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Abstract—In this paper we present a cross-layer algorithm for 
joint optimization of congestion control, routing, and scheduling 
in wireless multi-hop networks with network coding. We 
introduce virtual flow variables in the formulation of capacity 
region of the networks. The utility maximization problem subject 
to constraints on the capacity region is solved using dual 
decomposition and subgradient method, based on which a new 
queuing model is obtained and which also can result in a cross-
layer algorithm for distributed implementation. The new queuing 
model can facilitate coding operations and reduce coding 
complexity. Simulation results show that network coding in the 
proposed joint optimization algorithm can interact adaptively 
and optimally with other components in different layers, and thus 
yield higher performance than the routing scheme without 
network coding. 

Keywords-Wireless multi-hop network; Network coding; Cross-
layer Optimization 

I. INTRODUCTION  

Network coding (NC) has emerged as a promising 
mechanism to efficiently utilize the resource of both wired and 
wireless networks. The pioneering work by Ahlswede et al. [1] 
has showed that maximum capacity of a multicast session can 
be achieved with NC. It is more attractive to implement NC in 
wireless networks due to the broadcast property of wireless 
medium, i.e., a single transmission from a node can be 
received by all its neighbours. A typical wireless NC is the 
opportunistic XOR coding, e.g., COPE scheme proposed in [2] 
that can identify coding opportunities and forward multiple 
packets (coded together) in a single transmission using 
broadcast advantage. However, integration of NC into the 
existing architecture of wireless network is not straightforward. 
Network coding can not work as an independent function in a 
specific layer. Optimal control of wireless multi-hop networks 
with NC involves interaction of NC with all the other 
functions in different layers (e.g., congestion control in 
transport layer, routing in network layer and scheduling in 
MAC layer).  

Cross-layer optimization of wireless communication 
networks has been a very active research area in recent years. 
Backpressure-based approaches that determine routing and 
scheduling using queue backlog information is widely used for 
cross-layer design due to its optimality [14]. Joint optimization 
of congestion control, routing and scheduling for wireless 
multi-hop networks has been extensively studied using dual 
decomposition and sub-gradient method [3] [4]. Backpressure-
based control algorithms for joint routing, scheduling and 
network coding across multiple uncast sessions are developed 

in [5] and [6] based on the poison-remedy approach [13]. The 
problem of coding-aware routing for wireless multi-hop 
networks is solved using linear programming, which is a 
centralized solution [7]. A backpressure-based optimal policy 
for joint scheduling and network coding with predetermined 
routing is proposed [8]. An oblivious backpressure algorithm 
for joint routing, scheduling and network coding is proposed 
in [9] for energy efficiency of wireless networks. However, 
optimal coding operation involves searching all the packets in 
all the queues, which results in a high complexity. In this 
paper, we consider joint optimization of congestion control, 
routing, scheduling and network coding for a wireless multi-
hop network.  

The paper is organized in the following way. In Section II 
the system model is discussed and the capacity region is 
formulated by introducing virtual flow variables. Then in 
Section III, the utility maximization problem is solved using 
dual decomposition and subgradient method, a new queuing 
model is obtained from the dual variables and then a cross-
layer optimization algorithm is proposed. The simulation 
results are presented in Section IV, and the paper is concluded 
by Section V.  

II. SYSTEM MODEL AND CAPACITY REGION WITH 

NETWORK CODING 

A. System model 

Consider a wireless multi-hop network, whose topology is 
represented by a directed graph  with a node set N 
and a link set L. Link between nodes i and j is denoted by 

. The maximum transmission rate of each link  has a 
fixed value, . We assume that time is slotted and all the 

nodes in the network are synchronized. 

( , )G N L

( , )i j ( , )i j

ijc

 
Fig.1 OTIC network coding 

Denote d
ix  as the data rate of the session generated at node i 

and destined to node d. We consider a multi-commodity flow 
model and view packets to the same destination as one 
commodity. Let { : 1,..., }D d d N   be the set of commodities. 

It is easy to verify that it is inefficient to apply network coding 
to the sessions to a common destination. Here we consider 
one-hop network coding between local two-way commodities 
at intermediate nodes. Specifically, as showed in Fig. 1, 
assuming a commodity d  traversing links ( , )j i  and ( , )i k , and 
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another commodity d   traversing links ( , )k i  and ( , )i j , then 
node i XORs the packets from d  and d   and sends the coded 
packet through one broadcast to nodes j and k, where the 
coded packets will be decoded immediately using the packets 
that had traversed the node before. We refer to such a coding 
scheme as One-hop Two-way Inter-Commodity (OTIC) 
network coding. 

