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Abstract—In this paper, we consider joint optimization of 
end-to-end data transmission and resource allocation for 
Wireless-Infrastructured Distributed Cellular Networks 
(WIDCNs), where each base station (BS) in a cell is 
connected with its neighboring BSs via wireless links, and a 
mobile station (MS) can access one or multiple adjacent BSs 
simultaneously through time-varying OFDMA channels. The 
communications between a source MS and a destination MS 
are carried out with the help of BSs in the multi-hop, 
distributed manner. To achieve the joint optimization for 
such WIDCNs, a Stochastic Network Utility Maximization 
(SNUM) problem is formulated under the constraints of 
OFDMA sub-channel allocation on time-varying access links 
(both uplink and downlink), as well as routing and 
scheduling on forwarding links among BSs. By decomposing 
the corresponding dual problem, transforming it into a 
stochastic convex optimization problem and solving it by 
quasi-gradient method, we obtain distributed dynamic 
control algorithms for end-to-end data transmission. The 
algorithm can adapt to the OFMDA channel variation and 
converges asymptotically to the optimal solution. We also 
develop a distributed algorithm for OFDMA sub-channel 
allocation and link coordination between BSs. The 
simulation results show that the data rates of the flows can 
converge to optimal solution approximately, queues of the 
network is stable under the proposed distributed dynamic 
algorithm, and the multi-receiver scheme outperforms the 
single-receiver scheme due to diversity. 

Keyword—Wireless-Infrastructure Distributed Cellular 
Networks; stochastic optimization; distributed dynamic control 

I. INTRODUCTION 
In the existing cellular networks the base stations (BSs) 

are connected via wires. Deployment of such networks 
will become difficult and expensive in complicated 
geographical and disaster areas. In this case, connection of 
BSs via wireless links will make deployment fast, 
coverage flexible and cost low. Communications over 
such wireless infrastructured networks are conducted in 
the multi-hop and distributed manner. In this paper, we 
investigate such cellular networks which have 
Wireless-connected Base Station (WBS) with OFDMA 
technology, called Wireless-Infrastructured Distributed 
Cellular Network (WIDCN). Due to the limited wireless 
resource, providing services with high quality any time 
and anywhere is challenging.  

Joint design of different functions in different layers, 
e.g., congestion control, routing, MAC and resource 
scheduling, can significantly improve the performance of 
networks [1]. Optimization of an overall network is often 

formulated as a network utility maximization (NUM) 
problem. This can be classified into two categories: static 
network optimization and stochastic network 
optimization.  

For static network optimization, it is assumed that the 
states of the network (e.g., topology and channels), and 
the converged rates of data flows are invariant with time, 
and that there is no packet loss. The problem is often 
analyzed under deterministic fluid model. The solutions of 
such an optimization problem in the form of network 
utility function converge to a single optimal value [2] [3]. 
Decomposition technique has been proved to be a useful 
method to obtain the optimal value in a distributed way. 
An excellent survey on theory, architecture and the NUM 
problem and different decomposition techniques is given 
in [1]. 

For stochastic network optimization, the dynamic and 
variance of the networks (due to channel fading, user 
mobility, or link failure etc.) are considered. Adaptive 
queue and Lyapunov optimization technique have been 
developed in [4] [5] to design dynamic control algorithm 
for congestion control, routing and resource scheduling. A 
greedy primal-dual algorithm for stochastic network 
optimization was proposed in [6]. In [7] an ad hoc 
network with time-varying links is considered and the 
algorithms for the NUM problem are proposed based on 
the dual decomposition method for state network 
optimization. 

In this paper, we consider joint optimization of 
end-to-end data transmission control and distributed 
resource allocation for WIDCN with time-varying 
OFDMA channels on access links. It is a problem of 
stochastic network optimization. To develop a distributed 
algorithm for such joint optimization, we solve the 
problem by dual decomposition in its dual domain. We 
deduce the dynamic control algorithm by transforming 
dual problem into a stochastic optimization problem and 
solving it using stochastic quasi-gradient method [8]. A 
similar method was used in [9], in which the authors 
developed a centralized algorithm for joint link scheduling 
and power control in time-varying multi-hop network, but 
did not consider end-to-end data transmission control and 
distributed implementation of the algorithm. 

