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ABSTRACT

We introduce a method for controlling the spatial robustness of a

mixed phase loudspeaker equalizer design. The emphasis is on time

domain behaviour and the pre-response error that is always present

in mixed phase design. Based on measurements from a small spatial

region, a mixed phase compensator is regularized to be valid also

over a large spatial region. The regularization can be applied grad-

ually to match any size of listener region, while fulfilling a set of

constraints for the pre-response error. The compensation thus avoids

the unacceptably high pre-response error levels that generally occur

outside the measurement region. The proposed compensator design,

which is validated on measurements in both small and large spatial

regions, is shown to produce excellent results.

Index Terms— Loudspeaker equalization, Acoustic signal pro-

cessing, Robustness, All-pass filter

1. INTRODUCTION

Spatial robustness is a critical factor in the design of digital audio

compensation filters. A particularly challenging aspect of this is the

pre-response errors, or pre-ringings, that occur in mixed phase filter

design when the noncausal part of the filter does not exactly match

the Room Transfer Function (RTF) at all points in the listening space

[1, 2]. Recently, a method for cautious mixed phase equalization was

introduced which admits control of the pre-ringings [3]. The perfor-

mance of that method depends on the existence of a near-common

excess phase part among the measured RTFs. In a set of p measured

RTFs, the near-common part is detectable as dense clusters of non-

minimum phase zeros, each cluster containing one zero from each

RTF. As the intended listening region increases in size however, such

near-common zeros are less likely to exist among the RTFs, mak-

ing a mixed phase design less feasible. An obvious solution would

be to use a pure minimum phase design, which completely avoids

pre-response errors, but this may in some cases lead to worse time

domain performance.

In this paper we introduce an extension of our previous ap-

proach, featuring a variable mixed phase compensation. In order to

increase the region of validity of a small-region design, a regular-

ization of the noncausal part of the filter is introduced, along with a

causal all-pass filter which controls the influence of the noncausal

part. This approach admits a partial inversion of nonminimum phase

zeros which are near-common only for a very limited spatial region.

The efficiency of the method is verified by measurements conducted

in cubic shells of increasing size.
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Remarks on the notation: Filters and RTFs are represented

by polynomials and rational functions in the backward time-

shift operator q−1, (q−1s(k) = s(k − 1)), where q−1 corre-

sponds to z−1 in the frequency domain. A polynomial (poly-

nomial matrix) is denoted by italic capital (bold capital) letters

as P (q−1) = p0 + p1q
−1 + · · · + pnP

q−nP ( P (q−1) =
P0 + P1q

−1 + · · · + PnP
q−nP ), whereas rational matrices,

indicated by bold calligraphic letters, are represented on com-

mon denominator form as G(q−1) = Q(q−1)/P (q−1). Scalar

rational functions are denoted by normal calligraphic letters as

G(q−1). For any polynomial (polynomial matrix) we define the

conjugate as P∗(q) = P (q) = p0 + p1q + · · · + pnP
qnP

( P ∗(q) = P T (q) = P
T
0 + P

T
1 q + · · ·+ P

T
nP

qnP ).

2. SIMO FEEDFORWARD COMPENSATION WITH

PRE-RESPONSE ERROR CONSTRAINTS

As a framework for deriving spatially robust filters we shall use that

of SIMO feedforward control [4]. Let the multi-point error signal of

a compensated SIMO acoustical system be described by

y(k) = Dw(k)−HRw(k) (1)

where H(q−1) and D(q−1) are the RTFs and the desired responses,

respectively, between the loudspeaker and p ≫ 1 measurement po-

sitions, represented on matrix fraction description form as
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A and E are stable and monic polynomials while R is a stable

and possibly noncausal compensator operating on the source signal

w(k). The compensator R is to be designed so as to minimize the

spatial MSE

J = E
˘

‖y(k)‖22
¯

= E
n

tr
“

y(k)yT (k)
”o

. (3)