We assume that each node uses a single half-duplex 
transceiver so that the node can not receive or transmit 
simultaneously. For OTIC network coding, a coded packet 
contains two packets that are from two different commodities 
(d and d’) sent in reverse directions. Thus, there are two kinds 
of transmission: unicast transmission of native packets on a 
single link and broadcast transmission of coded packets on 
two links with a common transmitting node and two different 
receiving nodes. Denote ( ,  as a broadcast link with 
transmitting node i and receiving node set B which contains 
two nodes in the OTIC case, i.e., B={ ,  and | | . In the 
following, we also use ( ,  to denote broadcast link ( , . 
Transmission rate is denoted as c , which is defined as 

. Let ( ,  denote the broadcast 

transmission on link ( ,  and received by node

)

)

( ,j k

i B

, )k

ij

))k

}j k 2B

(i j

( ,i j

)i B

,(

))

,i j )k

,( , ) min( , )i j k ij ikc c c

j . Thus, 
we have c c . Let E denote the set of all the 

possible broadcast links with each element denoted by e.  
,( , )ij j k ik ,( , )j k ,(i , )j kc

  We consider K-hop interference model in which links within 
a K-hop range can not be active simultaneously. Using the 
method in [7], we can construct a conflict graph to identify all 
possible independent sets of links. An independent set is such 
a set of unicast and broadcast links that can be active 
simultaneously, because each is out of the K-hop range of 
other. Let  denote the set of all the independent sets, and    
an independent set that is a combined rate vector ( , )u Br r   with 

a || | |L E -dimension. The rate vector ur
  is of | |L -

dimension, and its l-th element can be written as 
if unicas
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and the rate vector Br
  is of -dimension and its e-th 

element can be expressed in the following manner 
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The feasible transmission rate region in the link layer using 
a time-sharing scheme is the convex hull of all the | | | |L E -
dimension rate vectors in , which can be expressed as 

( ) ( , ) ) ( 0, 1u B uCo r r r 
 





    

 
: ( ,u Br r , r  ),B  



  

B.  Cross-layer problem formulation 

Let d
ijf  denote the native flow rate of commodity  on 

unicast link , and  the coding flow rate of 

commodity  that is coded with commodity d  at node i, 
broadcasted on link  and received by node j. Note that 

 and  are virtual information rates for 

transmission on link ( , . To decode the coded packets 

correctly after the broadcast transmission, the previous node of 
packets of commodity  coded in virtual flow 

d
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ij j kf   is node k, 

while that of commodity d   in flow  is node j. Denote ,( )
,( , )

d d
ik j kf 

{( , ) : , ,P d d d d D }dd      as the set of all feasible 

commodity pairs. To develop a cross-layer algorithm with a 
low coding complexity, we formulate the capacity region of 
wireless multi-hop network with network coding by 
introducing virtual flow rate variables { }d

jig , where d
jig  

represents the total unicast rates (without coding) of packets at 
node i of commodity d  that come from node j. With those 
virtual flows defined, the capacity region for a wireless multi-
hop network with OTIC NC can be formulated as follows,  
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where D 

Maximi

s.t. (1)-



ze  

(7)

, are fixed and finite constants. 
Constraints in (1) present that all the flow variables are 

nonnegative, all the flows can not be sent to other nodes by 
their destinations, and the packets of the same commodity can 
not be coded together; Constraints in (2) and (3) are the flow 
conservation law for each commodity at nodes that are not its 
destination. (6) defines the constraints on link capacity 
allocation. (7) is the constraint on link rate region of the 
wireless multi-hop network with OTIC network coding with 
time-sharing; (4) represents the constraints on the virtual flow 
rates of each commodity at each node. Since the virtual flow 
variables are added artificially, each  should be set to be 
sufficiently large (e.g., larger than the sum of the input rates of 
the corresponding node) so that the capacity region is not 
smaller than that without virtual flows.  

d
iV

)    

The objective of our cross-layer optimization problem is to 
achieve fairness among all the sessions by maximizing the 
sum of utilities of all the sessions subject to the constraints 
(1)-(7) on the capacity region as follow, 

,i d N

(d d
i iU x

            (P1) 

where the utility function  associated with session i with 
sending rate 

(iU x )i

ix  is assumed to be a concave, non-decreasing and 
continuously differentiable function. Maximizing the total 
utility can achieve proportional fairness if ( ) log(z)U z  .  