II. SYSTEM MODEL AND PROBLEM FORMULATION 

A. WIDCN Model 

The WIDCN we consider here is shown in Fig.1. Its 
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architecture is similar to the traditional cellular networks 
except that BSs are connected by wireless links and thus 
called wireless BSs (WBSs). A mobile station (MS) can 
access one or multiple adjacent WBSs simultaneously 
through time-varying OFDMA channels. There is no 
control node to centrally coordinate resource allocation. 
Thus the network considered here is totally distributed. It 
can be an individual network to cover a certain area and 
provide high quality services for some special purposes 
which need fast deployment and low cost. It also can be 
connected to the exterior networks (existing cellular 
networks, Internet) through gateways. 

Each WBS is assumed to have two different radio 
interfaces operating over independent frequencies. One 
radio interface is used for WBS-to-WBS communication 
to form forwarding links, the other is used for uplink and 
downlink communication between WBSs and MSs to 
form uplink and downlink access links. The frame 
structures for both access links and forwarding links are 
showed in Fig. 2. An access frame is divided into an 
uplink and a downlink sub-frame, respectively, and each 
sub-frame includes several OFDMA sub-channels that can 
be used by different WBS-MS pairs in the same sub-frame. 
We assume that the lengths of uplink and downlink access 
sub-frames are the same, and each has half of the entire 
access frame. The lengths of the access frame and the 
frame for forwarding links are the same.  

WBS

WBS

WBS
MS

 
Fig 1.  Architecture of Wireless Infrastructured Distributed Cellular 

Network (WIDCN). 

 
Fig 2.  Frame structure for access and forwarding links 

We assume that a MS can communicate with one WBS 
or with several adjacent WBSs simultaneously by using 
different OFDMA sub-channels when the MS is located 
near the boundary of several cells so as to gain multiple 
receiver diversity (called multi-receiver scheme). To 
avoid interference, one-hop neighboring WBSs can not 
use the same OFDMA sub-channel on their access links at 
the same sub-frame, and thus they need to allocate 
OFDMA sub-channels in a distributed way. OFDMA 
channels are time-varying due to slow mobility of MSs 
and varying environment. Every WBS is assumed to have 
six neighbors due to stationary cellular structure, and have 
six directional antennas installed, each of which faces its 
adjacent WBS. We further assume that the forwarding 

links are stationary with fixed link rates, but operate in 
half-duplex mode. With these reasonable assumptions, the 
scheduling of links among WBSs becomes simpler and 
just needs the coordination between WBSs on both ends 
of an individual link. 

B. Optimization Problem for End-to-end Data 
Transmission 

We consider a WIDCN with B  WBSs, labeled 
{1,..., ,b  ..., }B  and M MSs, labeled {1,..., , ..., }m M . 
Let bC  represent the set of MSs that can be connected to 
WBS b , and mD  represent the set of WBSs which MS 
m  can connect to. Assume the number of OFDMA 
sub-channels (labeled {1, …, n , …, N }) is N . 

The bit rate of an end-to-end service flow from source 
MS m  to destination MS d  is denoted ,d

mx m d≠ . 
The utility function associated with each service flow is 

( )d d
m mU x . ( )U  is assumed to be a strictly concave, and 

differentiable function. Utility function represents the 
satisfaction of corresponding service flow with bit rate 

d
mx  [1].  

Assuming that access channels are time-invariant 
within each frame, then the time-varying OFDMA 
sub-channels on the access link can be modeled as a 
stationary process { ( ), 0}s t t >  with finite state space S  
and having an independent and identical distribution (i.i.d.) 
{ ( ), }d s s S∈ . In each state s , let , , ( )m b nRu s  be the bit rate 
on sub-channel n  between source MS m  and BS b  
( bm C∈  and mb D∈ ) .  