In other words we are required to keep the measured signals in the

p measurement points as close as possible to the desired signals as

defined by D(q−1)w(k). Further, assume that the individual acous-

tic propagation delay q−∆i associated with each RTF Hi = Bi/A
is removed prior to our filter design. An ideal target response is then

set to be a (large) delay of d samples at all points i = 1, . . . , p,

Di = q−d. Since acoustical RTFs frequently contain nonminimum

phase zeros, a mixed phase compensator is required to fully invert

the RTFs. However, since this can only be accomplished by the use

of a noncausal filter, pre-ringings are likely to occur in the filter,

causing pre-response errors in the equalized system. In [3] a mixed

phase compensation design was proposed with the ability to fully



control the pre-ringing effects. It was shown that a noncausal multi-

point MSE optimal feedforward compensator, under the constraint

of zero pre-ringing error, can be expressed as

R(q−1, q)=q−dF∗(q)R1(q
−1)=q−dF∗(q)

Q(q−1)A(q−1)

β(q−1)E(q−1)
(4)

where F∗(q) = Bc
∗/βc

∗ is a noncausal all-pass filter constructed

from the common factor, Bc, of all RTFs (Bi = BcBn
i ), provided

that such a common part exists, and βc is the minimum phase equiv-

alent of Bc. β is the RMS spatial average defined via

β∗β = B∗B =

p
X

i=1

Bi∗Bi = Bc
∗B

c

p
X

i=1

Bn
i∗B

n
i . (5)

Note that β is minimum phase, and in the frequency domain

|β(e−jω)/A(e−jω)| is the square root of the spatially averaged

power spectrum. If the target responses are ideal, i.e., Di = q−d,

then the polynomial Q in (4) is a scalar constant. While the compen-

sator (4) provides a perfect mixed phase compensation for exactly

common nonminimum phase factors, such factors are unlikely to

occur in reality unless the p RTFs are acquired from measurements

very close in space. In general this is however not the case and

such densely spaced measurements are equivalent to a single-point

design which is known to be spatially non-robust [5, 6]. The idea

of performing mixed phase SIMO compensation is to obtain a best

possible time and frequency domain equalization over a prespecified

spatial volume. In order to do this without introducing pre-ringings,

we are interested in extracting the common (or near-common) non-

minimum phase dynamics among all measured RTFs. In [3] a

method for that purpose was proposed. The method is based on

zero clustering, where sufficiently close nonminimum phase zeros

are represented by a nominal zero which is compensated for by a

(truncated) noncausal all-pass filter q−dF∗ according to (4) with a

pole located in the position of the nominal zero. The pre-response

effects of such a compensation is discussed next.

3. CONSTRAINTS ON THE PRE-RESPONSE ERROR

To quantify the effects of cancelling a near-common excess phase

factor in the RTFs with a (noncausally ringing) excess phase pole

z0 = r0e
jω0 ; r0 > 1, the residual impulse response1 in the different

measurement positions has to be derived. It is found to be, see [3],

heq(k)=
h

δ(k)+Crk
0cos(−ω0k+Φ)u(−k)

i

∗r2(k)∗h2(k) (6)

where ∗ denotes convolution, δ(k) is the Kronecker delta function,

u(k) is the unit step function, and

Φ=arctan

0

@
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ℑ(z0)
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A ; C =
|z0 + ǫ|2−|z0|

2

|z0|2 cosΦ
(7)

for some small pole-zero mismatch error ǫ. The pre-ringing effects

are governed by the second term within the brackets of (6) and are

constrained to obey the following N inequalities:

20 log10(Cr−κn

0 ) < Ln ; n = 1, . . . , N (8)

where Ln is the maximum allowed pre-response error level at the

time instant of κn samples prior to the desired delay d. All clusters

fulfilling the pre-ringing constraints (8) are compensated for accord-

ing to Section 2. When the nominal zeros representing the near-

common zero clusters are determined, the residual impulse response

1With residual response is meant the response remaining in a certain mea-
surement position after cancelling the nominal zero with a pole.

of each pole-zero cancellation (6) can be controlled by requiring the

amplitudes C in (7) to comply with the constraints (8).

The nonminimum phase zero cluster sizes depend heavily on the

size of the measurement region: The smaller the measurement region

the more compact the clusters, and vice versa. This is illustrated in

Fig. 1 from which we note that the clusters become larger as the

measurement region size increases. It is therefore unclear whether

Fig. 1. Cluster performance. Left: Clusters present up to 4000Hz.