Primal problem P1 is a convex problem with linear 
constraints and a concave objective function [10]. It can be 
solved using interior-point method. But this requires 



centralized computation. We will show that one can use dual 
decomposition and subgradient method [3] [4] to P1 to find a 
cross-layer optimization solution which is possibly 
implemented in a distributed manner, and to obtain a new 
queuing model that can facilitate coding operation as well.  

III. CROSS-LAYER OPTIMIZATION ALGORITHM 

Since P1 is convex, strong duality holds. Thus, it can be 
solved optimally by solving its dual problem. By introducing 
Lagrange multipliers { }d

jip  and {  to relax constraints in (2) 

and (3), respectively, the corresponding partial Lagrangian of 
P1 can be written as follows 

}d
iq

,
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ncx, f, f , g; p, q

ncx, f, fwhere  and g  represent the vectors of primal variables 

of session rates, native flow rates, coding flow rates and 
virtual flow rates, respectively; p  and represent the vectors 
of corresponding dual variables. With this Langrangian we can 
define the dual objective function as 

q

max ( )
( )

. . (1) and (4)-(7)

L
D

s t

 
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nc
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p, q                             (8) 

Thus, the dual problem of problem P1 can be written as: 

Minimize ( )

. . 0 0

D

s t  
p, q

p , q
                (D1) 

which is also a convex problem [10]. 

A. Subgradient method to solve D1 

Subgradient method is effective to solve dual problem D1 
since its objective function (8) is not differentiable [11].    
Supposing primal variables  and  are obtained as a 

solution of maximization in dual objective function (8) at 
point 

ncx, f, f g

( )p, q , the subgradients of function (8) at d
jip  and d

iq  c  

be expressed as follows, respectively, 
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Subgradient method finds the optimal solution of D1 by 
updating dual variables in each iteration step t  using 
subgradients in (9) in the following way until the solution 
converges. 

( 1) ( ) ( ) ( )

( 1) ( ) ( ) ( )

d d
ji ji ji

d d d
i i i
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                                 (10) 

where ( )t is a positive step-size at step  and   .  t max( ,0)y y



Subgradient method converges to the optimum of D1 if 
( )t  is designed appropriately according to the rules in [11]. 

Since strong duality holds for P1, the primal variables 

( ) related to the corresponding optimal dual 

variables  are a globally optimal solution to P1 [10]. 

* * * *
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( ) (D D
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B. Calculating subgradient by dual decomposition 

To calculate subgradients (9) in each step t , we need to 
determine primal variables and , which is the solution 

of maximization problem in (8) at point ( ( . The 

maximization problem in (8) can be decomposed into the 
following three subproblems: 
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Subproblems (11), (12) and (13) can be solved separately 
and the solutions actually result in a cross-layer optimization 
algorithm for joint congestion control, routing, scheduling and 
network coding, to be showed in Section III.D. Next, we first 
present the queuing model implied by dual variables  and q . p

C. Queuing model and evolution of the queues 

If the step-size for updating dual variables is constant in 
each step, the variables are updated in a similar manner to the 
corresponding queues [3] [4]. For a sufficiently small, 
constant step-size, subgradient method can converge to a small 
neighbourhood of the optimal solution [11][4]. Similarly, 
assuming a constant step-size in (10), i.e., ( )t  , we can 

associate each of the dual variables in  with a queue, 

which results in a new queuing model at each node. Different 
from previous work [3] [4] where no network coding was 
considered and each node maintains only one queue for each 
commodity, each node in the present case maintains several 
queues for each commodity d, including single unicast queue, 

, buffering packets to be sent out as native packets, and 

receiving queues 

(p, )q

d
iQ

,d
jiP ( , )j i L  , where each queue d

jiP  is 

used to buffer all the packets from neighbouring node j. There 
is a virtual link between  and between each queue d

iQ d
jiP , 

respectively. The packets of commodity d that comes from 
neighbour j but are to be sent out as native packets (without 
coding) are transferred from d

jiP  to  through the virtual link 

with virtual flow rate 

d
iQ

d
jig . Thus, the evolution of the queues in 

this queuing model is  
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Comparing (15) with (10) for positive constant ( )t  , we 
can find the relationships of queue lengths with corresponding 
dual variables, ( ) ( ) /d d

ji jiP t p t   and ( ) ( ) /d d
i iQ t q t  . 