We define an uplink and a downlink sub-channel 
allocation policy, namely, , ,{ , },d

m b n bqu qu m C= ∈ and 

, ,{ , }d b n bqd qd d C= ∈ , respectively, where , ,
d
m b nqu  and 

, ,d b nqd  are binary indicators. , , 1d
m b nqu =  ( , , 1d b nqd = ) 

denotes that sub-channel n  is allocated on uplink 
(downlink) between MS m  (MS d ) and BS b  for the 
transmission of flow d

mx  (the data destined to d ). Let 
( )Qu s  and ( )Qd s  denote the sets of feasible uplink and 

downlink sub-channel allocation policies, respectively, in 
state s . Let ( , )s quφ  and ( , )s qdφ  denote the 
probabilities of policies qu  and qd  being chosen in the 
state s , respectively, and ( , ) 0s quφ ≥ , ( , ) 0s qdφ ≥ , 

( )
( , ) 1

qu Qu s

s quφ
∈

=  and 
( )

( , ) 1
qd Qd s

s qdφ
∈

= . The average 

(mean) feasible uplink bit rate between MS m  and BS 
b  for flow d

mx  is 

, , , , ,
( )

( ) ( ) ( , )( ( ) )d d
m b m b n m b n

s S qu Qu s n

E Ru d s s qu Ru s quφ
∈ ∈

=   (1) 

and the average (mean) feasible downlink bit rate between 
BS b  and MS d  is 

, , , , ,
( )

( ) ( ) ( , )( ( ) )d b d b n d b n
s S qd Qd s n

E Ru d s s qd Ru s qdφ
∈ ∈

=   (2) 

Thus, for all the probabilities, ( , )s quφ  and ( , )s qdφ , 
the sets of ,( )d

m bE Ru  and ,( )d bE Ru  are all convex. 

For the forwarding link, let ,
d

i jr  be the amount of 
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capacity allocated to the flow destined to d  on the link 
between WBS i  to WBS j . We assume the capacity of 
forwarding links is identical and invariable. Let Γ  be the 
capacity of a link between two neighboring WBSs.  

Objective and constraints of the problem for 
end-to-end data transmission: 

1) Our objective is to maximize the sum of utility of 
all the flows in the network, namely, 

Maximize 
,

( )d d
m m

m d
m d

U x
≠

            P1 

subject to the following constraints: 
2) access constraints in source MSs 

,(1/ 2) ( )
m

d d
m m b

b D

x E Ru
∈

≤  for , ,m d m d∀ ≠         (3) 

3) forward constraints in BS b  for the flows whose 
destination is bd C∉  

, , ,(1/ 2) ( )
b

d d d
m b b i i b

m C i i

E Ru r r
∈

≤ −  for , and bb d d C∀ ∉  

(4) 
4) forward constraints in BS b  for the flows whose 

destination is bd C∈  

, , ,(1/ 2) ( ) (1/ 2) ( )
b

d d
m b d b i b

m C i

E Ru E Ru r
∈

≤ −  

   for , and bb d d C∀ ∈                      (5) 
5) and forwarding link capacity constraints 

 
, ,

, ,i j

d d
i j j i

d d C d d C

r r
∉ ∉

+ ≤ Γ  for ( , )forwarding link i j∀ .  

(6) 
The factor 1/2 in (3), (4) and (5) is due to the 

assumption of lengths of uplink and downlink access 
sub-frames are the same. From the above assumptions and 
analysis in this section, we can easily know P1 poses a 
convex NUM problem with linear (stochastic) constraints 
and a concave objective function [10]. Efficient 
interior-point methods (e.g., primal-dual interior-point 
methods) [10] can be used to solve the problem. But these 
methods require the knowledge of channel state 
distribution, all the feasible sub-channel allocation policies 
and computation in some central node. But a more 
attractive approach to the problem is the dual 
decomposition [1] [2] [3] [7] which results in a solution to 
enable distributed implementation. To tackle time-varying 
OFDMA channel, stochastic optimization method [8] [9] 
can be used to deduce solution without the need to know 
channel state distribution so long as the channel has an 
i.i.d.  