Right: Clusters present along the frequency axis from 20 to 200 Hz.

Small rings refer to an 8 point cubic shell of 10×10×10 cm whereas

the largest rings correspond to an 8 point cubic shell of 60×60×60

cm. One increase in ring size corresponds to an increase by 10 cm

in all directions.

the clusters will fulfill the pre-ringing constraints (8) as the clusters

(and measurement region) become larger. This situation is illustrated

in Fig. 2 from which we note that the clusters well outside the unit

circle and around 1000–4000 Hz pass the constraints (8) also for the

large region design, whereas the clusters at low frequencies close to

the unit circle do not. The reason that the clusters at low frequencies

do not pass the selection procedure is that the corresponding nominal

zeros, when cancelled by a pole, cause a too large residual error,

not compatible with (8). It is clear that the low frequency clusters

would be included in the small designs but not in the large. But if

we are aiming for a design which should be valid also in a larger

volume, then we have to leave these clusters out of the design, at

the expense of worse performance in the small volume. There is

however a possible remedy to this, which will be discussed next.

4. A PRE-RESPONSE FOCUS CONTROL

Control of the pre-response artefact is essential to obtain the best

possible performance over the whole pre-specified listening volume.

If acceptable pre-response performance is to be obtained in the large

region without completely sacrificing the time domain properties of

the small-region design, then we would need to partly compensate

for the zero clusters at low frequencies, even though they were dis-

carded by the clustering process. This is accomplished by introduc-

ing a somewhat regularized version of the noncausal all-pass filter

F∗, say F r
∗ , and a companion causal all-pass filter G in addition to

this. In contrast to the small-region design where the pole of F∗
was placed on the resulting cluster nominal zero, we will here move

the pole slightly, radially outward from the cluster. This will cause
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Fig. 2. Zero clusters. Left: Clusters at 0–4000 Hz. Right: Clus-

ters close to the unit circle at 75–250 Hz. Diamonds (⋄) refer to a

measurement volume of 10×10×10 cm (small design) whereas the

rings correspond to a measurement volume of 60×60×60 cm (large

design). (+) indicate poles that pass the pre-ringing conditions (8)

in the small and large regions. (×) indicate poles passing the small-

region design only.

a compression in time of the residual pre-ringings but also an un-

desirable amplitude magnification. This magnification is however

suppressed by properly adjusting the companion causal all-pass fil-

ter G. In essence, G neutralizes the effect that F r
∗ has on a broader

frequency scale. By a proper selection of the pole/zero locations of

F r
∗ , and of the companion causal all-pass filter G, we can continu-

ously control the pre-ringings that are caused by partially inverting

the excess phase zero clusters that were discarded in the large region

design. Let rejω denote the location of a pole in the small region

design, and introduce a regularization factor α > 1 such that the

regularized pole in Fr
∗ is located at rαejω . Furthermore, denote the

location of the corresponding zero in G by rγejω , where γ > α.

The poles in Fr
∗ and the zeros in G are thus related by a factor rγ−α.

When α = γ, i.e., the reciprocal pole-zero pairs of F r
∗ and G coin-

cide, the compensator is identical to the cautious large-region design.

As the pole-zero locations of G move away from the unit circle, i.e.,

γ increases, the phase response correction is increased, and in the

limit it is nearly identical to that of the small-region design. By opti-

mizing over α and γ the proper selection is obtained. The procedure

is further illustrated in Fig. 3. With a design as in Fig. 3 it is possible

to fulfill all the pre-ringing constraints (8). Thus, based on measure-

ments from the small cubic shell, we can regularize the design to be

robust in any specified larger volume. We call this Focus Control,

since it admits a method for shifting the focus of the time domain

inversion between spatial regions of different sizes.