D. Cross-layer optimization algorithm 

With the above queuing model, we can use queue length 
information instead of dual variables in the dual 
decomposition and subgradient method.  

Algorithm 1: Cross-layer optimization algorithm for 
wireless multi-hop network with OTIC NC 
Assuming that the lengths of unicast and receiving queues are 

and P etwork performs 

the following operations at slot t: 
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4) Network coding and Routing:   Each node i 

 XORs packets from receiving queues d
jiP


 and d
kiP
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respectively, and broadcasts the coded packets on links ( , )i j  

and ( , )i k  at rate min( ,ij ikc c  if broadcast link ( , ( , ))i j k) ,    

( , )d d   are the commodity pair that attains ,( , )i j kw . 

  transmits the packet

and 

s from unicast queue on lin d
iQ


k ( , )i j  

at rate ijc  if unicast link ( , )i j    and d   are th  

commodity pair that attains ijw

5) Queue information exchanging:

e

. 

 
At the end of this slot, all the que

to (15). All the nodes exchange their queue length information 
with their neighbours through a certain control channel. 

From step 4) in the algorithm, we can see that the developed 
queuing model facilitates the optimal coding operation. 
Different from one queue per one commodity model, it neither 
has to maintain for each packet the set of nodes which it 
comes from nor has to search all the queues for packets that 
can be coded together in each slot. For network coding, a node 
just needs to pick packets from corresponding receiving 
queues. Thus the complexity of finding valid coding 
opportunity is reduced.  

E. Link scheduling algorithm 

Note that Algorithm 1 is possible to be implemented in a 
distributed way except for link scheduling (16) which is a 
maximum weighted independent set problem that is NP-hard 
and needs a centralized solution under general K-hop 
interference model.  

Since in this paper we are mainly interested in the optimal 
interaction of functions at different layers with network coding, 
we test the proposed cross-layer optimization algorithm using 
a centralized Greedy Maximal Scheduling (GMS) algorithm 
[12] for link scheduling (16) in the simulation in the next 
section. GMS each time schedules link with the highest weight 
(  or ) in (16) and drops the links in the interfering 

range of the selected link until all the links in the network are 
either scheduled or dropped. However, the design and 
performance analysis of the distributed link scheduling 
algorithm with low complexity under more general 
interference model are to be done in our future work. 

ijw ,( , )i j kw

IV. SIMULATIONS RESULTS 

In this section we evaluate the performance of the proposed 
cross-layer optimization algorithm through simulations. The 
topology and link rates used herein are showed in Fig. 2. Note 
that we set 21 32 42 64 0c c c c     to get an acyclic topology. 

There exist two sessions: 9
1x  from node 1 to node 9, and 3

9x  

from node 9 to node 3. We set the step-size 0.01   and use 
utility function ( ) ln( )U x x . We assume primary interference 
models in which links share a common transmitting node and 
receiving nodes can not be active simultaneously, and we use 
the greedy maximal scheduling (GMS) algorithm as stated in 
Section III.E for all the simulations. 

 
Fig.2 Topology used in the simulations. 

A. Comparison 
Comparison of Algorithm 1 is made in terms of converged 

average session rate, with the cross-layer algorithm based on a 
pure routing scheme without network coding developed in 
[10]. As shown in Fig. 3, we see that from Algorithm 1 the 
converged average rates of flows 9-1 and 3-9 are  

and , respectively, while from the algorithm 

without network coding the converged average rates 

9
1 0.9231x 

3
9 0.8451x 

ues are updated according  



V. CONCLUSION  are and , respectively. This shows that 

the performance of the cross-layer optimization with NC is 
improved by up to 17.88% in this scenario. 

9
1 0.75074x  3

9 0.7497x 

In this paper, we proposed a cross-layer algorithm for joint 
optimization of congestion control, routing, scheduling and 
network coding for a wireless multi-hop network with network 
coding. Virtual flow variables are introduced to formulate the 
capacity region. After solving the utility maximization 
problem subject to constraints on the capacity region using 
dual decomposition and subgradient method, we obtain a 
cross-layer optimization algorithm with a new queuing model 
that can reduce the complexity of the coding operation. 
Simulations have showed that, with the proposed algorithm 
and queuing model, network coding can interact adaptively 
and optimally with the other components in the network layer. 
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