III. SOLUTION BY DUAL DECOMPOSITION AND 
STOCHASTIC OPTIMIZATION 

Since P1 is convex, strong duality holds. Thus, it can be 
approached by solving its dual problem which has a 
desirable property of decomposition in protocol layering 
to enable real-time and distributed implementation [1]. In 
this section we consider time-varying channel state, and 
we transform the dual problem into a stochastic 
optimization problem and solve it using stochastic 
quasi-gradient method. The algorithm in this case only 
depends on the channel state of the current frame, but it 

can obtain asymptotic global optimal solution. This 
solution serves as a basis for our development of a 
distributed dynamic control algorithm, which is presented 
in detail in the next section. 

A. Dual Problem 

We introduce Lagrange multipliers, d
mλ  and d

bλ  
, , ,m b d m d∀ ≠ , to relax the corresponding constraints in 

(3), (4) and (5). Let λ  be the vector of all the Lagrange 
multipliers and , , ( ), ( )X r E Ru E Rd  denote the vectors of 
variables ,, ,d d

m i jx r  , ,( ) and ( )d
m b d bE Ru E Ru , respectively. 

We have a dual function 

, ,
,

, ,

, , ,
,

, , ,
,

( ; , , ( ), ( ))
max { ( ) ( (1 / 2) ( ) )

( (1 / 2) ( ) )

( (1 / 2) ( ) (1 / 2) ( ) ) }

d d
i j j i

m
d d

b
b

b
b

d d d d d
m m m m b m

r r m d m d b D
m d

d d d d
b b i i b m b

d b i i m C
d MS

d d d
b d b i b m b

d b i m C
d C

D X r E Ru E Rd

U x E Ru x

r r E Ru

E Ru r E Ru

λ
λ

λ

λ

+ ≤Γ ∈
≠

∈
∉

∈
∈

= + −

+ − −

+ − −

 (7) 

which turns the primal problem P1 to the following dual 
problem 

Minimize ( )D λ          P2 
Subject to 0λ ≥  

B. Transforming Dual Problem into a Stochastic 
Convex Optimization Problem 

Considering (1) and (2), the dual function (7) can be 
reformulated in the following form: 

1, 2 3 4
,

1, 2 3 4
,

2 3 1, 4
,

( ; , , ( ), ( ))
( ) ( )[ ( , ) ( , ) ] ( )

( ) [ ( , ) ( , ) ] ( )

[ ( , ) ( , ) ( ) ( ) ]

d
m

m d s S
m d

d
m

m d
m d

d
m

m d
m d

D X r E Ru E Rd

D d s D s D s D

D E D s D s D

E D s D s D D

λ
λ λ λ λ

λ λ λ λ

λ λ λ λ

∈
≠

≠

≠

= + + +

= + + +

= + + +

 

where  

1, ( ) max[ ( ) ]d d d d d
m m m m mX

D U x xλ λ= −                   (8) 

2 , , , ,, ( , ) ( ) ( , )
,

( , ) max ( , ) [ ]( ( ) )

b

d d d
m b m b n m b nqu s qu qu Qu s b m d n

m C

D s s qu Ru s qu
φ

λ φ λ λ
∈

∈

= −

 (9) 

3 , , , ,, ( , ) ( ) , ,
( , ) max ( , ) ( ( ) )

b

d
b d b n d b nqd s qd qd Qd s d b n n

d C

D s s qd Ru s qd
φ

λ φ λ
∈

∈

= (10) 

,
4 ,

( ) , , ,
( ) max [ ]

d
i j

d

d d d
i j i j

r t i j d d Ci

D rλ λ λ
≤Γ ∉

= −                 (11) 

There may be multiple policies to maximize (9) and (10) 
in each state s . To obtain maximum in (9) and (10), we 
can select optimal policies, qu∗ and qd ∗ , from the 
following sets, respectively,  

 , , , ,
( ) ( , )

,

( ) arg max [ ]( ( ) )

b

d d d
m b m b n m b n

qu Qu s b m d n
m C

Qu s Ru s quλ λ∗

∈
∈

= − (12), 
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, , , ,
( ) , ,

( ) arg max ( ( ) )

b

d
b d b n d b n

qd Qd s d b n n
d C

Qd s Ru s qdλ∗

∈
∈

=          (13) 

by setting ( , ) 1s quφ ∗ =  and ( , ) 1s qdφ ∗ = .  