5. EQUALIZATION PERFORMANCE

For evaluation of the different mixed phase designs, measurements

were collected in a geometry of six concentric cubic shells of in-

creasing size, with eight measurements in each shell. The smallest

distance between the cube corners was 10 cm, and the largest was

60 cm. For graphic evaluation we shall use the low-frequency aver-

age energy step response of N = 8 points, S(k), and the impulse
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Fig. 3. Zero clusters at 0–200 Hz and phase correction filter. Di-

amonds refer to a measurement volume of 10×10×10 cm (small

design) whereas the rings correspond to a measurement volume of

60×60×60 cm (large design). Crosses (×) and boxes (�) indi-

cate poles and zeros of the regularized noncausal all-pass filter F r
∗ ,

and of the variable causal all-pass filter G. Arrows indicate that the

pole-zero patterns of the causal and noncausal all-pass filters are ad-

justable, to regulate the amount of phase correction.

response maximum level envelope L(k), defined by

S(k) =
1

N

N
X

n=1

k
X

l=0

h2
Ln(l)

PM−1
m=0 h2

Ln(m)
(9)

L(k) = 20 log10(max
n
|hn(k)|) ; n ∈ {1, . . . , N} (10)

where hn(k) is the impulse response of the system at position n and

hLn(k) are low-frequency versions of hn(k). We shall compare the

original response with the equalized responses associated with three

different filters, named A, B and C, designed as follows.

A) A strict small-region (10×10×10 cm) design, with pre-

response error constrained to be at most -60 dB at -5 msec,

and -80 dB at -40 msec.

B) A mixed small/large-region (10×10×10 cm and 60×60×60

cm) design with same pre-response constraint as Filter A. The

nonminimum phase zero clusters from the small region are

partially inverted using our new approach.

C) A strict large-region (60×60×60 cm) design with same pre-

response constraint as Filter A.

The different designs are also cross-validated on both the 60 cm

and 10 cm regions. Furthermore, we will investigate impulse re-

sponse maximum levels for the 10 cm, 60 cm, and mixed 10/60

cm region designs, respectively. Also here cross-validation is per-

formed. The different performances are depicted in Fig.4, and Fig.5.

The top diagram of Fig. 4 shows the low-frequency average energy

step response for compensator designs ranging from 10 cm (A-case)

to 60 cm (C-case) in addition to the unequalized response for all re-

gions. We note that the A-design is superior in energy build-up. All

the other designs are about equal except for the 20 cm design which



is slightly better. For further illustration it thus suffices to consider

the A and C-designs, respectively.

In the middle diagram of Fig. 4 the A and C-designs are com-

pared to the new regularized mixed phase B-design and the non-

equalized original response. All designs are evaluated on the small

(10 cm) region. We note that the A-design is, of course, superior

but the new B-design is significantly better than the C-design, which

is slightly better than the original response. Next, we evaluate the

different designs on the large (60 cm) region.

From the bottom diagram of Fig. 4 we observe that the C-design

significantly improves upon the original response. Moreover, the A-

design is sometimes better and sometimes worse than the C-design.

Interestingly the new B-design is always better than the C-design

and mostly better than the A-design. However, as is evident from

the uppermost curve in the bottom diagram of Fig. 5, the A-design

does not fulfill the pre-response error constraint. Also, note that the

B-design fulfills the constraints in both the small and large regions.
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Fig. 4. Average energy step responses S(k) in the low frequency

band, 0 < f < 320 Hz. Top: Performance for 10 cm–60 cm

designs. Middle: Performance of filters A–C in the small region

(10×10×10 cm). Bottom: Performance of filters A–C in the large

region (60×60×60 cm).

6. CONCLUSIONS

We have shown that the mixed phase design proposed in this paper is

superior to both small and large region designs when cross-validated

over the large and small regions, respectively. With the new method,

a small region design can be tuned to be valid for any spatial region

by the use of a regularized noncausal all-pass filter together with a

companion causal all-pass filter. By a proper selection of these all-

pass filters we can control the focus of the inversion on any spatial

region while fulfilling specific pre-response error constraints.
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Fig. 5. Impulse response maximum level envelopes L(k) for the

original (grey lines) and equalized (black lines) system, using fil-

ters A–C. Top: Performance of filters A–C in the small region

(10×10×10 cm). Bottom: Performance of filters A–C in the large

region (60×60×60 cm).
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