Ai being diagonal
and by using the stationary Kalman filter, see Chapter 8.6
of [10]. The process noise covariance matrix is found by
combining equations (4.2.28) and (4.2.42) in [10].
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