Then, the dual problem P2 becomes a stochastic convex 
optimization problem [8] 

Minimize 5 6 1, 4
,

[ ( , ) ( , ) ( ) ( ) ]d
m

m d
m d

E D s D s D Dλ λ λ λ
≠

+ + +    P3 

Subject to 0λ ≥  
where  

5 , , , ,( ) ( , )
,

6 , , , ,( ) , ,

( , ) max [ ]( ( ) )

( , ) max ( ( ) )
b

b

d d d
m b m b n m b nqu Qu s b m d n

m C

d
b d b n d b nqd Qd s d b n n

d C

D s Ru s qu

D s Ru s qd

λ λ λ

λ λ

∈
∈

∈
∈

= −

=
 

C. Solving stochastic convex optimization problem by 
sub-gradient update method 

We define a quasi-dual function at state s  as  
5 6 1, 4

,
( , ) ( , ) ( , ) ( ) ( )d

m
m d
m d

QD s D s D s D Dλ λ λ λ λ
≠

= + + +  

Assuming that , , ,X r qu qd∗ ∗ ∗ ∗  are the optimal solutions 
to 1,

, ,
( )d

m
m d m d

D λ
≠

, 4 ( )D λ , 5 ( , )D s λ  and 6( , )D s λ , 

respectively, we have the sub-gradients of quasi-dual 
function ( , )QD s λ  at d

mλ , ,d
b bd Cλ ∉  and ,d

b bd Cλ ∈ , 
which are given, respectively, as follows [10],  

, , , ,( ) (1/ 2) ( )
m

d d d
m m b n m b n m

b D n

G s Ru s qu x∗ ∗

∈

= −  

1, , , , , , ,( ) (1/ 2) ( )
b

d d d d
b b i i b m b n m b n

i i m C

G s r r Ru s qu∗ ∗ ∗

∈

= − −  

, ,2, , , , , , , ,( ) (1/ 2) ( ) (1/ 2) ( )
d b n

b

d d d
b d b n i b m b n m b n

n i m C n

G s Rd s qd r Ru s qu∗ ∗ ∗

∈

= − −

To solve stochastic convex optimization problem P3, we 
use the quasi-gradient update method in stochastic 
optimization [8] [9] as follows.  

Algorithm 1: stochastic quasi-gradient update method 

At the tht  step, we estimate the current channel state 
( )s t , solve the sub-problems (8), (9), (10) and (11) and 

get optimal , , ,X r qu qd∗ ∗ ∗ ∗ . Then we calculate 
sub-gradients ( ( ))d

mG s t , 1, ( ( ))d
bG s t  and 2, ( ( ))d

bG s t  of 
quasi-dual function ( , )QD s λ in this step, and update dual 
multipliers in the following fashion 

( 1) max( ( ) ( )( ( ( ))), 0)d d d
m m mt t t G s tλ λ ε+ = −  

1,( 1) max( ( ) ( )( ( ( )) ), 0), for d d d
b b b bt t t G s t d Cλ λ ε+ = − ∈     (14) 

2,( 1) max( ( ) ( )( ( ( )) ), 0), for d d d
b b b bt t t G s t d Cλ λ ε+ = − ∉  

Where ( )tε  is a positive scalar step size.  
If the length of a queue is bounded, the queue is stable. 

If all the queues in the network are stable, the network is 
stable [5]. We can view the actual queue length as 

/ ( )d d
m mQL tλ ε=  [11]. To facilitate distributed 

implementation, we prefer a constant step size ε . In such 
a case, the optimality and stability of the algorithm are 
addressed in the following theorem. 

Theorem 1: if we use a constant step size ε , and the 
state process { ( ), 0}s t t >  is a stationary and ergodic 
process, then there exists positive constants A, B and C, 
and the algorithm ensures that 

1

0 , , ,

1 ( ) ( ) 1limsup { }
d dt
m b

t m d m d b d

E A B
t τ

λ τ λ τ
ε ε ε

−

→∞ = ≠

+ ≤ +  

, , , ,
(( ) ) liminf ( )d d d d

m m m mtm d m d m d m d

U x U x Cε∗

→∞≠ ≠

− ≤  

where ( )d
mx ∗  is the optimal solution of the P1, and 

1

0

1 { ( )}
t

d d
m mx E x

t τ
τ

−

=

= . 

  The first inequality in Theorem 1 states that the time 
average of the queue length is bounded and thus the 
network is stable, while second one states that the gap of 
optimal value and the time average value of P1 is linear in 
the constant step size and can asymptotically approach 
optimal solution so long as ε  is small enough. Thus with 
the assumption that the state process ( )s t  is i.i.d. in each 
step, Algorithm 1 does not need to know exactly the state 
distribution. The proof of Theorem 1 is similar to that in 
[13] using ‘Lyapunov drift’ and ‘Lyapunov optimization’ 
theorem and thus not given here. Numerical verification 
of the convergence and stability of the algorithm will be 
given by simulation in Section . 

IV. DYNAMIC CONTROL AND DISTRIBUTED RESOURCE 
ALLOCATION ALGORITHM 

In section III.B, we decomposed the dual problem into 
four sub-problems (8)-(11). For each step t  and the 
corresponding Lagrange multipliers ( )tλ  in algorithm 1, 
we should solve the following sub-problems: 1) rate 
control subproblem (8); 2) Uplink OFDMA sub-channel 
allocation subproblem (12); 3) Downlink OFDMA 
sub-channel allocation subproblem (13); 4) Joint 
scheduling, routing and rate allocation subproblem for 
forward links (11). 

The above decomposition method facilitates the 
implementation of distributed control algorithm. Due to 
channels being time-varying, link scheduling and decision 
variables may change from frame to frame. Thus, we 
propose distributed dynamic control algorithm for 
end-to-end data transmission based on the dual 
decomposition, which is detailed in the following 
Algorithm 2 (assuming utility function ( ) ln( )U = ): 

Algorithm 2: Distributed dynamic control for 
end-to-end data transmission 

At the beginning of the frame t , the algorithm conducts 
the following steps 
1)  Source rate control: each MS calculates its data rate 
in this frame for flow d

mx  as following: 
( ) 1/ ( )d d

m mx t tλ=  bits/frame 
2)  Control information exchange: each WBS b  
estimates the current channel state, finds 

 
1 , ,( , )

2 , ,

( , ) ma x( ( ) ( ) )

( , ) ma x( ( ) )
b

d d
m b m b nm d

m C

d
b d b nd C

W n b Ru s

W n b Rd s

λ λ

λ
∈

∈

= −

=
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for each sub-channel n , and sends all 1( , )W n b , 2 ( , )W n b  
and d

bλ  to its neighboring WBSs. 
3) Distributed sub-channel allocation: WBSs allocate 
sub-channels for uplink and downlink access links using 
Algorithm 3 which is given below. 
4) Forwarding link scheduling: WBSs coordinate the 
transmission of forwarding links using Algorithm 4 
which is given below. 
5) Routing: MSs and WBSs transmit on the allocated 
sub-channels or links determined in 3) and 4) during this 
frame. 
6) The WBS updates its dual multipliers for the next 
frame according to (14) based on the results of the above 
resource allocation. 

Unlike ad hoc networks, MS nodes have no capacity to 
allocate sub-channels. It’s the responsibility of WBSs for 
allocating sub-channels for both uplink and downlink 
access links under the assumptions in section II. The 
sub-problems SP2 are actually the 2-hop maximum 
weighted matching problems which are NP-hard problems 
[14]. A distributed greedy algorithm has been proposed 
for primary interference models in ad hoc or multi-hop 
networks [7] [11]. Here we propose a distributed OFDMA 
sub-channel allocation algorithm for both uplink and 
downlink accesses based on the greedy maximum 
weighted matching algorithm [12] by exchanging signals 
( 1( , )W n b , 2 ( , )W n b  and d

bλ ) among WBSs for 2-hop 
sub-channel interference model. 
Algorithm 3: Distributed OFDMA sub-channel 
allocation 
1) For sub-channel n, WBS b compares 1( , )W n b  and 

2( , )W n b  of itself and its neighbors’.  
 If the value of 1( , )W n b  is larger than all of its 

neighbors’, it sends an OCC_UP ( , )n b  message to 
all its neighbors to inform them that WBS b will 
occupy sub-channel n  on the uplink in this frame. 
Similarly, if the value of 2( , )W n b  is larger than all 
of its neighbors’, it sends an OCC_DOWN ( , )n b  
message to all its neighbors to inform them that 
WBS b will occupy sub-channel n on the downlink 
in this frame. 

 If a WBS receives an OCC_UP  ( OCC_DOWN ) 
message regarding sub-channel n from any of its 
neighboring WBSs, then it sends a QUIT_UP  
( QUIT_DOWN ) message on this sub-channel to 
inform that it quits competing for this channel for 
uplink (downlink) in this frame. 

 If a WBS receives a QUIT_UP ( QUIT_DOWN ) 
message regarding sub-channel n from all its 
neighbors, it will occupy this sub-channel for uplink 
(downlink). 

2)  For the sub-channels on which a WBS has not 
received any OCC_UP  ( OCC_DOWN ) message, and 
not received the QUIT_UP ( QUIT_DOWN ) message 
from all its neighbors, the WBS will do the similar things 
to step 1) except that the WBS compare 1( , )W n b  and 

2( , )W n b  of itself and those of its neighbors’ from whom it 
has not received QUIT_UP  ( QUIT_DOWN ) message, 
until all the sub-channels have been allocated.  
3) For the sub-channel n  occupied by WBS b on uplink, 
WBS finds 

( , ),
( , ),

[ , ] arg ma x( ( ) )
b

d d d
m b m b n

m d m C
m d Ruλ λ∗ ∗

∈
= −   

and informs MS m∗  that the sub-channel n  is allocated 
to its flow which is destined to d ∗ . 
4) For the sub-channel n  occupied by WBS b on 
downlink, the WBS finds 

( , ),arg ma x( )
b

d d
b d b n

d C
d Rdλ∗

∈
= .  

And then the WBS will use sub-channel n  to send data 
destined to d ∗  in this frame. 

In general, link scheduling in multi-hop networks is 
also a NP-hard problem under k-hop interference model 
( 2k ≥ ) [14]. Due to the use of directional antennas, 
forwarding link scheduling in the WIDCN becomes 
simple and just needs the coordination between WBSs on 
the two ends of an individual forwarding link. 
Algorithm 4: Link Coordination Between Adjacent 
BSs 
For each link ( , )b j  between WBS b and WBS j: 
1) WBS b finds | |arg max

b

d d
b j

d C

d λ λ∗

∉

= − .  

2) If 0d d
b jλ λ

∗ ∗

− > , then WBS b will send data destined to 
d ∗  on link ( , )b j  with rate Γ , otherwise, not send 
anything in this frame. 

 
V. SIMULATION AND RESULTS 

We set up a simple scenario to verify the convergence 
and stability of the proposed distributed dynamic control 
algorithm. Then we consider a wireless-infrastructured 
cellular network shown in Fig.3, which follows the 
assumptions of the system model in section II. There is 
one wireless BS in each cell with a radius of 100 (with an 
arbitrary unit). There are four MSs in the network. Their 
positions are (100 50), (290 82), (600 470) and (390 460), 
respectively. We assume that a MS can access the WBSs 
within the distance of less than 150 so that each MS can 
access at most three WBSs if the MS is located near the 
boundary of the three cells. In the present setup, each MS 
can access three WBSs. As we assumed in section II, 
neighboring WBSs are not allowed to allocate the same 
sub-channel to their MSs in the same frame both in uplink 
or downlink. Thus, MS1 and MS2, MS3 and MS4 will 
contend for the same sub-channels in some adjacent 
WBSs. There are two sessions in the network: the first is 

3
1x  MS1-> MS3 and the second 4

2x  MS2->MS4. To 
simplify the simulation, we assume the capacity of each 
sub-channel has an i.i.d over  (16/N)*[1, 2, 3, 4, 5] (N is 
the number of OFDMA sub-channels). Each forwarding 
link has a capacity of 50Γ = . In the implementation, we 
use a small step size ( )tε = 0.001 in (14).  
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Fig 3.  Scenario in the simulation 

A. Convergence of the algorithm 

Variation of data rates of the two flows with iteration (or 
the number of frames) for 16 sub-channels is illustrated in 
Fig. 4. It can be seen from the figure that two source rates 
quickly converge to the vicinity of the optimal values, 
11.8 and 3.7, respectively, but oscillate around them. The 
oscillation is due to the time-varying of access channels 
and discrete OFDMA sub-channel allocation and 
forwarding link scheduling. The time averaging of the 
source rates of both flows results in a smooth convergence, 
as shown in Fig. 5.  
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Fig 4.  Source rates of two flows with bit rates, 3
1x  and 4

2x  (N=16) 
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Fig 5.  Average source rates of two flows (N=16) 

B. Queue length and Stability of the network 
Fig. 6 shows the queue lengths in sources MS1 and 

MS2, respectively when the number of sub-channels is 32. 
From the figure we can see that the queue lengths in MS1 
and MS2 converge rapidly to the vicinity of the contants 
and oscillate around them (since ( )tλ λ∗→  as t → ∞ ), 
which shows both queue lengths are bounded and thus 
stable. Similarly, Fig. 7 shows the average length of the 
queues in the network, and we can see from the figure that 
it is also bounded, which means that the network is stable 
with the proposed algorithm. 
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Fig 6.  Queues lengths in MS1 and MS2 (N=32) 
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Fig 7.  Average length of the queues in the network 

C. Performance of Multi-receiver diversity. 
In the end, we compare the performance of a 

single-receiver scheme with that of a multi-receiver 
scheme. For such a single-receiver scheme, we assume 
that an MS can only access one WBS. In the setup, thus, 
we let MS1 attach to BS1, MS2 to BS6, MS3 to BS15, 
and MS4 to BS14. Because an MS can access multiple 
WBSs by using different OFDMA sub-channels, then a 
multi-receiver scheme can increase diversity space and 
thus uplink and downlink access capacity. Accordingly it 
can fully utilize the capacity of forwarding links between 
WBSs. This is shown in Fig. 8 in which it can be seen that 
the converged average data rates of the multi-receiver 
scheme are greatly larger than those of the single receiver 
scheme.  
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Fig 8.  Comparison of single receiver and multiple receiver schemes 

(N=32) 

VI. CONCLUSION 
We have presented a jointly optimized end-to-end data 

transmission control and resource allocation strategy for 
wireless infrastructured distributed cellular networks 
(WIDCNs) that have wireless-connected BSs, 
time-varying OFDMA access links and multi-receiver 
schemes. With formulating the joint design as a stochastic 
network utility maximization (SNUM) problem, we 
deduced distributed dynamic control algorithms for 
end-to-end data transmission using dual decomposition 
method and stochastic optimization theory. The 
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algorithms are shown to be adaptable to OFMDA channel 
variation and to converge asymptotically to the optimal 
solution. An algorithm for distributed OFDMA 
sub-channel allocation access links and an algorithm for 
the coordination of links between WBSs have been 
developed. Through simulation, we have showed that the 
proposed algorithms are convergent and stable, and that 
the multi-receiver scheme is superior to the 
single-receiver scheme  
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